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1. INTRODUCTION

In this paper our main object is the study of relations between cardinal numbers
which are written in the form

a - (bo , b,, . . .) r or a--(b)C ~° or

(b) (bo b,)

Such relations were introduced in [3] and [1] . They are called I-relations, Ii-relations
and III-relations respectively, and they will be defined in 3 . 1, 3 . 2 and 3 . 3 . In
sections 18 and 19 we shall introduce certain generalizations of these relations .
Our whole theory can be considered as having arisen out of the classical theorem
of RAMSEY [18] . The most natural and direct generalization of the question settled
by Ramsey's theorem is the problem of deciding whether for a given positive integer
r and given cardinals a, bo , b,, . . . the I-relation a -(b o , b,, . . .)r is true or false .
Although the I-relation was only introduced in 1952 several papers had already
appeared on such relations between 1933 and 1952. As far as we know the first
of these papers is due to W . SIERPINSKI [19] who proved that 2lá-(N,, N,) 2 . Two
of the present authors have published several notes on such relations . All the results
found by us before the present paper are contained in [1] where there will also be
found references to previous papers by other writers except to those of G . KUREPA
of which we had no knowledge at that time . Independently of P . ERDŐS and R . RADO
and at about the same time KUREPA found several I-relations the most important
of which, deduced under the assumption of the generalized continuum hypothesis,
can be stated as follows :

(
~a+2-1~a+1, K+2 2

,

1~«+r~( «+1)
r
r, for r 1, a 0.

Furthermore, KUREPA proved independently but somewhat later than SIERPINSKI that

2 "+( a+1, a+1)2 .
For these results see [20] .

In this paper our first major aim is to discuss as completely as possible the
relation I . Our most general results in this direction are stated in Theorems 1 and
II, and the remaining open questions are stated in Problems 1 and 2 . If we disregard
cases when among the given cardinals there occur inaccessible numbers greater
than t~o , and if we assume the General Continuum Hypothesis, then our results
are complete for r = 2, and they are also complete for r -- 3 provided we restrict
ourselves to finitely many numbers b, . It seems that there are only two essentially
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different methods for obtaining positive partition formulae : those given in Lemma 1
(the ramification method) and those given in Lemma 3 (the canonization method) . .
The idea underlying Lemma 1 has of course been known for a long time but the
ramification method in its present form gives in some cases sharper and more general
results than have been known before . We shall not always quote in the text the
place where the previous weaker results appeared. Perhaps our most important
new method is that given in Lemma 3 of which there are bound to be many further
applications .

In Lemma 5 we state powerful new methods for constructing examples of
particular partitions which yield negative I-relations. The simplest special case of
these general constructions leads to a proof of

22 "_+~
\ 1' RX

which was the decisive step towards proving our general theorems . Throughout
most of our work we assume the General Continuum Hypothesis . In some cases
it will be obvious to the reader how the theorems should be formulated when this
hypothesis is not made but in other cases unmanageable complications would arise
if we were to abandon the continuum hypothesis .

In sections 17 we prove a negative result on II-relations which is sharper than
that obtained in [4] . This result is perhaps not best possible but it is interesting on
account of its connection with the abstract measure problem for inaccessible car-
dinals described in section 8 .

In sections 18-20 we consider problems which are in various ways related
to our original partition problem . Here we are very far from obtaining complete
results, and in some cases we are not even able to give a complete discussion of the
many open questions. The proofs and constructions of counter examples are similar
to those used in sections 1-16 but the results show many new and interesting features
such as those present in Theorems 22 and 23 .

Our second major aim is an investigation of the polarized partition relation .
III. Such relations were formally introduced in [3] but an earlier result of SiER-
PiNSKi [22] implicitly contains the formula

o
(1~ ~- (

o

	

o
"1

	

"1) '

In 3. 3 we define a very general type of polarized relation but we in fact restrict
ourselves to relations of type (1) . This severe restriction is probably not essential
and it is justified only because even in this special case our discussion is not complete .
Several important problems remain unsolved some of which, such as Problems 10
and 12, seem difficult and may require new methods . It may well be that new
phenomena arise with more general polarized partitions but we have not investigated
these .

PART I
2. NOTATION AND DEFINITIONS

Unless the contrary is stated, Roman capitals denote sets, small Greek letters
as well as k, l, m, n denote ordinal numbers (ordinals), and small Roman letters
other than k, l, m, n, x, y, z denote cardinal numbers (cardinals). The sequence of
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infinite cardinals is \ o , A,, , . . ., and the corresponding initial ordinals are
coo, 0) 1, co z , . . . . We always put (!)=ot), . No distinction is made between finite
ordinals and the corresponding finite cardinals . We shall always assume that

For every i, the symbol x` denotes the order type obtained from the type a. by
reversing all order relations .

Bold type letters A, F, . . . are used to denote sets of sets or families of sets .
As usual, these last two notions differ in that in a family the multiplicity of occurrence
of any particular set is essential whereas this is not so in a set of sets . If A is a set
of ordinals and A 0 then min A denotes the least element of ,9 .

Set inclusion in the wide sense, union and intersection are denoted by

A = B, A + B, AB

95

respectively, and the symbols

2: (v'_N)A,., H(I ~N)A,,

denote union and intersection of any family of sets . Without fear of creating con-
fusion we use the same notation for sums and products of cardinals as for union
and intersection of sets . The symbol

2:'(v EN)A,

denotes the set 1(v=N)A,, and, at the same time, expresses the fact that

A F,A„ _ 2, for Ii, v N ; µ v .

We shall make use of the obliteration operator ^ whose effect on a well-ordered
sequence of elements is to remove that element above which it is placed . Thus

(1)

	

xo,'`I, . . .z„

denotes the sequence of type n whose ah term is x,, . We use this notation even
in cases where an element x„ has not been defined at all . The symbol

(2)

	

ao + a, + . . . + ~„

denotes the suns of all cardinals a v for wick v<n, and other similar uses of the
operator will be easily interpreted . We shall nearly always omit the customary
three dots . . . to indicate a continuation of the symbols as indicated in front of them,
so that (1) and (2) are more simply written as x o , . . ,, and a.++ &,, respectively .

If P(x) is a proposition involving the general element x of A then for BcA
the symbol

B{x : (P(x)I,

denotes the set of all xF B such that (P(x) is true. In the formula for (P(x) we
may use the logical signs for "and", 'J for "or", -, for "implies", 7x for "there
is x", and 'fix for "for all x" .

The Cartesian product of sets A,,,, Á„ is

Ao XXA = {(x,, . „} : v<n x 'A, j _ {f: v<n-<n
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If Ao „ A„ are pairwise disjoint sets each of which is ordered then the symbol

AO + + A„ (tp)

denotes the set A O + + A„ = A and, at the same time, indicates that A is ordered
by the rule that for x, y E A we have x < y if and only if

either (i) there is v < n with x, y E A,- and x <y in A y ,
or

	

(ü) there are µ < v < n with x E A ', and y E A,, .

If x o „ -z„EA, and if a binary relation x-< y is defined on A then each of the
symbols

(3)

{X011 x } , }x,, : v,/]}-,

denotes the set }xo ,, z„} and, in addition, expresses the fact that xa -< xft for a < P < n .
The cardinal of A is JAI, and if A is ordered then the order type of A is denoted

by tp A . If the same set A is ordered by several order relations R,, then tp (A, R,)
denotes the order type of A under R, . If tp A -a then we put IaI _ JAI . For any
A and B we put

A-B = A{x:xJB} .
If a ~3 then we put

[a, f3) = } V : a=V<[1} .

Every a has a unique representation a = co/i+r . We put

a_ s = (Oil+(r-s) if r=s,

O)fl

	

if /-<S .

Ordinals of the form y + 1 are said to be of the first kind, all others of the second
kind. Ordinals of the form w/i, where P 1, are limit numbers, all others isolated.
If a== a then we put

a+

	

a -

If a < o) then a+ = a + 1 and a - = a - 1 .

If a i~ o then a' denotes throughout this paper the least cardinal b such that

a = ao ++á„

for some suitable n, a v such that InI =b and ao „ á„ <a . If a= a then á = «
where cf(a) is the cofinality function introduced by TARSKI . Whenever the notation
a' is used it is tacitly assumed that a-- o .

The cardinal a is called weakly inaccessible if

a=a'=a- ,
and it is strongly inaccessible if

a=a', and b -a implies 2b-:a .

These two notions will mainly be used when the General Continuum Hypothesis

2~ _ + i for all v
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is assumed in which case strongly and weakly inaccessible cardinals form the same
class and will simply be referred to as inaccessible . The number , is strongly
.inaccessible, and no other inaccessible number is known .

We put
[S]" = t X : Xc S~ iXl =a,, .

[S]<" = S(h=a)[S]',

[S]-~~~ __ ~(a-h= ~S )[S] h ,
P(S) = "X: XcS ; .

The following notation will be very useful . If 1 -- P(S) then

[1]r _ fix ; : X--Sn[X]r -1; .

Clearly, [1],, depends on 1 and r only and not on S. We shall use the notation

[Sa„

	

= P(St,++S„)fX : (', v0(v<n_ XS,j=a,), .

For any a we denote by w(a) the initial ordinal whose cardinal is a. i . e. we put
w(a)=min (ni=a)n .

The statement of propositions in whose proof the General Continuum Hypothesis
(3) is assumed, will be prefixed by the symbol (+) . The same applies to problems
which are of interest only when (3) is assumed .

3. THE PARTITION RELATIONS I, 11, 111

3. 1 . The ordinary partition relation (relation I). A partition of A is airy sequence
(A o „ A„) such that A = Ao - -r A,, . We shall also use the version A =1(v E N)A, .
The A,, are the classes of the partition . The partition is called disjoint if A =E'A,, .
An r -partition of A is, by definition, a partition of [A]r .

The power of a partition A=(A o , . A„) of A is the cardinal

Thus a 1-partition of A is a sequence (1,,, I„) such that [A]I -=SI,, . Then A=-FJ,.
where Jy = A i x : I( x,' EI,} for v --n . When there is no danger of a misunderstanding
we shall identify the partition (lo „ 1„) of [All with the partition (Jo ,, J„) of A .

If A is a partition of A, and if B , --A . then the statement

~Aj-1 in B

means, by definition, that B lies in some class of A, and "jA I > 1 in B" is the nega-
tion of this statement .

Trivial results in [1] show that there is no loss of generality in assuming that
in every partition the classes are indexed by a set of ordinals of the form [0, r1) .

Occasionally we shall employ a notation in which the classes of a partition are
indexed in some other way .

7 Acta Mathematics XVI/ 1 -?
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We define the ordinary partition relation (I-relation)

(1)

	

a --(bo , , b„)'

	

(or : a--(b,)'<„)

as follows . The relation (1) expresses the fact that whenever

(2)

	

;SI,=a ;

	

[S]'' _= t o ++I„

then there are a number v n and a set X _ S such that

X'i =b, ;

	

[X]" - -1' .

More simply, this means that (2) implies that

b,, E [I,.],. for some v - n .

The logical negation of (1), and similarly for all partition relations to be introduced
later, is written as

(3)

	

a }-(bo„ b„)'

	

(or :

The relations (1) and (3) are only of interest if

Here is a systematic discussion of the degenerate cases of (I) and (3) . Define four
disjoint subsets of [0 . n) whose union is [0, n) :

Case 1 . N + 0 . Then (1) holds. For if (2) holds then we choose v E N

	

.
Then r == b,, - a, and we can choose XE [S]b ,, . Then [X] " = Q - I,, and (1) follows .

Case 2. N _ + _ 0) .

Case 2a. N+ _ + N_ _ - 2 . Then (3) holds . For if I S =a then there is a parti-
tion (2) such that I„ _ 0 for v J N, _ + N_ _ . Now suppose there are a number
v<n and a set XE[S]'' ,• such that [X]' -_ I, Then b,,-a ; vEN ++ +N_ + = N+ ;
2

	

[X]'' - I,, ; 1--- N+ _ + N_ _ which is a contradiction . Hence (1) is false .

Case 2b. N+ _ + N_ _ = 0 . Then r,, - b,, - a for v < n, and it follows that
this is the only case worth studying . Hence when discussing (1) or (3) we may if
we wish assume r--b o „ b„=a . We mention that even this last case can be further
reduced by omitting those b y for which by =r . For we have the following simple
proposition : If m-n and bo ==b„,=r, then the relations a--(b,„ b„)' and
a- (b,,,,, b„)" are equivalent . If b„=b for v-n we write (l) also in the form

(4)

	

a (b)rc or a (b)„
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where c= Inl . This notation is justified since if all b, are equal to each other then
the truth of (1) does not depend on the ordinal number n but only on the value
of InI . More generally, the relation

(5)

	

(1_ (( bo) „ (b, ), , ) r
has the following meaning . Let n,' =c, ; 11,1=c, ;

d" _= h, for v n,

b, for n o - v-min t .
Then

Cí- (L,,) rv<np+ni .

We may, of course. have more than two groups of equal entries in (5) . Similar
remarks apply to (3) .

REMARK. Concerning a further extension of the relation (1) to cover partitions
of [S]e for e~ , it is proved in [3], p. 434, that every such analogue of (l) is false .

3 . 2 . Partition relations with multiple exponents (11-relations) . Let r,,, i•, , a, b, c
be given cardinals . Then we say that the relation
(6)

	

a - (b) r°„"

holds if, whenever I S I=a and

[S]' = S(1,-m(c))1(r, v) (partition d, .)

for all r then there always exists a set XG [S]' such that

d r , I -_ 1 in [XI" ;- for every % 1 .

We call (6) a 11-relation or, more explicitly, a 11

	

r,)-relation . The II (r o)-relations
coincide with the ordinary I-relations . When studying (6) we may always suppose
if we wish that l =uo and r

	

r . If {s 0++ s 1

	

Ir

	

r11t then (6) implies a --(b)s°"s"'9` < 1

	

mJ `-l 0+
In 5. 3 we shall see that if b= ~, and sup (p rn)s„ =w then the converse impli-
cation holds so that for b = R, all relations (6) with fixed a, b, c and arbitrary
r,,, N, with sup ( ;. -1) r;_=cu are equivalent . The relation (6) is only of interest if
c 2 and a b~r,,,Y, . In particular, (6) is false if a<b ; c>0 ; 1>0 and (6) is
true if a=b and b-r •; for some ),-1. The logical negation of (6) is written as

r°„ r,a -+-( },.

Another type of 11-relation, which we shall discuss in some more detail is
written as

a--(b)

and expresses the following condition . Let S1 =a ;

[S]' = S(v <(o(c))1(r, v) (partition d r)

for every r . Then there always are a set X E [S] ,1 and a number r, such that

Idrl --l . in [X]' for r--r, .

7*
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3. 3. Polarized partition relations (III-relations) . Let s--2 ; r o „ r t _ r =1, and let
aQ and b,,, be cardinals, for a <s ; v «7, Then the relation

(7)

is said to hold if the following condition is satisfied . Let I S~ j =a„ for a t= s, and
SQSz = 0 for u-z-s. Let

S
O>>

Ss-1J = i,>}-+i,,.

Then there are always sets X, c SQ for a < s and a number v < rz such that

Á,1 =bR , for 6<S, and (íYO„ Xs_ l ] r o" rs- tCjv .

The relation (7) is only of interest if

rl -_h,,=a, for a--s ; v<r,,

and we shall frequently when considering (7), assume these conditions to hold .
In the present paper we shall mainly consider the very special case

s=2 ; ro =r, =1 ; n=2

which corresponds to the partitioning of even graphs into two subgraphs . We shall
however also investigate a generalization of this special case in a different direction
Let a, b, e,,, d,,, e,,, f;, be cardinals, for v -_n. Then the "relation with alternatives'

(8)

	

(a) _ (c', ,/
d',)

'I

is said to hold whenever the following statement is true . Let AB= 0 ; ~Aj =a ;
jBI =b ; [A, B]' •t = Io ++1,, . Then there are always sets X~-A ; YcB and a
number v <n such that [X, Y]' , r cI, and either (i) JXJ =c,, ; I Y -e„ or (ü) ~X j
=dv ; I Yi=Ív • It is worth noting here that the alternatives for the sets X and Y
are not independent so that for instance the possibility ~X j ==c,, ; !YJ =fv is not
permitted . The relation (8) is only of interest if

1--- c,,ú„-_ a ; 1-e,,,,fv-b for ti>--=n,

and we shall frequently assume these inequalities .

REMARKS. 1 . Theorems proved in sections 24 and 26 will show that alternatives
are essential for the investigation of even graphs . Clearly there is no need for
introducing more than two alternatives for each class .

2 . It would of course be possible to define more general relations with alternati-
ves but then it would not be easy to determine the minimum number of alterna-
tives required for a complete discussion .
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3 . If c,.=

	

and ev =f,l for v<n then (8) is equivalent to

M - lc 1 I 1

4. If in (8) we have. for v = it, c, . = c ; d,. = d ; e,, =e ; f,. =f, then we also write
(8) in the form

(b)
y

(
eV,J~i

1, 1

n .

5. On reflection it will become obvious that in studying any of the relations
1. 11, 111 there will be no loss of generality in assuming that all partitions involved
in the arguments are disjoint .

6. The left hand sides of all our partition relations will nearly always be assumed
to contain infinite cardinals only .

4. PRELIMINARIES ON PARTITION RELATIONS 1, 11, 111

4.1 . Invariance under permutations of the arguments . Let ,nil,= nt, and let
v-wn(v) be a one-one map of [0, m) onto [0, it) . Then the relations a--(bv) •,,, and
a-(b„O.,),,,,, are equivalent, and similarly the relations

~b}

	

~e, v.f,~~ 1 »

1,1
and

	

l1-. (ent,.~Vdn,,.t

)n(c) V. nh') v<n!

101

are equivalent . For the proof see [1], Theorem 17 .

4.2. Monotonicity properties . We say that one of our relations is increasing
(decreasing) in one of its arguments if whenever the relation holds it continues
to hold when this particular argument is increased (decreased) while the remaining
arguments remain constant . It is easy to see that every one of our partition relations
1, It, III is increasing in every cardinal variable on the left hand side and decreasing
in every cardinal variable on the right hand side, with the exception of the "exponent"
r and a cardinal indicating the number of classes . For the proof see [1], Theorem 12 .

4 . 3 . Substitution rules . (i) Let a -- (bo „ b )r ; it 1 ; bo -> (c o ,, c,„)" . Then
a _(c o " c,,,, b, „ b„)•. For the proof see [1], Theorem 16 .

(ü) Substitution in a relation with two alternatives may lead to a relation with
more than two alternatives . Thus it is easy to see that the three relations (in which
on the right only the first row is written out)

(a

	

ao `Va,,a,Va 3

	

(aol

	

a4Va5 ,a6 Va7

	

ai

	

asVag ,aio Va
b ~(b,VbI	)'

	

Idol ~(	)'

	

(b,,~(

imply the new relation

(a) y (a4 Va,Va,Vag , a6 Va~Va, o ~Va,,, a z ,a3 l
lb	

and that in general nothing stronger than this can be asserted .
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5 . FURTHER REMARKS ON PARTITIONS

5. 1 . Product of partitions . Let k -- J, and let, for each x <k, d, be a partition

S = 2:(v <n,)A,(v)
of S. Then the product

d o . . .d,~ = II(~<k)A,
denotes the partition

S = S(x-k--) v,<nJB(vo , . v,)
where

B(vo ., v,,) = 11(i < k) A,(v,) .
It follows that

Also, if every d, is disjoint then 11A, is disjoint . By convention, an empty product
of partitions of S is the partition which has only one class .

5 . 2 . Induced partitions . Let d be a disjoint partition of S. Then . the relation

xo =xt( .A)

denotes, by definition, the fact that xo , x r E S and that x o and x, lie in the same
class of d. Let

,f- Y --Í(Y)

be a map from a set T into S . Then a partition d' of T is defined by the rule

A'(y)=4(f(y)) for y C T

which, by definition, means that
Yo =1' I (- ,J')

if and only if
y o , y, E T and .Í'(Yo) =J(Yr)('A)-

We call d' the partition of T induced by d and f. Clearly, jA'I -IA 1 . Frequently
the multiplication of a number of induced partitions is the effective toot for proving
results on partitions .

We now prove the assertion made in 3 .2 about the equivalence of various
11 (r o „ N)-relations .

5 .3 . Let
a->(b),°"bo o ; sup(, I

	

=o~.
Then

a -(b)o„

PROOF . Let o)(a) -n ; S= [0, n) ; IN --c . and let
[S]' - E(vEN)I(r . v) (partition A, .)

for all r .
By the remark made in 3 . 2 we may assume that r o < < Define the r-par-

tition A' of S by

Ar(xo,, x <~) = A;(ixo_x;J) for r,.~r<r;,+, . %«J.
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Then obviously IXI - c. Hence, by hypothesis, there is X S such that tpX=
o-) (b) and

d,.,.1

	

1 in [Xj` for i.<1 .

Now let s- u) ; {x o „ x,.i <, iyo„ J'zi < X. Then r ;_ --i_ and we can choose .v,,,
Y).,, Y., E X such that x o -- .v,. , and y o

	

Then

and hence, by definition of d,',

Hence

	

I in [X]' . and the assertion follows .

6. THE RAMIFICATION LEMMA

We shall now describe a mode of reasoning which constitutes the core of many
arguments about partitions . It has been used, in one form or another, in a number
of papers already. In the rather more general form stated below it is a very powerful
tool for obtaining partition relations .

LEMMA l . Let o=o = I >0. Let S(v o ,_ r„) tread F(v o ,. r„) be sets and n(v o , . ia )

be ordinals defined for a o . Put

S' _ {(vo> , ~,) a= o% (t -a v_ =-n(r o . .

	

S'(r o „ !'„1 = S17(T--a)S(r o .-

	

r_)

for a ` O .
Suppose that

S'(vo_

	

F(vo „ v„)

	

~(v„ n(vo , . i,))S(r o „ v„)

for a < o ; (v o „ i,) E N. Then ive hare :

(i)

	

F(vo ., vr) F(v(„ i'„) -- 0 for r a -- L) and (vo „ ?~) E N .

(ii)

	

S = 2(r)-or'',(vo„ (',)EN) F(vo„ ~,)

	

N)S'(vo„

(iii) Let ÍS1-a- o and Ith!<cr' ;IF(v o , . -1 1,)I<a for (v o „r„)EN .
l'Suppose that there are cardinals c„ such that e l --a' a - - ,o, and Ín(v o „ ~) i :E~c„

whenever t < a - n and (v o „ i'„) E N. Then

(1)

	

there is (v o „ n„) E N with S'(v o „ ,) ; 0 .

(iv) Let IS >b-> \ o ; o =co(h') ; Ín(v o „ i'„)';=h and

IF(r o „ „)Í~h for ago and (vo „ r,) EN. Let 2'-b for c<h .

Then (1) holds.

(v) Let ',SÍ=a ; ÍoÍ <a; n(v o „ i'„)I <a crud IF(vo „ i„)Í T--a for a--o and
(v o „ v„) E N. Suppose that a is strongly inaccessible . Then (1) holds .

PROOF of (i) . F(vo„ ~,) F(v, , ~'„) - F(vo, . ~)S'(vo„ 1'„)'= F(vo „ i 7)S(v o „ v,)
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PROOF OF (ü) . Put 2: (a < (2 /\ (vo„ i,) E N) F(vo„ i,) = G ; S-G = T. For a < o•
and (v o ., v,)EN put S(v o ,- vo)-G = T(vo „ vj Then T17 (t ~0-)T(v o „ v,) _
_ 1((v o „ va ) E N) T(v o „ r,) for i,) E N . Hence we have, for < a <
and (v o ,, v„) E N,

T(v o „ v,) - S((vo ., v, . i)EN)T(v o . . ~,,

	

= H(r<a)T(vo„ i't) T(vo„ v,) .

Now suppose that there is an element

xET - S((vo •>

	

E N)17(a < o)T(vo„ v,) .

Put N' _- Ni(i'o- • v,) : (j- -: o%v x E T(i'o„ v,)i . Then N'

	

q . Define a partial order
on N' by putting (v o ,_ vt)<(vo „ v,) whenever r<a. We want to apply Zorn's
lemma to N* . Let I = 1_ 1 >0 and (v o (%)„ n~;(i))~(vo(µ)„ v, (p)) for J <µ<l .
Then (7, -- - - u,- L) ; m _ sup (i. - l) u, =7T--o,_ and there are numbers v o „ v, such
that v,(i) for i. < l and a=a; . Then (v o ., ij E N. Also, x E rl (i < n)T(vo „ 1,J
and hence. by definition of x, n < _o . Then

xE11(x<rt)T(v o ., i',) = S((vo„ vn)EN)T(vo„ v„),

and there is v such that (v o „ v,) E N and .a E T(v o „ v,) . Then

	

vQ ;(n)) <
--(v o „ v„) for i_ -I . and hence the partial order on N* is inductive. Thus Zorn's
lemma applies and gives a maximal element (v o „ v.) in N* . Then x < o ; a + I < o ;.

T(vo„ v,) = n(fl<x +1)T(vo„ vQ) = S((vo,, v,+i)EN)T(vo„

	

and there
is

	

such that (v o , . vx+ ,)EN and x(T(v o „ vz+J ) . But then (v o „ v, +J )-
(v o „ vx ) which contradicts the maximality of (v o „ v,) . Hence there is no such

element x . and therefore

This implies (ii) .

PROOF OF (iii) . Let (1) be false . Then, by (ü),

(2)

	

ISI -- £(O--(2l\(vo-f,)EN)ÍF(vo_i,)Í .

The number of terms of the sum in (2) is at most

by the regularity of a' . Hence, using the definition of a', we deduce from (2) that
SÍ -=a which is the required contradiction .

PROOF of (iv) . Put, in (iii), «=-b+ and c,=b . Then the hypothesis of (iii) holds
since, if a <- o, we have Íu! < b' and hence

cl l =b!°I -b<a == a' .

PROOF OF (v) . Let (1) be false . Then, again, (2) holds . Put NQ = 1(v o ,, v im ) :

(v o „ n Q) E N } for a < o . We prove by induction that I N.Í < a . Let r < <), and suppose
that N Í < a for a < r . Then we have: If r =0, then INTI = 1 <--a . If r = n + 1, then
INrI = E((v o „ V.)EN.)Ín(v o „ v n)Í <a . Now let r = -E-1 >0 and (vo „ v,)EN, .
Then (v o „ i1„)á IV, for a-'r and hence ÍN Í -- 17 (a<r)IN,Í <a . Thus ÍN,Í <a for

S-G = E((v o „ l'„)EN)71(a<o)(S(vo„ v,)-G) .



a < o, and again (2) leads to the contradiction S I < a . This proves (v) and completes
the proof of Lemma 1 .

We call the system R of sets N. F(v o „ i>a ), S(v o , va) a ramification system on
S of length L) . If all n(vo „ 110 have the same value n we call n the order of the rami-
fication system . With every ramification system there is associated a tree whose
lowest branches, in the case of order 2, are shown in the following diagram :

c,F(t/

o

	

0

	

o
S(ooo)F(ooisloot) Sl¢toRoti 5(ozt) SH. ORfoJ S(tp>l Si2foJFf~¢J SitflJ
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In applications we shall always use the notation S'(v o „ nQ ) as defined in the
lemma, and also NQ as defined in the proof of (v) . We shall construct R inductively .
Assuming that S'(v o . . i,) has already been defined for some fixed a, v o „ C, we shall
define n(vo „ 1,) . F(v o „ r"), S(v o , . rQ ) .

7. POSITIVE THEOREMS FOR I-RELATIONS IN THE CASE a=,t a+I ; r=2

THEOREM 1 . Let a--(a,„ a)2 ; b--(bo „ b,,)' ;

	

a, b+=c = c', and
suppose that (a-',kl)`'<c for all d-h. Then

( ) COROLLARY l . tr 7 +I -. (fix+ , ( a)á) 2 for x 0 ; IkI -

Deduction of the Corollary from the Theorem. Put m=] ; a = a o = a+ i

b=b,=-6,=,ta ;

	

Then the hypothesis of Theorem I holds, and the
Corollary follows .

PROOF of THEOREM l . Let iSl=c,

[S] 2 = S(Fi -m)K~ +S(z-=k)L, .

We may assume that

(1)

	

if S'F[S] then [S']2 - 1(p -- ni)KF , .

We have to find a number i-=k and a set S" S such that [S'"]2c--L2

	

and IS"I ~b~ .
We define inductively a ramification system R on S of length o=w(b) and

order n = w (a - jk j ) . By (1), a-2. Let a o, and let S'(v o „ va ) be defined for some
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r o „ r, We write v in place of v o „ r,, . Choose as F(v) a maximal subset of S'(r)
such that

[F(v')]2--Ko++K,,, .

Then, by (1), I F(v)j z_ a . and by the maximality of F(v) we have

S"(v)-F(v') ~ f(I" - n)S(v, v',)

If a n, then
n il~l =(a-Ij~~)Ial_~c

since lad <b. Hence by Lemma 1 (iii) there are numbers v o „ rr such that
S'(v o „ . Then (2) holds for a É) . Put v -j for u --- o . ff 6 < T - L)
then

e_

	

y'(v o ., r r) E F(v' o „ f,)

	

S'(r o „ t' r )

	

S(ro „ I',) ;

Put M, := [0, o)

	

x(i ,, v,) -=r} for i-k . Then [0, L)) ~ 2 ,V/, 1 -

	

,11,,, and by
b--(b,)- i, there is x-=- k such that M,i - b, . Put S° = {xa : 6F M, ; . Then S

"! [S°]'-L„ and Theorem I follows .

REMARK . The method used in the proof of Theorem I actually yields a result
of a more general type : see Theorem 39 in section 22 . We have described here the
proof for this special case in order to prepare the con -iplete discussion of relation I
without applying results on polarized partitions .

( * ) THEOREM 2. I c a', then a+ --( (I )' .

PROOF . Let 'IS =a+ ; [S] 2 - to

	

n--u)(c) . We define a ramification
system R on S of length c)=co(a) and order n . Let Q-o . and let S'(i,,- 17,) be
defined. Again, instead of v o ., i~ we write v . If S(v) = P then put F(v) =S(v' . v,)
for r -- n . Now let S(v) Choose x(v)CS(v) and put F(v)- (.r(v) ;,

S(r', v,) _ (S'(v)- F(v))11 y : ~x(v), y} ( I,,,,

	

for rrs =n.

This defines R . Lemma I (iii) applies . For S,=a+ is regular ; L) = a---a+ :

~F(r)I, I -:a+, and if (T -L) then

~ nil -I = c l-l -- a + .

Hence there are numbers v o „ -n with S"(v o „

	

. Then F(v o „
x,=x(vo „ i,) for c o . If a,-E-t) then, by definition of S(v o „ v,),

t - ~rl = F(,'o„ I',)C .S'(ro „ 1' r )

	

S(l' o „ 1' R) ; tV-a , .Y r l c %, . R '

where, for each v, ---n, either S(r, v„)

	

2, or, for some y(v, t, ,)( F( ) and x(r, t ,,)- k,
we have

(2 )

	

S(r' , va) = (S (v)-iy'(1', v,), .a}F~ ; ., i

Here we have used the fact that the number of pal s (y•, i) with y F F(v) and -k
does not exceed a- , k'i =- in'

This defines R. Now Lemma I (iii) applies . For : I S =c is regular ; I_ol - b •_ c .
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If M„=[0, t)) {a : ra =x for Y- 17 . then [0, g) _= d1 o -}-M,,, and since Inl -
= c<a'- Io!', there is i--n such that IM,I=Inl-a. Put S "={xa :6Ett1, ; . Then
IS - " =a ; [S"] 2 1,, and Theorem 2 follows .

REMARK . If a is regular then the conclusion of Theorem 2 follows from
Corollary l .

8. FURTHER POSITIVE THEOREMS FOR I-RELATIONS .
REMARKS AND PROBLEMS FOR THE CASE OF

INACCESSIBLE CARDINALS

8 . 1 . ( ) LEMMA 2 (the stepping-up lemma) . Let r- l : a-?~ o : ar<
Then

PROOF . We may assume that r=--h,„ h,,,-=a .

Case i . m co(a). Then there is a partition

[S]'' = Lo + + L,,,, where S ; =a.

such that JLJ -°_= 1 for r =n . Then, by hypothesis, there are v _, m and YE [S]' , such
that [Y]r.-L,, . Then [Y] ,

	

L,.I - I ; b,-_r, which is a contradiction .

Case 2 . m

	

Then (1) follows by [1], Theorem 39 (ü) . For the convenience
of the reader we briefly describe the proof .

Let ISI=a+, and
[S]"- 1 = to +'--'1(partition I) .

We define inductively a ramification system R on S of length _ - (t)(a) . Let a-- r) .
and let S'(v o „ i,) be defined. Write r• in place of r o „ i,, for some fixed numbers
v o „ v, . If S'(v) = 0, put F(v) and n(v)=0 . Now let S'(v) T ? . Choose
F(v)={x(v),1 -S'(v) and put

4,(y) = 11(XE[S(T`_a)F(vo „ r )]r) d(X -iyj)

for y FS'(v) - F(v) . Put n(v)-w(IJ,,1) . Then

S'(1,)-F(1) _ á(1,a--n(v))S(r, 1'a ) .

where d,.l I on each S(v, va ) . This defines R . Now Lemma 1 (iii) applies . For
we have, for T 6 .

In (r o „ fJ -011a+11' _ c' - - a ' Ill(v o ,, v') j-c' .

Also, c'a'
=a u IS!, =a+ --a±" ; iol =a' : F(v) ; - 1 --a+ . Hence, by Lemma I

(iii), there is (v o ,, 1'„)EN such that S'(v o „ i,) 0 . Choose x,.ES'(vo „ i,) . Then
we can write F(vo „

	

for a = L), and we have { .v o _ x,-,',

	

S. Now

d,(y) = H(XE[ixo„xai]")d(X-1-iY'i) for y,S'(v)

for u--o . By definition of S(v, va ),

-t

	

~( )

IM
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for 6 o < < Q, -- Q . We have [[0, Q)]r =-- Ko + + K,„, where K„

	

[[0, Q]r{X : X +
{x, f EI„} for <m. Since !Q~ = a (bF,)F,<,,,, there are u and I such that p <m ;

-V-[0, Q) ; Ml =b„ ; [M]' ~K,, . Put Q={x. : aCM ;+{x„,' . Then

QC S ; , Q I= bj,+1 ; [Q] r,- i-I„>
and (1) follows . This proves Lemma 2 .

( t ) THEOREM 3 . If' z--0 ; c , « ; ri2, then

t~,+0-Ji~ x+J ( ~)
j

.

( x ) THEOREM 4 . If x -0 ; c - áz7 r =1, then Zt,, (r_ i, (t~ ,)C .

PROOFS . Theorem 4 is trivial for r=1 . Both . Theorem 3 and Theorem 4 are
true for r=2. by Corollary I and Theorem 2 respectively . For general r--2 both
theorems follow from Lemma 2 by induction over r.

( *) COROLLARY- 2 . If x is regular; c < N, r _ 2, then

~x+(r-> )- fix+ r > 00J-

REMARK. For regular N x Theorem 4 follows from Theorem 3 .
We shall need the well known

THEOREM OF RAMSEY [18] . (i) For e< o and r-1 . ,o (\' I .
(ü) For b, c, r ;~ o there is R(b, c, r) < ~ o such that

R(b, c, r)---(b)r .

( jF) THEOREM 5 . Let a be inaccessible ; m < w(a) ; bo , .

	

Then

cr-(a, b o „ h„,)" •

The case m<m of this theorem is [1], Theorem 8 .

PROOF . Let
ISi=a ; [S]' = L+Lo++L,,, ; a~J[L] z .

We define a ramification system R on S of length g = w((bo ++ We note
that
(2)

	

IQl-'(bo,, )I .

Let a < Q, and let S'(v o „ EQ) = S'(v) be defined . We take as F(v) a maximal subset
of S'(v) such that [F(v)] 2 cL. Since aj[L]z we have jF(v)j<a . Then there are a
number n(v), elements x(v, vQ ) of F(v) and numbers µ(v, v,,) -m such that

S'(v) - F(v) = S (v, < n (v)) S(v, v o),

where {x, x(v, v .)} E Lur ,. . for va < n (v) ; x E S(v, vQ) . This follows from the maxi-
mality of F(v). We can make

In(v)l

	

jF(v)l •jmj<a.

This defines R . Lemma 1 (iv) applies and yields (v o „ i,) E N such that S'(v o „ i3) 0 .
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Then n(vo „ vQ ) -- 1 for 6 < o, and there exists xQ =Y(vo „ vim) for 6 < o . Then

{~ r , x. }ELµ(„ . .vr) for i<6<p,

[0, o) = Ko + +

where KN = {i : i -: Q A µ(v o „ Vj = iI} for EI -m. By (2) there are Mr- [0, o) and
y <m such that jMj=bµ and M - K,, . Put X={xQ :6EM} . Then IXJ=b„ and
[X] 2 c Lµ which proves Theorem 5 .

8 . 2 . The following remarks are relevant in connection with the discussion of
partition relations involving inaccessible cardinals.

We want to consider the following propositions involving a cardinal a --N O :

A : If a is strongly inaccessible, then a-~-(a) 2 *° .

B : 7f a is strongly inaccessible, then a-(N a)z `°
P i , Pz , P 3 , Q : These are defined in [24] .
T: a-+-(a, 4) 3 .

The following diagram shows implication relations known to hold between
these propositions together with the corresponding references :

Furthermore, (i) if P 3 =aQ then Q holds for all a [28] ; (ü) if Gödel's constructa-
bility axiom is assumed then P 3 holds for all a [27] . (iii) Q holds for a very wide
class of strongly inaccessible cardinals [5] .

By (iii) a-=>(a, a)- . a-(a, 4)3 and a-~-(a)<N° hold for many inacess-
ible cardinals .

The following problems remain open .
PROBLEM (A) is it true that a-!- (cr, a) 2 , a -I (a . 4) 3 or u--- (a) ; `- hold for

every strongly inaccessible cardinal?

(B) Is there any strongly inaccessible cardinal for which
holds?

Added in proof (23 . ITI. 1965 .) . For a more detailed discussion of the re-
cent results concerning Q, P i . Pz, P3 see [30] .

It has been recently proved by F. ROWBOTTOM that. Gödel's constructibility
axiom implies that a--( ,,,, i) ; `~ holds for every cardinal a .
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9. CANONICAL PARTITIONS . CANONIZATION LEMMA

9. 1 . DEFINITION . Let d be a disjoint partition of [S]', and let -(v <n) S,, S.
Then A is called canonical in (S o „ S„) if for X, YE[S o -+the relations

IXS,.I = I YS, I for i , -n

X-Y( A) .

We remark here that this notion of canonicity differs from that used in [1] .
There we were considering ordinal canonicity whereas here we have cardinal cano-
nicity .

9.2. (- ) LEMMA 3 (Canonization lemma) . Let BSI=a> a' ; o=w(a') ; r
(t o < < <i,, < a = sup (a < o) a,,, and let A be a disjoint partition of [S]" such that
A I -- - a. Then there are sets S, such that I S, I = aQ for a < f_) and 2:'(u -- L)) S, c S,
and d is canonical in (So „ S„) . If we are, in addition . given any representation

S = S'(a o) S,

such that 1S,j<a for a--o, there we can stipulate that, in addition, S;,cSá, ;, á for
r- o . where a (0) <- <c(o ) < o,

PROOF .Put
R

	

r,, t) : ro , ', -1/,,rc,+-t-r . _

Let (r o „ r,, t)-'R . We say that d is (r o „ i• .,, t)-canonical in (Ao „ A„) if the following
conditions hold : S'(a--o) A,-S ; 'iA„I=a, for a< o . Whenever X, YE[A 0 + +- A„]'

and
XA,=XQ ; Y/1, =Y, ; X,!

	

Y, for (T -

'a : X,

	

i - 'a._ 6,') X, =J

	

=s) ;

X, - Y, for a a ,

then X- Y( •A ) . Our aim is to find sets So „ S„ such that d is (r o „

	

canonical
in (So „ S ) for every (r o „ r„ t) of R simultaneously .

Let (r o „ r„ t) c R, and let d be (r o „ r,, u)-canonical in a fixed system (Ao „ A„)
for every u such that t < u < s . This is for instance true if t = s-1 and E'(a < o) A, ,- S ;
JA Q I =a, for a < o . It suffices to deduce that there are numbers ~, and sets BQ such
that d o < < ; < o and Ba A,, 7 for a < o, and d is (r o „ r s , t)-canonical in (Bo „ B„) .
For, the passage from (A o „ A„) to (Bo „ B„) does not destroy any canonicity A
may have possessed in (A o „ A„), and a finite number* of steps as described above
starting with the sets Só„ S_,, leads to the required system (S o „ S„) .

We well-order the set [S] 0 and denote, for s < o> ; Xc S ; I X I ~ s, by 71 (X, s)
the first element of [X]s . We now define í. Q and BQ by simultaneous induction . Let

In fact, K _= (r- 1)2'

r < o, and let n. . BQ be defined for a < r, and suppose that ~, < o and B,, E[A),„-*

Z
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r, I ,, ; , -r- L ct,

for a-T . We define a,, and B, as follows . There is i-

	

L) such that i

	

for 6<i.
This follows from ;pl'=1p1 . Put

A;,(X) = n(pC[A ;.p

A(P+X+~(A„,, r,)-+ (A,

	

j) for X [A ; , ]', .

where b, is independent of the choice of % r . We have

	

for some
x = J3 + 1 . By Theorem 4,

(

	

r '~a)b,,

and a+t ,. _, <a. We can choose ;-, so that, in addition, cr; = x+ ~,. _, Then we
shall have

Y

a;., -(a,), .', ;--I ,

and therefore there is a set B, E [A ; ]°= such that

J;_1

	

i in [B,]" , .

This completes the definition of % Q and Ba for a- o . We have

	

o and
B,E[A )j- for a p . We now show that A is (ro „ i,, t)-canonical in (Bo „ B„) .

Let
X, Y [B, ++B„]'' ; XBQ =XQ ; YB,=Y, for a<

1ta : X

	

' --

	

io r ~ 1 -- la0 ^, ash < ;
X,;I =r; for %--s, and X, -- Y, for a

Then we have, in view of the (r o „ r, u)-canonicity for every a in the range t < it -s,
the relation

X = X, -7 4- X, -- X'(-,J ),
where

X' = X,, + + XQ, + n (A ; r) + + ~(A ;.,,, r) .

By definition of A ;,,, and Bo, we have X'-X'"(A ), where

X " = X, + + X,, + Yom, + n (A ;,,, r,) + n (A ; r .,) •

Finally, again by the (r o ,, r,„ u)-canonicity for t-u

X ` = XQO + + )i?Q , + Yom, + Y, , + + Yo , = Y( • A ) .

This completes the proof of Lemma 3 . We note that the final clause of the lemma
is also proved by our construction .

9.3 . ( ) LEMMA 3A (polarized canonization lemma) . Let a>a', AB= 0 ;
IAI=IBI=a ; o=w(á) ; ao «á„-a - sup( (T -o)a, ;

[A, Bl' , l = t o +'1 I .
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Then there are sets A ,, Ba and numbers h (a, r) < 2 such that

S'(a < o)A, A ; £'(a < o) B,,-_ B;

A ,I =IBaj =aa for a<_o ;

[Aa B ] i '
- Ii,(a . a for a, T o .

PROOF . Let ur(a)=-n,A={xo .,x-ni$ ;B={yo,,ynI,, S=[0 . n) . Then [S]g=
=E'(Y, )~ _2) I(x, ~), where

I(Y, )) _ {{1i , v{ < : {x,,, y,.) E 1,l {x v , y„} E 1;- for Y, ;.

	

2 .

By Lemma 3 there are sets Sa and numbers ho(a, T), Ir i ((T, r)--2 such that
So ++S„(tp) S ; 1Sa1 =a, for a<o ;

[Sa , S r]' ' c I(h o(a, T), h i (a, T)) for a < T < o .

Put A a={xES2a} ; Brt ={y .,. : vES,,+J) for a<o, Then ~Aa;=aga=a, ;
=aga+i >a, for a <o ;

A,A r =BaBr --0` for a---T< o .

Now let a, c-o ; x.EA, ; y,EB, . Then 11ESga ; vES2r+i . If (T -T, then 2a -2T+1 ;
{µ, v) < 'c [Sz a • Szr+ i]'" C (h o(2a, 2T + 1), h j2a, 2r + 1)) ;

{x ,,, y,,) E Ii,o(aa .zr+,) .

If a>T, then 2T+ I <2a ; {v, µ) < E [Szr+i, S2a]" I(ho(2T+ 1 . 2a) . h,(2T+ 1, 2a)) ;

ixu • y,) E Ih,(gr+iga)

Hence the assertion holds if we put

ho(2a. 2T + 1) if a -= T

11(a, ) -
lh,(2T+1, 2a) if u --r .

REMARK . There are, of course, more general versions of polarized canonization
procedures .

9. 2 . Super-canonicity . DEFINITION . Let d be a disjoint r-partition of S, and let
2;'(v En) Sv c S. Then, d is called super-canonical in (S o „ Sn) if the following con-
dition holds. Whenever

X, YE[So++S„]r ; {µ :XS„-' 0) _ {No ,.fs)< :
)v : YS,

	

01, _ {v o „ v,,) < ; jXSP' j _ IYS,, .l for o- -s,

then X--Y( •A ) . It follows that every super canonical partition is canonical . It is
easy to prove, by induction over r, that the number of systems (ro „ r) such that
ro ,, r,.=1 ; r o ++i' s = r is 2r - i . It follows that if r-1 and d is super-canonical
then Jd I-2r - J

IBa -
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LEMMA 3B (Super-canonization lemma) . Let I S I = a > á ; m < w (a') = n. Suppose
that either (i) a'= N o , or (ü) a'-1t0, and á is measurable* . Let r--1 and

[S]' = 70 +'+'I„, (partition J) .

Then there are sets S, and cardinals a, such that

cr 0 «á„<a = sup (v<n)a, ;

S'(v<n)S,=S; ~S,I=a, for v<n ;

IS(v<n)S,I =a,

and d is super-canonical in (S o „ S„) .

PROOF . There is only one step where the proof in case (ü) differs from that
in case (i) .

By Lemma 3, there is a set

B = E'(v < n) B y c S

such that d is canonical in (B0 „ B„) ; ~B j =b v for v < n ; b o < < b„ < a = sup (v < n)b v .
Now there is a partition

(1)

	

[[0, n)]' = E'(% < 1) J;. ,

where l < w, such that two elements {µ0I µr1 < , {v 0 „ v r } , of [[0, n)]' belong to
the same class J,, if and only if, whenever

XE[I(o<I.)Bu„]' ; YE[S(g<r)B,,]',

and IXBI, , l _ I YB, , l for o < r, then X and Y lie in the same class I„ . We now apply
to the partition (1) the relation

a'--(a')r .

In case (i) this relation is Ramsey's theorem, and in case (ü) it follows from [4],
Theorem 9. We obtain a set {6 0 „ 6„} I c [0, n) and a number ti < I such that
[{60 „ Q„}]' c J. . Then d is super-canonical in (B, ( ,,, BQ „ ), and the assertion holds
if we put S, = B„ for v < n .

10. POSITIVE I-RELATIONS IN THE CASE r=2 ; a>a'

10 . 1 . (+) LEMMA 4 . Let a -- R0, and let b0 „

	

be any cardinals. Then the
relations

are equivalent .

* i . e . that a' does not possess the property P 3 of [24] . In fact, the weaker condition
a'--(a', a')" already suffices . After recent results discussed in 8 . 2 the existence of such cardinals,
other than ao, has been rendered unlikely .

8 Acta Mathematics XVI/I-2

a--(a, bo„ bm)2 , a'- (a' , bo„ bm)2
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PROOF . The case a=a' is trivial . Now let a a' . The case when bo <2 is trivial .
Now let b o „ b„, 2, and put n = w (a') .

1 . Let a'- (a', h o , b,n) 2 . Then m<á, and b o „ b„ Via' . Let I S~ =a and [S] 2 =
= I I '~'(µ < m)Iµ (partition A) . Assume that b µ j [I.] 2 for µ < m . By Lemma 3
there are sets S,, such that a'-- IS, I < I Sn I < a for v < í'. < n ;

f. '(v<n)SvCS ; ISo++Sn I = a,

and d is canonical in (So ,, Sj . If µ < m; v < n ; [Sv] 2 c Iµ , then J S„I < b µ whereas
in fact I Sv I -a'-bµ . This contradiction shows that [Sv] 2 c I for v < n . Choose S'c S
such that IS'S„I =1 for v<n. Then IS'I = a'--(a',bo,,,.) 2 , and we have at least
one of the following cases .

Case 1 . There are a number µ < m and a set S" E [S]b, such that
[S 1112- I

it

This contradicts b.E [Iµ ] 2 .

Case 2 . There is S" E [S]a' such that [S ']2c L Put

5,,,=E(S"SV 0)Sv .

Then IS- 1 =a ; [S- ] 2 c7. This proves a-(a, b o „

2. Let a-(a, b o „ b,„)2 ;

[[0, n)] 2 = J+'S'(µ<m)Jµ .

Let S = E'(v < n) Sv and J Sv I < IS I = a for v -<n . Then

[S]2 = I+'S'(µ<m)Iµ,
where

I„ = E(ia, Ql< EJ,)[Sx,, S,]' •' for 11 <m.

Then I S I -(a, b o „ b n ) 2 , and we have at least one of the cases :

Case 1 . There is S' E [S]n with [S'] 2 -L Put N = {v : S'S, -- 0 ;. Then I NI =a' ;
[N]2 (- J .

Case 2 . There are a number µ < m and a set S' E [S]b" with [S']2- Iµ . Define
N as in case 1 . Then jS'S v l--l for v<n ; NI,=IS'I=bµ ; [N] 2 cJµ . This proves
a'->(a', b o „ b)2 and completes the proof of Lemma 4 .

10. 2 . ( ) THEOREM 6. Let a > a' = b+ ; c --a'. Then

a (a, (b'),) 2 .

PROOF . By Corollary 1, a'-W, (b'),) 2 , and the assertion follows from Lemma 4 .

( ) COROLLARY 3 . Let z > cf (a) _ # + 1 and c < á . Then

~x+~r-2) ~( x , ( x),)' for r ~: 2 .

This follows from Theorem 6 and Lemma 2.
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11 . THE SETS OF VECTORS USED AS COUNTER EXAMPLES

11. 1 . The vector discrepancy . For any two distinct "vectors" x= (x o „ x,) ;
y = (yo,,Y.) of the same "length" n we define the discrepancy S(x, y) by putting

b (x, y) = min (xv : y,,) v .

When no confusion can arise we shall instead of b(x, y) write more simply xy .
If r > 3, and x p „ x r _ l are vectors of the same length, xe x,, l for Q + 1 < r, then
we put

OX0» xr-1) = ( XOxl, xlx2,, xr-2xr-1) ; 6'(xo„ xr-,)={ •xoxe+l : O<r-1).

Thus 6(xo „ xr - l ) is a vector of length r-1, and 6'(xo „ x,- 1) is a set of ordinals .
Every set X of vectors of the same length whose components x,, y„ are ordinals

will be ordered lexicographically by putting

x < y whenever xxy .< yxy .

By tp (X) we always mean tp (X, -<) .

11 .2. The set V(a) . We put

V(a) I(x0 ,, xw~) • x,,, xwz < 2} .

If (-*) is assumed then I V(x)j =2 11 - = Ra+1 •

11 .3. The set V'(a) . Let a > cf (a) and co ce ~ «~ = n . For every such a for which we
shall want to consider the set W(a) we shall choose, without mentioning this ex-
plicitly, a fixed sequence a o „ án such that

of (a) < go < < 3n < a = sup (v < n) g, .

We put V'()t) _ {(x o „ z„) : (y v) (v < n D xv < co.)}. Then V(ef (a)) c V'()C) . The set
V'(x) is only defined if a > cf (a) . If ( ) is assumed then

n
So that V'(x) =n a - a+1

11.4. SIERPINSKI partitions . Let (V(a), -<) and (V'(a), -') be well-orders
of the sets V(a) and V'(a) respectively, of types co(1 V(a)) and w(j V'(a)) respectively .
We define the SIERPINSKI partitions

JS : [V(a)] 2 = TO +'T1 ,

115

by putting
To = [V(a H] X, Y!' : x -< y},

To = [V'(a)]2{{x, y}, : x-< 'y} .

11 . 5 . We shall need the following well known facts .

( )

	

(i) If X-V(x), and either tp X=u or tp X=a- , then ~Xj

	

« .

s •

As V(Y)l , = Tó+'Tí
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( )

	

(ü) If X c-- V'(a) and tp X=a, then IX I --R . ; if Xc V'(a) and tp X=u*,
then IXI -_ R. . The results (i) and (ü) can be briefly expressed by

0"+J, wa+1

	

tp (v(a)) ; 0)a+l e wcr(a)" == tp W(a)).
We shall make frequent use, without reference, of the following simple pro-

positions .
11.6 . (i) Let either {x, y, z} c V(a) or {x, y, z} c V'(a) . Then xz

min (xy, yz), and here is equality if xy yz .

(ü) If {x, y, z}, c V(a), then xy yz and xz =min (xy, yz) .

PROOF . Put x = (x,,, _Q, and similarly for y, z. Here n = co, or n = c),r ~ a ~ .

PROOF OF (i) . If v < xy, yz, then x„ = yv = z v . Hence xz -- min (xy, yz) . If xy =
= vo < Yz, then xvo y, =z vo ; xz -- v a =min (xy, yz) . If xy > v, = yz, then, xv=
=Yv , zv , ; xz -- v i = min (xy, yz) .

PROOF OF (ü) . If xy =yz = v0 , then 0 -- xvo <yvo < zvo < 2 which is impossible .
Hence xy yz and, by (i), xz =min (xy, yz) .

12 . COUNTER EXAMPLES FOR r=2

( *) THEOREM 7 . a+ -+-(a+, a'+)a for a -- tZ, .

This follows from [1] Theorem 7 (ü) which states : Ifa o and b = min (ac > a) c,
then ab-+-(a+, b+) 2 . For if (*) is assumed then b=a' and ab=a+ . For convenience
here is the proof. Let a= a .

Case 1 . a= a' . Consider the partition d s of 11 .4. It follows from 11 . 5 (i)
that ,+11 [To]z + [T,] z . This proves the assertion .

Case 2. a > á . Consider the partition ds of H . 4 . It follows from 11 . 5 (ü)
that Ra+l j [To12 and R,'+ ~ [T1] z . This proves the assertion, and Theorem 7 follows .

THEOREM 8. If n ~_: 1 and a v < b y for v < n, then a,...á.-+-(bo „ b„) 2 .

REMARKS . The case ao ==á„=2 is due to Gödel. The case : n=2 and arbitrary
av, b y is [1] Theorem 36 (iii) .

PROOF . Let IA,I =a, for v <n, and let S be the Cartesian product of the sets
A v . Then I S I= ao . . .á,,, and

[S] 2 =E(v <n)Iv ,
where

Iv = [S]2{i .f ' :f(v) g(v)j for v <n .

If S'( --S and [S'] 2 cly , then

Is'I=I{f(v) :fES'}I :IAvI<by
which completes the proof of Theorem 8 .

( ) THEOREM 9 . If 3 :!~- b o „b„-_a and a'<a<bo . . .bn, then

í1)

	

a+ -(b,,, b„)'` .
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PROOF. Case 1 . Inl --a . Then by Theorem 8, 2°-+-(3)á and hence, a fortiori, (1) .

Case 2 . In I <a. Put m=w(a) and choose ao „ a n such that
ao < < a,,, < a = sup (µ < m) a.,

We can find inductively N , V,n } # c [0, n) such that b, , > aµ for µ < m. For let
~ < m, and suppose that vµ has been defined for µ < %, such that v,,-<n for It-<A .
Then there is v, E [0, n) - {v o ,j;} such that b,> a,., since otherwise we would
obtain the contradiction

a+~II(v<n)b„-(1](µ<)i .)bjajnl -a l ~ l alnl -a.

This completes the inductive definition of v o „ V n, . By Theorem 8,

Qo . . .am

	

(bv µ ) zµ<m

Since ao.A.=a+, the relation (1) follows, and Theorem 9 is proved .

( ) COROLLARY 4. a+ --(a)2 if a > a' .

( ) THEOREM 10. Let a > a'> o . Then a+-!-(a+,(3),,,)2.

PROOF . We shall apply the following theorem of ERDős and FODOR [6] : Let
Ro`--b+c<a; ISI=a,

xjf(x)c S and If(x)I <b for xE S ;

Sµ E [S]" for µ < w (c) .

Then there is a set Sc -- S such that S f(S')= 0 and I SS, I =a for It , o) (c) . In
[6] this is proved in the special case when S„ S, = 0 for µ < v < w (c) but the general
case then follows since quite generally, whenever I TI ,I =a - o for µ < w(a), there
are sets TN E [T,,]° for µ < w (a) such that T„ T„ _ 0 for µ < v < w (a) .

Now let 1=w(a') ; m=w(a) ; n=co(a+) ; S=[0,n) . Then 1<m<n, and we
can write [S]a = {A o „ ,4n } . Put K„ = fA, : v < oAA, c [0, o)j for o < n . Then

(2)

	

[S]a = 2: (o<n)K„ ; IK„I :a for o<n.

Let ao < < d I < a = sup (;, < 1) a, . Then there are sets K,,, such that

(3)

	

K„=S( <I)K„; ; IK„;I-a, for L) ---z n ; ;. -< 1 .

Let ). be fixed, ~. < 1 . We define f (o) by induction over o . Put f;,(Q) = 0 for o < m .
Now let m o < n, and suppose that f;.(o) has been defined for o < u in such a way
that

o $f;.( .o) c S ; I f;. (o) I< a;.+ I for o< o- .

Then I a I =a, and by the theorem of ERDős and FODOR, applied to the set [0, a),
there is Fa ;, such that

(4)

	

Fa;. c [0, a) ; IFa ;I `az ; Faz.f;.(Fa ;) _ 0,
(5)

	

Fa;,A,,z 0 if A .E Ka, .
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We put f,(Q) = F, ; . Then a qf;_(6) c S ; f,,(6) a;, < a;,+ 1 . This completes the defi-
nition of f;(o) for ti < l ; < n . Now we have

[S]2 = I+'_Y(i <1)I;,
where

I, _ {{o,Q} : o«<n/~QEf.(6)}

	

for %<l.

1 . Let S'c S ; I S'j =a+ . Then there is o <n such that A, C S'. Now there is
u E S' such that u > o and A„ c [0, a) . Then a --m . By (3) there is % < I such that
A o EK az . By (5), f;(u)A, = FQAA_, 0, and there is r(f;(u)A,, . Then TE A„ S' ;
{i,6} < EI; ; [S']2(tI ; a+ 1112-

2. Let % < l and [{o", o', o} J 2 c I,, . Then {o", o'} cf;(o) = F, ; ; o" Ef;(o') and
therefore C E Fe;jf( ,;) which contradicts (4) . Hence 3 J [I;] 2 , and Theorem 10
follows .

13. COUNTER EXAMPLES FOR r-- 3. PRELIMINARIES

13.1 . The positive and negative results proved so far enable us to give an
almost complete discussion for the case r=2 . This will be done in section 15 . Lemma 2,
the stepping-up lemma, gives us a method to obtain positive relations for r-3 .
This seems to be the only method for proving positive relations in these cases .
Thus our aim would be to prove a converse of Lemma 2 i . e. to show that for r .-=2
and a o the relation a-+-(b v)v, implies 2°-+-(bv+])vim However, we can prove
this only under some restrictions and using different methods to cover the various
cases. We are now going to prove several lemmas which assure this implication
under various conditions .

First we need some more definitions and some preliminary results concerning
the set V(a) .

13.2. Let a be fixed. For {x, y} ., c V(a) we put h(x Oy)=0 if x--y, and
rl (x, y) =1 if x> y. Thus, in the notation of 11.4,

{x, y} E T,o,J,) if {x, y}{ c V(x) .

If /- --3 and

	

we put

q(XO,, xr-1) _ ( 17(x0, x1),, q(xr-2, Xr-1)) •

Let r--3 ; 1-s--r-1 ; ko „k s _ 1 <2. Denote by

K,,,),, k, - 1 (a, r)

the set of all sets {x o „ x r _ 1 }_, c V(a) such that

rl (xo,, xr-1)=(ko,, kr-2) for some

Thus Ko1o(a,r) is defined for r ~- 4 and is the set of all sets {xo .,xr_1}_ V(a)
such that xo <x1 >x2 <x 3 . The symbol Kk, k stands for Kko„k _, where k o = _
==kr_ 2 =k We put

K(a, r) = Ko,. o(a , r) + KL .,,(a, r) •
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We have the following simple result . If X c-- V(i), and if tp (X, -<) is a limit number
then, for every choice of s, ko „ k,- I with 1- s - r -1, the relation

[X]rcKko„ks_,(IX , r)

holds if and only if, ko = =k,-, and [X]r(--K,. . . This follows at once if one consideres
any set {x,,, x, j { c X and the meaning of the statement

j

	

t

	

~

	

(

	

)(X0' . xr-I) (XI " xrJ EKko k ,_, Y, r .
See also 13 . 5 .

13.3. Let {x0„ x,_,)- { EK(x, r). Then x„x„+I axe+1xá, +2 for o<r-2 . For
we have either x o < < z r _, or xo > >x,_,, and in either case the assertion follows
from 11 . 6 (ü) .

13 . 4 . For So < 61 «x we put ~ (6o , d,) =0 and ~ (6 1 , 6 0) = 1 . If r 3 and
611 , 6r -I ' 0) a ;

	

for -o-r-1, we put

S(SO > • yr-I) _ (~ ld0 ~ dl)~' ~ lSr- ' ~ Sr-1)) •

Now let 1--s--r-2 and k0 „ k,_, <2. Denote by

Pko„ k,- i (x, r)

the set of all sets {xo „ x,_„- { cK(a, r) for which

~(d(xo , xr-I))=(k0,, kr-3) for some ks_I o kr-z
We note that ~(b(x 0 „ x,-,)) exists by 13 . 3 .

Thus P0 , 0 (g, r) is defined for r ~5 and denotes the set of all sets {x o „ x,_,} c
c V(i) such that

(i) either x o < < x r _ I or x0 > > -1
.
r-1

and
(II) XOxl < xIT2 > \2x3 < x3Y4 .
Throughout the rest of this paper whenever the arguments of any of the sets

V, V, K, P, Kk~„k s_,, Pko ks _, are x, r they will not be shown .
The symbol Pk k stands for Pko„ k -3 where ko = =kr - 3 =k . Put P = P0" 0 +

+P,,,, . We have Pko, k ,- ,-K for I - s - r - 2 and k,,, k,-, -- 2 .
We shall now deduce some properties of the sets Kko„ k s _, and Pko„ k _, .

13. 5. Let r 3 and X ,-- V. Then I X I < r + 1 provided at least one of the follow-
ing conditions (a), (b), (c) holds :

(a) [X]1 c K01 ,
(b) [X] r cKIo ;
(c) [X]rcKko„ k

	

for some (ko,, kr-2) (ko„ ko) .

PROOF . Let {x0 „ xrr , c X; ll„ =r7(x„, x„+ ,) for o < r . In case (a) we have
~x0 „ x r-,} EKo , and hence i7, =O ; n, =1 . But we also have {x,,, x,} EKo , and
hence 11, =0 ; 172 =1 . This is a contradiction . In case (b) we find, in the same way,
r1o =1 ; r1 i =0 and also q, =1 ; X12 =0, i . e . a contradiction . In case (c) we have at
the same time q, =k„ and ti, +, =k„ for all o--r-2 . These equations imply k0 = _
==kr- 2 which is the desired contradiction .
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13. 6 . (a) . Let either (i) r--3 and [X]"cK or (ü) r--4 and JX I - r + 1 ; [X ]"c
c Ko , o + K. Then [X]"c KS „ s for some s-::2 .

(b) Let r 4 and [X]"c P. Then [X]"(-_ P,,,, for some t,2.

PROOF . We may assume
Proof of (a) . Let [X]" Ks„, for s<2. Then there are sets A o , A, E [X]" such

that A,EK,„ S for s<2. We can choose xCX-A0. Put {xj+A0+A, _ {xo„x„_,}{ .
Then n--r+1 . Put rl(x v , xv+ ,)=rl v for v--n-2 .

Case 1 . {x v „x v + r _,}EK for v+r-1 5n-1 . Then q v ==llv+r_ z and, since
1[v, v+r-1)[v+l, v+r)l = r-2z1, we have qo ==q,,_ z . We deduce that
Ao , A, E K,,o„ no which is a contradiction .

Case 2 . There is v,--n-r with {xvo„xvo+ r_,}EK. Then (ü) holds, and
{xvo „xvo+r-,}EKo i o • If v o =0 then {xvo+i,>xvo+r}EKoio+K, and if v o ~l then
{x vo-,,,x vo+r _ z }gK0j0 +K. In either of these cases we obtain a contradiction
against the hypothesis .

Proof of (b) . We have [X]r c P c K. Hence, by (a), there is s-:2 with [X]" c
c Ks . , s . Let us assume that [X]" Pt ,, t for t < 2 . Then there are sets A o , A, E [X]"
such that A, 4 P,,,, for t < 2 . Let A o + A, _ {xo „ x„ _ , } { . Then n -- r, and we have
either xo<<x n _, or xo>>x„_, . Also, l x,„ xv+r-i}EPt,,,,t,, for v+r-I :n-1 .
Put (xvxv+,, xv+,xv+2)=~v for v+2-s~n-1 . Then 5v==~v+r_3=tv, say, for
v n - r . Since r z 4 these equations imply t o = = to _ r , and we obtain the contra-
diction A o , A, E

	

This completes the proof .

13 . 7. Let X c V and I X i = b
- Ro . Then there are a set X' E [X]n and a number

t < 2 with [X']" c K,,,,, provided at least one of the following conditions (a), (b), (c)
holds :

(a) r 3 and [X]"Ko , _ 0 ;
(b) r 3 and [X]"K, o = 0 ;
(c) r~4 and [X]"Ko,o=0 •

PROOF . Suppose there are no X' and t with the required proporties . We may
assume that X = fx o ,, x„} { where n = w (b) . Put [µ, v] = q (x,, x v) for µ < v < n . We
show that
(1) there is {v0, v,, v 2 , v3} c c [0,n) with [v0 , i, ,]= 0 ; [v,, v 2]=1 ; [v2, v3] =0 .

Let us assume that (1) is false . Then we have the following two cases (all ordi-
nals are in [0, n)) :

Case 1 . There are y < v < 1 with [µ, v] =0 ; [v, ;] = l . Then there are o, a with
µ < v < J. < o < a and [o, u] = 0 . But then [%, o] =1, and we have [µ, v] =0; [v, o] =1 ;
[o, a]=0 which is impossible .

Case 2 . Whenever p < v < ti and [u, v] = 0, then [v, ] = 0. Then there are µ < v
with [µ, v] =0. Now there are %, o with p < v < J < o and [J, o] =1 . But then
[v, %] =0, and hence [Z, o] =0 which is a contradiction . This proves (1) so that
there are v o , v,, v z , v 3 such that the conditions in (1) hold . If r--4 then we can
choose v4 „ y r such that vo < < y r <n . Then all three conditions (a), (b), (c) are
violated since

xvo „ xvr _,} EKo, e {xvt „ Xt, } E K10
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and, if r--4, then Ix,,,, x,. _,} EK0I0 . This shows that our first assumption was
false so that there are X' and t such that the required conditions hold .

13 . 8 . Let r>3 ; Xc V; IX I zb = b' ; [Xjr , K,,,, ; x~0. Then there is X' E [X]b -
with [X'Jr c P0 „ 0 .

PROOF . We may assume X = {x0 „ -Q { , where n = co (b) . Then

(2)

	

either x 0 < < x„ or x 0 > > x„ .

We define inductively numbers tl0„ , n , ó 0 „ ó n . Let a <n, and suppose that
µ0 „ µQ , 6 0 „ óQ have been defined such that µ0 < < NQ < n and 6, < < So< wa , Put

(3) A„ _ {x, : v> pa n x, ,,x„ ó„} for o < a .

Let us suppose that
(4)

	

IAA,) < b for !2-<u,
Put
(5)

	

BQ = A 0 ~ + AQ +{x v : (~ o)(o«nv<=E~„)} .

By (4) and b = b' we have
(6)

	

I B, I < b .

There is a least number I Q < n such that

(7)

	

BQ c{x„ : v<µQ} .

Put

(8)

	

DQ = {xµX ' : µQ EI < v < n},

(9)

	

SQ = min D,

There is a least number µQ such that T, p, < n and x„ Qx,, =6, for at least one v > µ o .
There is a least number µQ> Na such that x. Qxµ, = J . Put

A Q = {x,, : µ Q <vhxµox„ 6Q } .

If o < a then x,, E BQ , and µ < µQ µQ by (7) . We have

(10)

	

x A, oxv =6, for v

For let v ~: -- Y., and put x., =x; xA Q=y ; x„=z . Then P.~PQ -PQ -v ; xy=j. ; xzED,
Hence, by (9), xz --óQ . Thus if (10) were false then xz -óo . Then pQ < v and xy < xz.
On the other hand we have, by (2), either x < y < z or x >y > z . Hence, by 11 . 6 (ü),
xz=min (xy, yz) -xy which is a contradiction . This proves (10) . It now follows
from (10) that A,I < b . Finally we note that if o < Q then, by ( 5), x„,, E BQ and hence,
by (7), µ„<11Q-,u,. This completes the inductive definition of µ0„ In, S0 „ d„ such
that µ0 < <,űn . Put x F,,, =y, for v < n . Then

(11)

	

yj, = ó, for o < 6 .

For let o -- Q . If yQ EBQ then, by (7), µo < µa which is false. Hence ya 4 BQ , and it.
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follows from (5) that y,4 A, . Since th > p,, we conclude from (3) that (11) holds .
We now assert that
(12)

	

c5„ < óQ for o < u .

To see this, let Q --a and b„-cSQ . Then, by (11), y„y,=8„ and yQy„ +i =5, By (2),
either y „ < yQ < ya+, or y„ > yQ > ya+ , . 1n either case it follows from (11) and 11 . 6 (ü)
that

&=Y,,Y,+,=min (Y,j,YQYQ+,)=min (á,,, 6,)=áQ

and y„ya =yQy, +i which contradicts 11 .6(ü). This proves (12) . Put X'= (y o „
Then
(13)

	

IX'I=b : [X']rc[X]r-K,,,,eK.

Let co < <- Q r _, and A=(yQO„YQ,_,i . Then, by (11) and (12),
for o+2--r-I so that

	

(yanYa,+t,J~a„a.tYrz.,i2)=~ for
o - r•- 3. This, together with (13), shows that [X']r - Po„o and proves that X'
has the required properties .

13.9. Let r-3 ; X-V; IXI_=r+1 ; [X]'cP,	Then ko ==1~r-3 ,

PROOF . There is a set (xo„ x,({ -X. Put 6,=x„x„ +i for o-r-1, and
_ (6,,, d„+1) for o r-2 . Then we have, by definition of PF . .,,; _ 3 ,

_(

	

=(kO,-kr-3) and hence k o ==kr_ 3 .

13. 10 . Let r --4 ; X - V ; [X]" ,i: P . Then there is t < 2 with [X]r c P,

PROOF . Let A. B E [X]r . It suffices to show that there is t < 2 such that A, B E P,,,, .
Let A+B = (x o „ xr - 1) _< . Then p-r and Ix,, , xn+r-,I EP,_ , for 7rnp-r.
Since (xn+,, xn+3i -(-vrz" xn+r-,i (xn+,, • x +ri for ~ - p-r-1 it follows from
the definition of P,,, .,,r that s o ==s r _ r =s, say. Put 6,=xvxv+ , for v7p-2 .

Case 1 . s =O. Then (5 0 -6,,, and repeated application of 11 .6 (ü) yields
x,,x, =6. for j,-<i--<p. Hence A, B E PO„ o

Case 2. s = I . Then

	

Then, similarly, A, B E P l „ , .

13. 11 . Let r--4 ; X - V ; IX =b - Z2,„ [X]r c K,,,, . Then there is X' E [X] 6 with
.[X"]r -Po „ o provided at least one of the following conditions (a), (b), (c), (d) holds :

(a) [X]rpo, _

(b) [X]' P, o =Q
(c) r-5 and [X] IPO,o = ~
(d) r - 5 and [X] ,P, a I _ .

PROOF . We may assume where n=w(b). In what follows we
always suppose the letters u, r, w, y, to denote elements of X. We shall use freely,
without reference, It . 6 (ü) .

Case 1 . t = 0 . Then x. < < „ . Let s - 3, and suppose that yo -<y,-,, and
r(1', •l•, +),Yv+J) •v+2) S(1•v +,)'v+2,Yv+2Yv+3) for v--s-3 . This is for instance
true for s = 3 and arbitrary (yo, Y, , Y21) < . We assert that then s 5. For suppose
s --6. Then we can choose ~,,, ~ r with

	

Then there is ;.-<:2 with
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iY0„ Y3, Z4„ Zr-1)) E P;, I - ; ; {Y1 » Y4, Z5„ z,J EP I -~, Hence both (a) and (b) are
false, and r 5. Now there is µ < 2 with

1Y0 >> Y4+ 151 , Zr- 1J E Pµ,1 -Wp' {Y1 >> Y51 Z611 Zr) CPI

so that both (c) and (d) are false as well . This is impossible . Hence 3 s 5. We
now suppose that s has its largest possible value for the given X . Put

Y.,-3 = u ; YS-2 = ' ; YS-1 =11 ' ; X'={Y : Y>11•J .

Then X' E [X]' . Let 0" 0 , w1, " •2 1< C X' .
Case I a. uv > vx •. Then, by the maximality of s, whenever u < 110-:U] ._ u2

then not all the relations uuo > U OU 1 < 11 1 112 hold . By using this repeatedly we con-
clude : ur>vm>-ww o ; rw0=wti'o ; uv>ilvo>wow1 ; "V I =11'0'1 ; ur>v"'I>-"'Iw2 ;
wo1L1 > wI w2 . But since b_-1t 0 we can choose {w, wo „ ii ,.), Then. by what has
just been proved, we have N'vwv+1>11'v+lx',.+2 for v« which is impossible .

Case l b . ur < r1c . Then, by the maximality of s, whenever u< 110 < u l < U2,
not all the relations uuo < UOU1 > U02 hold. By using this repeatedly we conclude :
ur <r1V < 11 .1 . 0 ; 1 , W 0 =111 , ; ur <r1V0 < wot vl ; UIV O =ur ; Inr o < wowl < w1 w2 .

	

Hence
[X']r (- Po„ o .

Case 2 . t =1. Then the same proof as in the Case 1 applies except that every
inequality \:<y between elements of X is reversed . This completes the proof .

13. 12 . If r=3 and [X]r-P,„ I , then ~XJ < Zt o .

PROOF . If ~XJ--3~0, then we can choose (x ,) ,, x„}- < X. Then, by definition
Of P1„1 ~ Xvxv+1 >xv+Ixv+2 for v « which is impossible .

13.13 . Let r--5 ; X-.-- V; JXJ--r+1 ; s<2 ;

[X]r(--Ks,, (P +P0,0)
Then there is t < 2 such that [X] r c PI„, .

PROOF . Assume there is no such t . Then there are elements x o „ xr- I , Y0,, Yr-1 E X
such that {x 0 ,, xr-111 J Po„ o and { yo ,, Yr _ 1 J < ~ P, . . 1 . We can choose xr E X-
-{xo„ xr _, . Let {xol,xr~ Yo>iYr-1J-{ZO>,-

	

'--< . Then n-r+l, xn = Za(n),
y, _ z, ( , ) ; a (o), f (o) < n for o < r . We have either zo < < z„- I or zo > > zn_ I . We
have exactly one of the _following three cases :

Case i . {ZO ,, Zr- 1) E Po O . Then ZOZI < < Zr-2Zr- 1 . Since {Zv„ Zv+ r- 11 E PI ;,, O +
+j P 1 „ 1 + Po 1o for v n - r, it follows for v=1. „ n - r, in this order, that
iZv- Zv+r-1J EPO O . Hence ZOZI < <Zn - 2Zn-1 ; xrXE+1 -Za(r,)Z,(o+1)=Za(°)`a(e)+1 <
< ZY(n+1)za(Q +1)+1 = xl,+ Ix.+2 for oar-3 ; {xo> • xr_IJ EPo„o which is a con-
tradiction .

Case 2 . {ZO,, Zr-1J EPl„ 1 . Then Z OZ I »Z r -2Zr- I ; {z,,, . Zv+r-IJ EPI„I for
v - n-r ; ZOZI > > zn-2Zn-1 ; YeYe+1 = ZR(e) Zü(2+1) - zR(e+1)-1 ZR(e+1) >

>ZB(e+2)-1'_p(e+2) = Ye+IY,+2

for o

	

r - 3 ; { y o ,, Yr-1 J E Pt„ 1 which is a contradiction .
Case 3 . {zo„ zr-1 J E Po10 • Then zoz, < Z I - 2 > z,Z3 < Z 3z4 and . clearly, {Z I „ Z rJ

P+Po , o which is a contradiction . The assertion is therefore proved .
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13.14 . Let X--V ;r-~3 ; [X]'-P, . .,. ; IXi -r . Then there is t<2 with [X],--K,,,, .
Also, for ix, y, z} -1 X, if s =0 then xy = xz < yz, and if s = I then xy > xz = yz .

PROOF . By 13 . 6 . there is t-:2 with [X]r--K,, ., . There is {x o „ x r _, } c X
such that

x=x„ ; y=x,. ; z=x; for some µ<v< ;.<r .

Then either xo < < x r _, or xo > > x,-, . Let

	

if s =O, then x ox, < <
and hence

=min (xpxp + ,, x, _,x,) =xpxp + , .

If s=1, then xox, »xr _2x r_, and hence

xpx. . = min (xpxp+ , , x., _ , x,) = x ,-,x

These relations imply the assertion .

14. COUNTER EXAMPLES FOR r-3 . LEMMAS

We begin with two negative relations .

THEOREM 11 . 2a-(a + , r+ I )'for a -- It a ; r=3 .

PROOF . Let a = z . Then [V]' = J0-4-1j,' where I, =Ko , .
1 . Let X--V; [X]'cIo ; X = o . Then, by 13.7, there is X ,-- X such that

jX'I = Xj and [X']' `K, ., r for some t . Then ~Xj _ ~X'I -a by 11 . 5 (i) .
2. Let X - V and [X]' I, . Then, by 13 . 5 (a), ~X j < r + 1 . Since j V 1 =2a ,

Theorem 11 follows .

THEOREM 12 . a--(a,r+1)', if a>a' and r-3 .

PROOF . Let n=co(a') ; JSj=a ; S=S'(v<n)S,, ; JS,J<a for v<n. Then [S]'=
= Io +'I, , where

h = [S]''{A : (~Er,~')(E«v<>7~~ASµ~ = r-1/'~~AS,~ = 1)} .

Then X [S]a implies [X]'I,

	

and yE [S]r+J implies [Y]'h O . This proves
Theorem 12 .

( ) COROLLA R), 5. If r -3 ; a= A o , and if a is not inaccessible then a=-(a, r á-1)r .

This follows from Theorem 11 and 1_2 .
We are now going to discuss the various converses of Lemma 2 mentioned.

i n 13 . I .
Throughout the proofs of Lemmas 5A-5F we put

I,, = Po ..oitxo„

	

xr _,)EI,;} for v<ni .

In every case the sets I, will have been defined .
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LEMMA 5A . Let a - O , and let b,,, bbe cardinals such that

r = 3 ; there are lI < v , m such that b,,, b,. - o , and at least one of b,,, b„
is regular .

Let a-4--(by)(<;, . Then 2°--(b,+1)',<,,, .

PROOF . We may suppose b o „ b,,, r . By 4. l we may assume b o =bó and b, - o .
Let a= a ; n =w ; S=[0, n) . Then there is a partition [S]r -1 =E'(v <m)I," such that

v ,by q [I_ 1 for v - m.(1)
Then [V]r =S'(v nI) 1,., where
(2)

(5)

I, = KO , +l 1 ; I,,=I,.

	

(2-v <m) .

Let X E [V]10 ; [X]r,- 70 . Then [X]'K., _ 0 and, by 13 . 7 (a), there are a set X' E [X]lo
and a number t such that [X']r-K, .,, . By 13 .8 and bo =bá there is X"E[X']'
such that [X"]r-Po„o . Then
(3)

	

[X 'TC - Po„o lo .

Next, let YE [V]' , ; [ Y]"-1, . Then [Y]'K, o = 0 and, by 13 . 7 (b), there is Y' E [Y] b
such that [Y']r-K. Then, by (2),
(4)

	

[ Y']'-Po„ Oh
It follows from (2), (3) and (4) that it is sufficient to prove that

if X,,- V ; v<m ; [X]'-P, . .ol,,, then IX I-b,,+1 .

Let us therefore assume that
X = {xo „ x1;}<CV ; v<rn ; [X] Y C-- Po . .o7,, .

For future applications we note that the in rest of this proof we do not make any
use of any hypothesis not mentioned in (5) . Put D =',x,x,+ , : i + 1 < k} . Then
x,x,+l ~X,+Ix,+z for v.+2-k and hence ID) _ Ik=11 . Let EE[D]' - ' . Then
there are x o < < v r_, -k such that E

	

{x,,,x,_,+1 : -r- l } . Then, by 13 . i 4
and (2), E _ {x,,,x,,,a<r-l} = 6(x,,,,, x„r

-- I
)CI . . Hence [D]'- I-l and,

by (1), k-11 _ SDI <b,, ; ~Xj _ jk mob,+l . This proves Lemma 5A.

LEMMA 5 B . Let a - %~ o ; m - 2, and let bo „ bbe such

(B) r-4 ; there is v<m wish b,-b,. .

Let a

	

Then 2° (b +1)v_„, .

REMARK . For r-4 Lemma 5A follows from Lemma

PROOF . We may assume b o =bó and b o „ b,,,=r . Just as
5A, set a=fix ; n=o)x ; S=[0, n) . Then there is a partition
such that
(6)

	

b r a [Ijr _, for v <m .
Then [V]'

	

where

(7)

	

11 = Ko I o + 1, ; 1,=1, (2=v _m)-

that

5B .

125

in the proof of Lemma
rSlr-1 =1 (ti <1?2) Iv
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Let XE[V]bo ; [X] ,,- I, . Then [X]rK0 , 0 =0 and, by 13 .7(c), there are X'E[XI"D
and t such that [X']"` K,,,, . By 13.8 and bo =bó there is X'"C[X']bo such that.
[X'"]'-Po„o . Then (3) holds. Next, let YE[V]b'+t ; [Y]rcl, . Then, by (7),

[Y] r - Ko,o+K
and hence, by 13 .6 and ~Y ; = b,-4-1--j-+I, we have [Y]rcK, and therefore (4)
holds for Y'= Y . It follows from (7), (3) and (4) that it suffices to prove (5) . This
proof was given in the proof of Lemma 5A, so that Lemma 5B is established .

LEMMA 5C . Let a

	

o ; m -2, and let b,,, b be such that

(C)

	

r-5 ; there is v<m with b„- o .

Let a (6,)v<< Then 2 ° _,-(bv+1)v

PROOF. We may assume bo - o and bo „

	

r. Define i, n, S, Iv as in the
proof of Lemma 5A so that (6) holds . Then [V]1=1'(v-m),_ where

(8)

	

h = Koio-FPo,o+1, ; 1,-!,

	

(2 ~v -- in) .

Let XE[V] b ° ; [X]'clo . Then [X]'Ko, o = 0 and, as in the proof of Lemma 513,
there is X" E [X]bo such that (3) holds . Next, let YC [V]"+i ; [Y]'cl, Then, by
(8), [Y]"-Ko,o+K and hence, by 13 . 6 and b,+I =r+1, [Y]'cK. It now follows
from (8) that [Y]''CPoto+Po, .o • We deduce from 13 .6 (a) (i) and 13. 13 that
[Y]'- Po o . Therefore, again, (4) holds for Y'= Y. It follows from (8), (3) and (4)
that we only need to prove (5), and the proof of Lemma 5A applies . This proves
Lemma 5C .

LEMMA 5D. Let r-4 and a-\o. Let bo„ bbe cardinals, and put

c r == 2r -1 +2' --4.

Let a

	

Then 2a .((,.+(b,.+l)~<,,,~ .

PROOF . Define 1, n, S, I, as in the proof of Lemma 5A so that (6) holds . Let
2=p-- co . Denote by E á,(Ó)„ s p(2n--3) all systems (6 0 „ up-,) with 60 „ op _, <2
except the two systems (0„ 0), (1„ 1) . Then

[

	

=1'(i < 2r-1-2)1j

	

< 2'-2 --2)1 +'I'(v < m) Iv ,

where the 1j', h, I, are defined by the following rules . Let A = {x o „ x,.-,

	

V.

(9)

	

If A-1K, so that i1(x o „ xr-,)=ar_,(i) for some i<2r -1 -2, then A <h .

i
If A C K- P, so that S (~(x o „ xr_,)) =er_ z (j) for some j < 2''

	

2, then(10)

(11)

	

If A - P, so that S'(.v o „ v, ._,) EI,* for some v<m, then A CI,, .

Now let A"-V; i---2'-1-2 :

	

Then

	

by (9) . Hence, .
by 13 . 5 (c),
(12)

	

~X'I <r+I .
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Next, let X" c V; j < 2r- z-2 ; [X 11]r C- Ij" . Then [X"] r= PE _ z(j) by (10) and hence,
by 13 . 9,
(13)

	

X"I <r+1 .

Finally, let XE[V]b,+I ; [X]rcly ; v<m. Then, by (11), [X]r`P and hence, by
13.6(b), there are s, t < 2 such that
(14)

	

[X]rc KS„,P,,,,

It follows from (12), (13) and (14) that it suffices, again, to prove (5), and this proof
was given in the proof of Lemma 5A . This establishes Lemma 5D .

LEMMA 5D' . Let I S I = a- o ; ITI=2° ; r--4 ;

[S]r-1 = 2:'(v<m)I- .

Then there is a partition [T]r = S'(v < m) I, such that

[I,,] r ` [ I ; ] r - i + [ 0, 0)

	

for v m.
r-I

COROLLARY . If r--4 ; m--2 ; a, b o „ b,,,-- 0 ; LZ-'+(b,)vun, then

2a-"(bv)v<m

PROOF . Let a =Vi. . We may assume S=[O,o,) and T=V. Put

II -- KOI +P o i+IL ; I,.=I,

	

(2 --1'<m) .

Let b ~o ; v<m ; bEVvI r . Then there is XE[V] b with [X]''-_I,, . Then there is s<2
with [X]rK,,i_,=0 . By 13.7 there is X'E[X]' with [X'] r --K. There is t<2 with
[X']rP,, i _, _ 0 . By 13 . 11 there is X" =1x o „ á-, < E [X']b with [X"] r c Po„ o . Then
k-w(b), and x), x,+i<x,,xu+i for ;.<µ<(o (b) . Put D=,xax,.+, :%<u)(b)} . Let
L E [D]r-1 . Then there are i. o« ;. r _ z« ( b) with L = fx ;.,,x ;.,+ i : o < r - 1 1, Put
)r-I = ;,r-z + 1 . Then, by 13. 14, x;.,,x;, „+1 =x,.,,x,,,y, for o < r -1 and, by definition
of I,,, we have

L = {x ;.j ;_, : o<r-1} = 6' (xi.o,, x) r _) ZIv,

[D]r -1 h; b = IDI E[Iv- ], -1
This proves Lemma 5D' .

The corollary follows since by Lemma 5D we can choose the I„ such that
b r q [Iv ] r _ i for v < in . Then b„ j [Ij, for v < m which proves the assertion .

LEMMA 5E . Let a=1,1~o ;m ~7 1, and let b o , .be such that b,.=b,, for at least
One v<m. Let a t'(bV)v<m . Then 2" -(4, (b,+1)v<„)3 .

PROOF . We may assume bo = bó . Let r = 3 . Define x, n, S, I,: as in the proof
of Lemma 5A so that (6) holds . Then [V] 3 = I+'S'(v,< m)Iv , where

(15)

	

I=K0 1 ; I,,=Ív

	

(lfv<m) .

Let XcV;[X] 3 -I. Then, by (15), [X] 3 -Kol and hence, by 13.á(a), IXI<4 .
Next, let YE [V]bO ; [Y] 3 clo . Then, by (15), [y]3K,,=0 and hence, by 13 .7(a)
and 13.8, there is Y' E [Y]bo with [Y'] 3 c Po . Let Y'= ;J0-J,;!-<; D = {y y,+I
i+l <k} . Then, by 13 . 14 and (15), [D]Y- I cIo' and hence, by (6), bo = IY'I =
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=I k- 11 = D < b o which is a contradiction . Finally, let Z al [V]h,,+ ' ; [Z]3 -I ;
1- v < m . Then [Z] 3 - P,I,. . Therefore, again, it suffices to prove (5), and Lemma 5E
follows .

LEMMA 5F . Let a-',, 0 , and a-I--(bv)~<,,, . Then

2,1-t-(4,4, (b,.+ 1 )v<m2) 3 .

REMARK . This result is an analogue of Lemma 5D for the case r•= 3, where
c,=2 . In this case, however, we cannot prove the stronger statement 2a--4-(4A,
(b,.+1),,<)3, which would formally be the case r=3 of Lemma 5D, since we needed
13. 6 (b), and this latter proposition is false for r=3.

PROOF . Let r = 3, and define a, n, S, I, as in the proof of Lemma 5A so that
(6) holds . Then

[V] 3 = Io+'h+ 12: 1(v<m)Io,+"L(r'<m)h

where the h and I„ are defined as follows .

I, = K,,, _, for t < 2 ;

I,,. = P, {{x, y, z,' : (S'(x, y, z) E I*' for t < 2 and v < in .

We are using here the fact that [V]3 = Ko , +'KJO +'K = P, +'P, . If [X]3 -I„
then [X]3 =K,, _, and by 13 . 5, ~X~<4 . If [Y]3 -I,,, then [Y] 3 -P,, and it fol-
lows. just as in the proof of Lemma 5E, that if Y={y,,,,y,,}{, then

[{y,,y'„+1 :x+1<kJ2 J'. ; Ik=1I<b, ;

IYJ _ kJ

	

-41- 1 .
This proves Lemma 5F .

Now we are going to discuss two theorems which we cannot prove without
using (

	

) .

( ) THEOREM 13 . Let a >a'. Then a+ -(a, 5)4 .

PROOF . Let a= ~ ; r=4 ; it = (o, ;

	

(o (a')
ao «a,<a = sup(1.<I)a;,

and put
i.(v) = min (a ; > IvJ)% for r<n.

If A = {xv •, X3 11

	

V, then we put A (A) = (;,(A),, ;.,(A)), where ;,,(A)=ti(x,x,,+i)
for v < 3. Then [V]4 = 1 0 +'1, . where

(16)

	

I, = Ko, 0 +K{A : % o(A) --;,(A) « z(A)i
Let us suppose that a E [Io ] 4 . Then there is X E [V]° with [X]4 -- I0 and, by (16),
[X]4K 0 , 0 - QS . Hence, by 13. 7, there is X' E [X]° such that [X'] 4 -K,,, ,_- K for
some s. Let X'= {x0 „ zk)l { . Then k > n .

Case 1 . % (x,,x,,) < %(x,.x,) for fr < v < r < n . Put %µ = J (x,,xµ+ ,) for p < n . Then

,,, = /.(xµx/,+l)</,(xF,+,x,.)</.(x,.x, .+l) _ /.,. for µ+1 <v<71,

„x„+,)<i•(x,x,+i) = i., for p+ 1 = v<n .
and
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Hence o <<,,, <1; a= n

	

=a' which is a contradiction .
Case 2, There are numbers µ < v < r < n such that

Then

	

for T < 6 < cE < iI and hence .. by (16) .

(17)

	

0=%(x,,xt,)=/.(x,,x)=A(x,xa) /(Kax,,) for T<a<!r<n .

Put

	

Then !X " j =a . Let xa =(x,(0)„ a(n) for T < u < n . We define
elements yQ of V by putting yQ = (y a(0)„ yjn)) where, for I, < n and T < a < n .

(18)

	

y,(v)=x,(v) if i1(v)-o, and y,(v)=0 if %(v)>n,

Put Y={yt+ , „ y„}, Let T < 6 < <~ < n . Then, by (17), i, (x,x,) -- _o . Hence, by (18),
we have, for v o =xQ.~ z , yQ (r o ) =x~(ti'o) x¢(ti'o) =Y ¢ (v'o) Therefore Y.-y" . and
JYJ=a. On the other hand, by (18), iYj-2 -=a <a which is a contradiction .
Hence a J 110]4

Next, suppose that 5 c [I,] 4 . Then there is ZG [V]s with [Z] 4 -h . Then, by
(16), [Z] 4-K010 + K and hence, by 13. 6, [Z] 4 - K. . . for some s . Let Z = f,z 0 _ z4 j { ;
~ v =~(z z +,) for v<4. Then, by (16), i. 0 %, <i_ 2 and, at the same time, %,

	

<i.3
which is impossible . Hence 5j[1,],, and Theorem 13 follows .

(*-) THEOREM 14. Let a>a' and c=a' - . Then aY---(a, (4),.) 3

PROOF . Define 7, n. 1, a o „ ~ 1 , i.(v) as in the proof of Theorem 13 except that
now r=3, If A={x0 „_r2 }

	

V, we put %,,(A)=%(x,.x,,+1) for v<2, By Theorem
8, we have 2 1 -4-(3) 2 . Hence there is a partition

[[0 .1)] - _ j(h<(,)(C»I,

such that 31 [h] 2 for I, <co(c) . Then

[V] 3 = I0 + ' 1I

	

< (')
1

	

(c)

	

t
where

10 = Ko,+K,A : i.0(A) = /, ,(A)t ;
(19)

	

I,,, = P, ( A : {~. 0(A) .

	

(A) 1, I,,'

9 Acta Mathematica XVI/1 -2

1, -K10 ;

for r< (1)(c) ; t<2 .
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Let X E [V] [X] 3 -10 . Then . by (19) . [X] 3 K, o = 2 and. by 13 . 7, there is X' [X]a
With [X'] 3 - K,,,, for some s. Let X' - Ix o - :k. ; . . Then k _ n, and either x 0 < <s,;
or x 0 » ~h . Put i.(x0, ). Then, by (19), %(x,,x„T,)=o for EI < n and, more
generally, ), (x,, .v,) _ L) for p < r -: n . We now argue as in case 2 of the proof of Theorem
13 . Let v,--(A-,(0) . . .i,(n)) for a-- 17 . Put if and y,(I')-0 if
G(V) ~, for 6, I-- n. Put _(l'á (0),. ,(n)) for (7 < n, and Y= yp„ 1f u < r1 < n,
then J.(x,x,)--L) and hence, for v0 --xax v , y. ,(vo)=xa(vo) x,(t'o) Thus
y, y, ; !Yj-a . On the other hand. Y' 2 = ate <a which is a contradiction .
Hence ar- [10 ] . Next. let [Z] 3 -1, . Then . by (19), [Z] 3 K o1 - C' and, by 13. 5, we
have jZ', -== 4 . Hence 4 [I,] 3 . Finally, let Z0 F [V'] 4 ; [Z0]` _- I,, for some I, <co(c)
and t<2, Then, by (19), [Z0 ] 3 -P, . Let Z11-"--0 . .-3}_- . Then either z o «_ 3 or
z0 > >z3 . Put D=={i_(_ 0 _

	

/, 1--3) ; . Then. by (19) and 11 . 6 (ü) . [D] 2

	

I, . But
this is false since 'D =3 . and Theorem 14 is proved .
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15. DISCUSSION OF RELATION 1. MAIN THEOREMS

15. 1 . A definition . We define a function cr((3) by putting, for every ordinal f3,

cr(f) = cf(cf((l)=1) .

This means that if t~p=b, then Kr(fl) =b - ' . We call cr (fl) the critical number belong-
ing to /i . Explicitly, it is given by the following rule .

Case 1 . Q is of the first kind . Then l1 = a+1, and cr (fl) =ef(a) .
Case 2. fl is of the second kind .
Case 2a. á is weakly inaccessible. Then cr(f3)=cf(f) .
Case 2b . R~ is not weakly inaccessible . Then of (f3) = y + 1, and cr (/3) =cf(y) .
We note that if R p is weakly inaccessible, then cr (f3) = f3, and that cr (f3) < f3

otherwise .
The following Main Theorem I gives a summary of the results obtained so far

for r=2 as well as the essential part of the results for r--3 . Its proof consists of a
rather lengthy discussion of cases . During this discussion we shall require some
new corollaries of earlier results .

15 . 2 . The first Main Theorem . ( x ) THEOREM 1 . Let n ;- 2 . and let

Consider the relation

and the following conditions :

( 1A)

	

bo= ü ,

(1B)

	

bo „ b„ < Z~"
(CA)

	

b, . . .b„ - Kr(e)
(CB)

	

b o . . .b„ < 1~ f .
Then we have the following results :

(i) If (]A) bolds, then (CA) is necessary for the truth of (R) except possibly
when
(1)

	

r_3 ; #-cf(f3) :~- cf(/I)-1>cr(13) ; b, ,.b„`=Ro .

(ü) If (IA) holds and b, -- N o , then (CA) is necessary for the truth of (R) .
(iii) If (IA) holds, then (CA) is sufficient for the truth of (R) except possibly

when

	

is inaccessible and greater than so .
(iv) !f (IA) holds and b,,, b„ <

	

then (CA) is sufficient for the truth of (R) .
(v) If (I B), holds, then (C B) is necessary and sufficient for the truth of (R) .
Clearly, (ü) follows from (i) . Since frequent use will be made of these results

in the case n m we state explicitly what the theorem asserts in this case . We consider
the relation

2, '( o ., b„

	

,) .

~~~ p

	

b,,-,

	

2 .



For any fl, we have :

(2 )

	

S+(r-2 ) Kr (R)) r ~

( 3 )

	

Z~p+(r-2) ~ ~pi (Kr(p))n-1 r

except possibly when cf (p) =cf(/3)= l >0 .

l4)

	

p+(r-2)~V`p~(b)n-1J~ if b< cr(p) ,

Rp+(r-2)-(
r
n

	

1

	

< p ,

Theorem I leaves some questions on I-relations unanswered, such as that of
the truth of
(5)

	

~+1 -(+gyp, (4) tycr(p)) 3
when
(6)

	

fl cf(p) >cf(f3)= 1 >cr (p) .

We conjecture that (5) is false when (6) holds . It seems that to prove this only a
slight refinement of the methods used in section 14 would be sufficient ; however
we have not been able to settle this question . Here the simplest unsolved problem is

PROBLEM 2 .

This corresponds to the smallest # which satisfies (6) .

15.3. Proof of Theorem 1 . Consider the following conditions :

(

	

)

	

12

	

wcr(p) ;

	

, ~, n = Rcr(p) .

there is c < ti p_, with j{v : b r c,' < crtp=l)

15 .4 . The conditions (CA) and (CA) are equivalent .

PROOF . If (CA) holds, then b,„b„-- b, . . .b„ Kr(p) ;

in =1I<3 In

	

I -_ b, . . .

11 < ~ cr(p) e

and (C"A) follows . Vice versa, if (C`A) holds then, since ~cr(p) is regular,

b, . . . bn ~ (~cr(p))
~"- 1 ~ ~ ~

cr (p)
,

and (CA) holds .

15.5 . The conditions (CB) and (C- B) are equivalent .

PROOF . l . Let (CB) hold . Then Inl, < 3l"I b o . . .b„ < gy p ; n «p _ I . Let us assume
that (C* B) is false . Then ;,v: b,. -- c} = Z~ cr (p_ 1 ) for c < ~~_, . Then we can construct
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inductively a sequence v o < < G, -<n, where l=wcr(R _ 1) , such that sup (/^'. <l)b, . ;,=
_ , . If there is a number m < 1 such that b,., for m i < l, then we obtain
the contradiction

Hence there is no such m, and we can impose on the v,, the additional condition
b

	

< b

	

Then, by Kőnig's theorem, N > b . . b --=--b

	

b > b . + + b
which is the desired contradiction . Hence (C*B) is true .

2. Let (C* B) hold for some c . Put

No = {v : b, =c, ; N, = I v : b,

Case l . fl =0. Then n<co ; b o „b„< o , and (CB) holds .
Case 2 . /i= I =/3 > 0. Then there is 7 < /3 such that

n(VEN,)b„ 2`(`'f"o)6,•~- 2y , = +,< Q ,

Hence (CB) holds .
Case 3 . /3_-i </3. Then /3 = ó+1, and IN ( ,

	

ó ;

( ) COROLLARY 7 .

17(vENo)b,,` bjNoI<,
.

and (CB) follows .

15 . 6 . Proof of Theorem I (i) . We assume (IA) and (R) and "ant to deduce
that either (CA) or (1) holds . Suppose that (CA) is false . Then . by 15 .4. (C' A)
is false . It is sufficient to prove the following three propositions -

( -X) COROLLARY 6.

cr(R)) r fOí- 1 - -2.

1)ycr(p))fU~ 1
j2

except possibly whea
(7)

	

r-3 ; f3~cf(/~)>cf(/i)=1>cr(/3) .

( . ) COROLLARY ó .
~13-(r-2)-`(gyp, gyp, O + 1 )\cr(P), .fol 7 = 2 .

For let us assume these three propositions proved . Our aim is to prove : Let (]A)
and (R) be true, and 1i-2 ;

	

Let both (C`A) and (1) be false .
Then a contradiction follows . To exhibit this contradiction we consider the cases :

Case 1 .

	

Then, since (C*A) is false . there is r < n with b,.> R cr(p ~,
Then, by (IA) and (R),

	

~c (p))1 which contradicts Corollary 6 .
Case 2. r1 Then, by (IA) and (R), Nf ,- ( - 2) (ti p , (r+l)

	

~' . By
Corollary 7 this implies that (7) holds. Since (i) is false, we conclude that there is
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vE[1,n) with b r

	

o . Then, by (IA) and (R),

RS+(r-?)-(RQ, 0, (1+ 1 )Rcr(P)) r

which contradicts Corollary 8 . All this shows that in order to prove Theorem I (i)
it suffices to prove Corollaries 6, 7, 8 .

PROOF OF COROLLARY 6. For t-2 we have to prove

(g)

	

R

	

( R>

	

cr(Q)) 2

Case 1 . Q = a+ 1 . Then cr (/3) =cf(a), and (8) follows from Theorem 7 .
Case 2. l3 - ~- l = cf(fl) . Then cr (/3) =/3, and (8) is trivial .
Case 3 . /i = /3= 1 >cf(/l) . Put cf(/I) _ j . Then, by Lemma 4, (8) is equivalent to

(9 )

	

C r(e))2 .

Now ef(y)=y, and er (y)=cf(,= 1)=er (/3) . Hence (9) follows from case 1 or
case 2, when applied to j in place of /3 . Thus we have proved Corollary 6 for r=2 .
To complete the proof assume that, for some r -- 3, we have

Z~P+(r-3)-4( Z~R> ~Zcr+ ()/31 r i

Then, since ,a) is regular, it follows from Lemma 5A that

ü+(r-z) (-( a+ 1, c (li)+ 1 ) r,

and Corollary 6 is established by induction over r .

PROOF OF COROLLARY 7 . For r=2 we have to prove that if (7) is false then

(10)

	

R--(Rfl, ( 3)Icru))2 .

Case 1 .

	

a+1 . Then cr(/3)=cf(a), and (10) means
z

Case la . a =cf(y) . Then (11) follows from ( ) and Theorem 8 .
Case l b . Y> cf(a) . Then (11) follows from Theorem 10 .
Case 2 .

	

-l = cf(/3). Then cr(/3)=/l, and (10) is trivial .
Case 3 .

	

Put cf(/3) =,/. Then cr (y) =cr (/3) and, by Lemma 4,
(10) is equivalent to
(12)

But (l2) is true by case l or 2, when applied to y instead of /3 . This proves Corollary
7 for r=2 . We now prove it for r=3 when the assertion is

( 13 )

	

N ## I --(NO, (4)Scr( . )) 3 .

Case 1 . /3=cf(/3). Then by (10) and Lemma 5E we have

NQ+i -(4^ No, (4)Scr,R)) 3

which is the same as (13) .
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Case 2 . f>cf(/3). Then, by Theorem 14,

(14)

	

tj+, -~- ( ü , (4)y cr, ,,= , ) 3 '
Case 2a. cf(~3) _ + 1. If y >cf(,j), then

f3>cf((3)>cf(/1)=1 = y>cf(y) =cr(/3)

so that (7) would be true, contrary to the hypothesis . Thus y =cf(y) ; cr (fl) =cf(/3) -1,
and (13) follows from (14) .

Case 2b . cf(/3)-I = cf(fl) . Then cr(p) = cf(p) =1, and (13) follows from
(14) .

We have shown that the assertion of Corollary 7 is true for r=2 and for r=3 .
Now suppose that, for some r--4,

R+(r-3)-i~(~/t, (r)ycro))r
1 .

Then, by Lemma 5D, there is c,. < o such that

ü+ ~, ._ 2) - ((r+1),.r, fl+1,(r'+1)ycru„)' .

This is the same as the assertion of Corollary 7 and so establishes Corollary 7 by
induction over r .

PROOF OF COROLLARY 8 . If r=2, then the assertion of Corollary 8 follows
from Corollary 7. Suppose that, for some r-3,

( S

	

r 1
1~Q+(r-3)á ~(!, i~0, ( r )\cr(It,

	

.

Then, by Lemma 5A,
+ 1 ' ~O + 1, (r' + 1 )ycrll ) r _

This proves Corollary 8 by induction over r and concludes the proof of Theorem
I (i) . As has already been pointed out, part (ü) of Theorem I follows from (i) .

15 . 7 . Proof of Theorem I (iii) . We have to prove : If (IA) and (CA) hold then
either (R) holds or cf((3) = cf(~3)= >0 .

It suffices to prove :
(+) COROLLARY 9 .

(15) tr+(r-2)-
.(~fi, (~cr(~))c)r

for r-2 and c - cr(fl , except possibly when

(16)

	

cf(/3) = cf(/3)-I >0 .

i . e . w hen

	

is inaccessible and greater than , .
For, to deduce (iii) from Corollary 9let us assume that (IA) and (CA) are true

and that the condition (16) is not satisfied . We have to deduce (R) . In fact, (C*A)
follows from (CA), and hence íná < Now, by Corollary 9, the relation (15)
holds with c=jnj. Then (R) follows from (C*A) and (IA) .

PROOF of COROLLARY 9 . We assume that (16) is false . We begin by proving
the relation (15) for r=2 when it states
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By Lemma 4 this follows from

(17)

	

/1

	

( cr(Q) ) c/ , '

Case 1 . cf(/3) = y + 1 . Then cr (/~) =cf(y), and (17) follows from Theorem 1 .
Case 2 . cf(/3) = cf(/3)=1 . Then, since (16) is false . we have cf(/3)=0 and

c< B , and (17) follows from Ramsey's theorem . This proves (15) for 7•=2. Now
let r--3, and suppose

t~p+lr 3) ~( R , ( cr(fi))j
r-1 .

Then, by Lemma 2, we obtain (15), and Corollary 9 follows by induction over r .
This completes the proof of (iii) .

15 . 8. Proof of Theorem l (iv) . We shall use the equivalence of (CA) and, (C*A) .
We have to prove : if r ~ 2 : 2 n < w cr(p) ; b, „ b„ ~ Kr(a) ; b, ,, b„

	

then

(18 )

	

"~(I+(,._2)-( fl,bi . .b„)r .

By Lemma 2 we need only consider the case 7•= 2 . and for r=2. (18) is, by
Lemma 4, equivalent to

áíj - (~rl , b i ,, b„) - .

Hence, putting cf(~~)

	

we see that it suffices to prove :

( ) COROLLARY 10 . Let ,--cf(y) ; 2 -n ,Ocf( =1) ; bL> n`` o bi-kbn

C cf(7=1) • Then
(19)

		

bi,•b„) - •
PROOF OF COROLLARY 10 .

Case 1 .

	

= 6-í . Then (19) follows from the proposition :

s+I+ (áá)r - for c 8ó,

and this proposition follows from Corollary 1 .
Case 2. 1 = I = 1 . Then R . . is inaccessible, and (19) follows from Theorem 5 .
We now prove the two parts of Theorem l (v) .

15 . 9 . If (l B) and (CB) hold, then (R) follows .

PROOF. By 15.5 the condition (C* B) holds, so that n<ogfbo,.b„< a,

and there is c

	

with

We want to deduce (R) .
Case 1 . /3= 1 = /3 . Then it suffices to prove :

(20)

	

# +( r-2) - (CO _v crn , (4)r

if r-- 2 ; c< R ; 771 =wcf(/t) ; c o

	

Q ; e

By definition of cf(/3), (20) is the same as :

p+(r-z ) - (c)é if r=2 and c. e< ~ .

135
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By Lemma 2 we need only consider the case r=2, i . e .
(21)

	

>(c)I for c, e

Case la . (3=0. Then (21) follows from Ramsey's theorem .
Case 1 b. /3 > 0. Then /3 = /3 - 1 > 0, and there is y < f3 with c, e R . Then,

by Corollary l,

(22)

	

:2 +z ~~~,+z, (\ +1)R,) - •

Now (21) follows from (22) .
Case 2 . (3 = y + 1 . Then it is sufficient to prove :

(23)

	

"2+(r-1)~((RA1, (e)e)r
if r-2 ;c<Rz ;d<~X ;e< x .

By Lemma 2 we need only consider the case r=2 when (23) states :

(24)

	

Nz+1 - 00d, (c)e) z

j if c, e < R a and d < x .

Case 2a . y=cf(y). Then (24) follows from Corollary l .
Case 2b . y>cf(a). Then, by Theorem 2, Rz+1 -- 00áI RJ 2 . Hence it suffices

to prove a (c)e , and this follows from (21) since y - 1 = y. This shows that if
(1B) and (CB) hold, then (R) follows .

15. 10 . If (1B) and (R) hold, then (CB) holds .

PROOF . We assume that (1B) holds and that (CB), and so (C*B), is false. We
have to deduce that (R) is false . Thus we are given : n ~7 2 ; 2-r<bo „ b„ < a ;
bp . . .b„-and either (i) n--0)x or (ü) n<(')a _ 1 and Iw :b,,=c}I~

	

for
c - ár_ 1 . We have to deduce

~(3+(r-2)~-'( v r
v<n •

Case 1. (i) holds. Then it suffices to prove
( ) COROLLARY 11 .

Q+(r-?) -0- + 1) Rp _ 1 .

Case 2 . (ü) holds. Put rn=co cl(~_ 1) . Then /3>0 ; 11

NQ _ 1 -InI>1,~r-,-Im1 .
Case 2a. /3 = /3 - 1 . Then

(25)

	

Iiv :b,,--c} ;--z~„ for c< \1 p .

Let Z o c o < < c,,, < ~~ = sup (p < m) c„ . Then, by (25), there are v o < < v,,, < n
with b,,µ -cú for E1 < in . Then 11 (p < m) c+, = ~tQ , and it is sufficient to prove

r
~Q+(r-2) (0 It )µ<m



Case 2b. (3 = z+1 . Then ba „b„-,, x ; b o . . .b n > a . Let N={v : b,,=N,} . By
putting c= ,t o in (ü) we find IN! ~ ti ; . We may assume 0,1 e N. Put c, = b,- r+2.
if v t N, and cv = b,, if v -. N . Then c • o „ c„ -- 3 . Also, for y r N,

b, = c,.+(r-2)~ c,+2'	',-c,'+ZC,' = c,"",

~ y < b~, . . . b„ = (Co . . .
Cn ) r ;

	

C,). . .C„ > Vi a ;

	

C 2 . . .C„

It suffices to prove that

,\,f +(r--2 1 -('\' 0, i10> (Cv+(7•- 2))2=v<nJr

if f•~ 2 ; cz . . .c„-1\'fl . It now follows that to settle case 2 it suffices to prove

(*) COROLLARY 12 .
\Q+(r-~)

	

+ (I-2))v<„

PROOF OF COROLLARY 11 .

Case 1 . If r=2, then the assertion is t~s~(3),áp, and this is true .
Now Lemma 5F gives z~,,+I--(4)ás, and repeated application of Lemma 5D proves
the assertion for r ~! 3 .

Case 2 . /i = x + 1 . If r• =2, then we have to prove Na+ , -+-( 3)r x . This is true
by Theorem 8. Now Lemmas 5F and 5D establish the assertion for r-.3, and
Corollary 11 follows .

PROOF OF COROLLARY 12 .

Case 1 . r = 2 .
Case la . fl _ 7 + 1 . Then d0++ Crn - \,, z < (10 . . . un - ( 1,~J

. " I + U)cflz) ~ h

	

Hence,
by Theorem 9, Z~ x+ , --( rlo „ cl„)- which is the assertion .

Case l b . /3 = fl- 1 . If /i = cf(/3) > 0, then do . . . d„ 7:-~ 2do + +~< ~~ which is a
contradiction, and if [3=0, then d, . . . d, < 1,1~ o which is a contradiction . Hence
/3 > cf(fl). If sup (v < n) d,, = e < Z~,, then

	

which is false . .
Hence sup (v <,I)dv = ,,~,, and if nn=w cf(R) , then there are v o < -_ i,,, vI such that
c(, . o < <d,,,, and sup (EI < m)a1,., _ ~~ . Then

Hence, by Theorem 9,

	

and therefore

	

)2 ~ n .

Case 2. r-3 . We may assume Then, by Lemma
5A, tip+Ir_,I+(rl,.±(r--2)}~ and Corollary 12 is proved . This completes the
proof of Theorem 1 .

15. 11. The second Main Theorem . We shall now discuss the I-relation in the
most general case . It will be convenient to introduce the remainder function o(x)
which is defined by the relations 7 = c ) p( 7)+tI(7) ; o(y)<(o .
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( * ) THEOREM 11 . Let n -- 2, and suppose that 2 r < b o .,

	

Consider the
relations :

(R` )

	

Z~x ~ (bo „ bjr ;

(IIA)

	

L)(Y)=r - 2, and bo ,.b„fi x-tr-z)

(IIB)

	

b o > z-(r-z)>

(I1C)

	

2(x)<r-2. and bo • • b „

(I IC I)

	

bo,> b„ < "~x-(r-z) ;
(IIC2)

	

b o - ""'x-(r-z) .

Then we hate the follow ing results :

(i) If (IIA) holds. then the truth of (R') has been discussed in Theorem L
(ü) ]f (IIB) holds, then (R- ) is false.
(iii) If (IIC) and (IIC1) hold, then a necessary and sufficient condition for (R*)

is b,
(iv) If (IIC) and (IIC2) hold, then a necessary condition for (R*) is that

«=rr-z> be inaccessible .

We note that (1113) implies ~x_(r_z)<bo`=fix and hence r=3.

PROOF OF THEOREM 11 . Put ,, _ or=(r-2) .

PROOF OF (ü) . It suffices to prove that

r+1)" for r-3 .

We shall in fact prove a stronger result ((j = I+1) :

( ) COROLLARY 13. 1/ r -= 3 and s is not inaccessible, then

(26)

	

`S+(r-3)-(~S • r+1) .

PROOF . We use induction over r . I f r=3, we have to prove át ó ( ó , 4) 3 , and
this follows from Corollary 5 . If 6=cf(6), then this leads, by Lemma 513, to s+J --

5) 4 . and if 6 >cf((5) . then this last relation follows from Theorem 13 . Thus
Corollary 13 is proved for r<5. Suppose now that, for some r-5 and some 6,
we have Then, by Lemma 5C, we deduce (26) . This proves
Corollary 13 and so part (ü) .

PROOF- OF (iii) . We have to prove the following two results :

(27)

	

if (11C) and (II CI) hold and b o . . .

	

then (R*) follows .

(28)

	

if (IIC) . (IICI) and (RM) hold, then bo . .Ab

	

i-(,.-z) •
PROOF OF (27) . Since

	

7 is of the second kind, and ;--3 . If j-0,
then n <oo and b o „ b„ « . In this case (R~) follows from Ramsey's theorem . Now
let >0 . By Lemma 2 it suffices to prove (s -
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( )K ) COROLLARY 14 . f s-3 ; n-2 ; y = y_ 1 >0 ; o -do „ d„<

	

do . . .d„
then

(29)

		

-, -- (do „ d„)`•

PROOF OF COROLLARY 14 . Inj<21"1-do . . .c' = d

do „ d„ -d.

There is /i < y with d-, ~~ . Then, by Theorem 3,

i~ (S+l)+(s-I) -'( t~fl +2 • (RQ+1)n "
and hence (29) follows .

PROOF or (28) . If we assume bo . . .

	

then, by Theorem I (v),

But y+(r-2)>a . Hence (R') is false which is the desired contradiction . This
establishes (iii) .

PROOF of (iv) . It suffices to prove the following statement .

(30)

	

If _o(x)--r-2, and if R, is not inaccessible, then ,,~ z

	

(N;, r+l)' .

PROOF OF (30) . We have r-3. Hence, by Corollary 13,

As y+(r-3) - a, the conclusion follows . This concludes the proof of Theorem H .

16. THE RELATION I IN THE CASE OF A
FINITE NUMBER OF FINITE CARDINALS

We shall now investigate relations a->(bo„b„)' in the special case when
2--n-w ; r=2 ; ho „ b„ < co o . By Ramsey's theorem there is a least finite number
a such that a--(b,)v,,,, and we shall denote this number by f(bo„ b„-, , r) . In contrast
to the infinite case we cannot yet find the exact value of this function f but we can
give some estimates of its value . We restrict ourselves to the case n=2, and we put
f(b, b, r)=g(b, r) . We assume that bo , b, -1 . The main results known so far are :

16 . 1 . f(bo , b,, 2)=(
bo + b, - 2

b,- 1
16. 2 . g(b, 2) -2 2 h

	

(see [9]) .

P. ERDős and R . RADO [3] have obtained the following upper estimate for
g(b, r) . Put a+b=ah and, generally, ao +a, +a= ao (a, *-+a) for
2~m<w.

16.3 . If 2-rib<m. then

(see [8]) .

g(b,r)

	

2+(2r-I) ->k(21-2) +(22)+(2b-2r+1)
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and hence g(b, r) - 2-x2* 2 (k,b) (r "factors" in all), where the positive real
number k, depends on r only. In the case r=2 the estimates 16. 1 and 16 . 2 show
that neither is very far from best possible . For fixed r--3, say r=3, it was not
known at the time [3] was written whether the order of magnitude in 16 . 3 was
approximately best possible . P . ERDős proved a result in such a direction :

16 . 4 . There is a positive real number c such that g(b, 3) -_ 2,.,,z for all b. This
is stated, without detailed proof, in [9] .

It is reasonable to conjecture that, in fact,

g(b, 3) _ 2 2" a

for some absolute real constant c 3 >0 and that, more generally,

(1)

	

g (b, r) -- 2 * 2 -* * 2 * (c,b)

	

(r "factors")

for some real positive c, which is independent of b . By means of the methods of
section 14 we can prove the following "stepping-up" lemma .

LEMMA 6 . There is a real number c= 1/10 such that

g (b, r) - 2 * (( ,g (b . r - 1))

	

for r > 4 .

Using this lemma we can deduce from 16 . 2 that for r - 3

g(b, r) - 2 2* 2 4 Q, r-3b)

	

(r- 1 "factors") .

This result approaches the conjecture (1) but a big gap still exists in the case r=3
between the conjecture and the established estimate . Since these results are obviously
not final we omit the proofs . Further special results concerning the function fare
discussed in [10] . [11], [12], [13] .

17. DISCUSSION OF THE RELATION 11

In this section we shall prove some negative results of the form

a--(h)( "° .

The connection of such results with the abstract measure problem was mentioned
in 8 . 2 .

We need some preliminary results . We shall use the definitions of 3. 2 .

17 . 1 . (a) If a<b, then 0 -- (b)2
(b) If c-=1,~ o , then c---(, o )1 ° .

(c) , o '(~o)z
PROOF OF (a) . This follows from a--(h)z ( •= 0-
PROOF OF (b) . If SI=c then there is, for every r, a partition

[S]r = 2: '(v --- (1) (c))1 (1 -, 1)

such that 'I1(r, 17)1 =_ I for all r and v, This proves (b) .
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PROOF OF (c) . This result is essentially [3], p. 435, example 2 . Let S = [0, a))
and r-1 . Then [S]r - I(r, 0) +'I (r, 1), where I(r, 0) _ [S]'{{x o „ x,_ I } < : xo <rJ .
If X= lx,,, :~ „}, c S then, for every r > x o , we have {xo „ x,_ r } E I(r . 0) and
{x,,, xzr I I C 1(/, 1) which implies the assertion .

17 . 2. Let a, h - o ; c - 2 ; a- -(b) C ~~ . Then
2 ,, --(b)~', o .

PROOF. 1 . Let a = fi x ; m = w (c) ; S = [0, o),) . Then, for r - 1 . there is a partition
[S]r- I = 1'(v< rn)I *(r, I .)

such that, given D E [S] b , there are infinitely many r which satisfy

[D]r - I ct- I- ( I . , i)

	

for

	

1, -Z M.

Then there is for r-4 a partition

[ U1r = _y '(r < rn)I I(,., 1')

such that, in the notation of section 14,

I (r , 1) = K0 , + Po, + II ; 1(r, v) = Í,.

	

(2 - v - m) .

2. Let X EM'. We want to show that there are infinitely many r such that

[X]r

	

I ( I . . F)

	

for I , < in .

We may assume that there are a number r-4 and a number v -~ m such that [X]rc
I (r, v) . Then [X]r K,, I_,= 0 for some s, and by 13 . 7 there is X' E [X]b W it],

[X']" - K. Now, [X']rP, , I _ I = 0 for some t, and by 13 . 11 there is X " _ {xo ,, z, } { E_
E[X']b with [X "]rcP,„o . Then k-o)(b) and x;x; +I <x„x,,, for i"<FI-~ k= 1 .
Put D = {x;x; + , : 1 <w(b); . Then IDI =b, and hence there is an infinite set
R --[4,(t)) such that [D]r - ' I *(r, v) for r E R and v ~ m.

3 . Now let r E R and v < m . Let us suppose that [X]rc 1(r, v) . Let L E [D]r - I .
Then

	

where ~o «i.,_, «(b). Put i., I =i.,._ 2 + 1 .
Then, by 13. 14, xz„x ;.,, +1 =x,,,,x ;,,,,, for o-r-1 and so, by definition of I(r, F),

L - 1x ;_,, .A ;_ , :Ocr-1} _ 6("v;,,, .A ;,_,)EI*(r,l) :

[D]" L '- I ~' (r, F)

Which is a contradiction" This proves that

[X]r 4 I(r, v) for r E R and v < nt

and so completes the proof of 17 . 2 .
17.3 . Let a>a' ; b--\o; c-2. Suppose that ao---(b)l'o for every a I, a .

Then
PROOF . Put o) (a') = k ; cu (c) ---in . Let S =2:(z < k) S, and ~ S_- - S i == a for

;<k. Then there are partitions

[S,]" - S'(r-- in) I(i . r, v) (partition d„)
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for x < k and r < o), and partitions
[[0, k)]r = S'(v <m)I*(r, v) (partition dr)

for r--(o such that the following conditions hold .

i

If x<k and XE[ST, then there are infinitely many r such that
(1) Íd, 1 Í > 1 in [X]r .

(2)

	

If ME [[0, k)]a, then there are infinitely many r such that
Íd1 > l in [M]r .

Let r ~- 3 . Then there is a partition

[S]r = S'(v < m) I(r, v) (partition d r)

such that the following rules are satisfied . Let A = {x0,, x,_, } # c S ; x 0

	

x r _ i
< k ; x„ E 5,,, for c) < r .

If x 0 =x r_ i and AEI(x 0 , r, v), then AEI(r, v) . If x 0 < < x r _ 1 and {x0„Y{r_1J F

EI*(r, v), then AEI(r, v) . If x 0 <x, = x r_ i , then AEI(r, 0) . If x 0 = x r - z <xr-I
then A E I(r, 1) .

Now let XE [S]' . We want to find infinitely many r such that

(3)

	

[X]'" c I(r, v) for v < m .

We may assume that [X]PcI(p, v 0) for some p E [3, w) and some v 0 <m. If there
are numbers x 0 <x i <k with ÍXS,.I, ÍXS, Í-p-1, then we can choose v,E[0, 2)-
-{v0 { and obtain [X]PI(p, v,) 0 which contradicts [X]PCI(p, v 0 ) . Hence there
is at most one Y<k with IXS,Í - p-1 . Put M={x : XS, 0} .

Case 1 . IMÍ=b . Then we choose x,EXS, for YEM and put X'={x,, : xC .II ; .
Then by (2) there is an infinite set R c [0, co) such that, for r E R, ÍArI > I in [M]r .
Then, for r(R, Idrl>1 in [X']r, and hence also in [X]r . This proves (3) .

Case 2 . I M < b . Then there is x 0 < k such that ;XSJ < p - I for x x0 . Then
b = ÍX ; XS,o l ~(p-2)ÍM ; ; 'XS,0 I =b, and we put X'=-XS, o . Then X'c S,,,
X'I =b, and by (1) there is an infinite set R c [0, o)) such that, for r E R, Í4, 0A > 1

in [X']r . Then, for rE R. d,.

	

I in [X']r and hence also in [X]r . This proves 17 . 3 .

17 . 4 . If a, b, c are such that a 0 -(b)~ ~° for every n p < a, then

a 1-- (b+)

PROOF. Put cola)=n ; o)(b)=k ; w(()=m . If r--co and n o <n, then there is a
partition

[[0, 110)1 " = S'(v<m)I(n0, 1', v)

	

(partition dn o r)

such that whenever YE [[0, n 0 )] h , then there a.re infinitely many r such that N„ 01 Í > 1
in [ Y]r . Then for every r there is a partition

[[0 . n)]r+' - S'(v <m)I(r, v)

	

(partition d r)
such that

I(r, v) _ {{_r 0 „ x,.} < : {x 0 ,, i r} E I(xr, r, r)}

	

for v < m.
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Now let X E [[0, n)]' - . Then there is a set {x o „ x,;}, c X. Then Y= {xo „ z k ) E
E [[0, xk)]h, and hence there is an infinite set R c:: [0, w) such that J ,j 1 in [Y]r
for every r E R . Then, for r E R, Jd,I > 1 in [Y+ )x k)]r+' and hence in [X]r" This
proves 17.4 .

We now come to the main result of this section .

THEOREM 15 . Let x--0, and let {do „dk), be the set of all strongly inaccessible
cardinals not exceeding bz a . Then k _- 1, and

"° if k<w,

a-(k)z1~°

	

if k

PROOF . We use induction over x. If a =0 then k = l , since o is strongly inacces-
sible, and the assertion holds by 17 . 1 (c) . Let Íl >0, and suppose that the assertion
holds for all a< f . Let {do „ d,), be the set of all strongly inaccessible cardinals
not exceeding tZ, . Put n = 1- l if l < w, and n = l if l -- w . Then, by induction hypo-
thesis, we have for a

(4)

Case 1 . Q>cf(fj). Then (4) implies, by 17 . 3, the desired relation

(5)

	

'N~a "(Rn) ; K° .

Case 2 . /i=cf(f3) .
Case 2a. 2 - -,RR for some y < f3, Then (4) holds for x = y and hence, by 17 . 2,

211i'--(ZQ1 ',, 0 .n 2
This implies (5) .

Case 2b . 2 11, < R for every y < ~. Then tt, is strongly inaccessible ; 1 = ~.+ l ;
d;. =tr, . Then tZ,

	

=d;. , and hence %-1 .
Case 2b I. ;.< (o . Then, by induction hypothesis,

tiz (

	

z ~~

	

for y < f3
and hence, by 17 . 4,

~p --- 0i :)z no

But A = l-1 = n so that (5) holds .
Case 2b2 . ;.-a) . Then, similarly,

and hence

	

;

	

where n + 1 = 1 = n . This proves Theorem 15 .
Let {do „ d„), be the set of all strongly inaccessible cardinals below some given

cardinal. Then Theorem 15 yields the following results .

COROLLARY 15 . (l)

	

, R0

	

for l' <lnm (11, 0)1 ;

(lI) d,- ( ,+I)2 `°

	

for v<n ;
(iii) d,

	

z s~

	

if v < n and d,.

(iv) if all strongly inaccessible cardinals d are less than some fixed cardinal,
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and if ido ., d,,,, , is the set of all such d, then

\ x (~ »)z ~° for all 7 .

Let c- Ao . Then, by employing at the start of the induction argument the rela-
tion 17. 1 (b) instead of 17 . 1 (c) we obtain by the same method as was used in the
proof of Theorem 15 the following result .

THEOREM 16 . Let \ a - c - A o . Denote b}' ',d o (c) ., dIjc)}, the set of all strongly
inaccessible cardinals d such that c < d \ x . Then k - 1, cued

\ x (\A),``°

	

1f k o~ .

The proof. a s well as the analogue to Corollary 15, may be omitted .

18 . THE RELATIONS IV. V AND VI . PROBLEMS

In this section we shall deal with some generalizations of the partition rela-
tions I and 11 . Let a, r . n, b,, ., b„ be given .

18. 1 . DEFINITION . The relation (partition relation IVY

( 1 )

	

a

	

[b,,, . b„]r .

also written in the form a [b,.] ;. ,,, denotes the following statement . Whenever
IS -a and [S]' = :'(v--n)I,., then there are a set X S and a number h<n such
that X I =b,, and [X]rl,, = ~ .

18.2 . DEFINITION . If b„==b,;=b and in,=c, then
form
(2)

		

a -- [b]c' .

18 . 3. The relation (partition relation 1")

a - [bl'* a

denotes the following statement Whenever SI =a and [S]r = ~'( ; co(c)a , then
there are a set X = S and a set D - [0 . co(c)) such that I X', =b ; 'D -d, and

1(r~D)I,, .

The relation (i) is oniv of interest if r=2 ; a- \ o ; 11 --- 2 .- r-bo „b„-a . In this
section we shall mainly investigate the relations IV and V as well as problems sugg-
ested by them .

The following propositions follow immediately from our definitions .
18 . 4 . The relations crb, r and a--[b,, b,]r are equivalent. The relations

a--(b),; and o--[h] ,, are equivalent . If I then the relations a--[h]*.~_i and
a -[b],` ' are equivalent .

(1) is also written in the
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For r 3 our results concerning the relations IV and V are rather incomplete .
The positive relations will be deduced by means of the general methods used in the
discussion of I-relations but to obtain our negative relations we shall employ new
ideas for the construction of suitable counter examples . Interesting problems of
a new type will arise .

Just like the relations I, 11 and III so the relations IV and V possess obvious
monotonicity and other properties whose proof is left to the reader . We mention ;

18 . 5. Let m -2 and I, , --_- v,, <n. Then, for any cardinals bo ,, b,,,
implies a-[bo„b„]1 . In particular, if lI~I,<n and a -(b, b,,) , . then a--[bo„b„]' .

18 . 6 . Let the cardinals a, b, c, d, e satisfy c<d_e. Then a--[b] ;,, implies
a

	

[b],r .

18 . 7. If a

	

o , then a [a],r,,, for all c, r . If c_-d. then a [b]r, d for all b--a
and all r . If c>b-fit,, then a - [b], for alb and all r . If c- e, then a--[b]~,, implies
a -a [b] e, , .

Up to 18. 10 we shall mainly be concerned with IV-relations . We shall then
consider V-relations and in particular mention some of the unsolved problems .
Finally, VI-relations will be briefly considered in 18 . 19 .

By Theorem I we have the following results :
(i)

	

s _ ( a , ,) 2 holds if /f, y < a .
(ü) A necessary condition for x (fi x , ~,) 2 is r -=cr (a) .

This condition is at the same time sufficient except possibly when y =cf(a)
and ~; is inaccessible .

Taking into consideration 18 .4-18. 6 we see that the principal problems
about IV-relations for r=2 concern the truth of relations of the form a--[b,.]2<„ .
where a = \ . . :

If a' is inaccessible, then there remain unsolved problems (see Problem 1) . The
complete discussion of the cases when a' is not inaccessible will be given by Theorems
17, 18, 20, 21, 22. For r=4 we have only isolated results .

Consider first the case a=~ a+ , when cr(a+1) = ef(a). Here we have the
best possible negative result :

if bo -fix+ ; b,„b,,,,_

	

'The proof differs slightly according to whether
), =cf(a) or a>cf(a) . We first prove

( ) THEOREM 17 . ;Zx+,

	

[ ~+ r12 .,, ., for every x .

Instead of Theorem 17 we shall prove the more general Theorem 17A which
will have an application in the discussion of the polarized relation .

( ) THEOREM 17A . Let S _ ~,+, . Then there is a partition

(3)

	

[S1 2 = 1 , (I'

which has the following property. Whenever A, BC S; IAi = ~« ÍBI _ a+r, and
vo - a)x+ I , then there are elements x (A and y (B such that {x, yf (I,, .

10 Acta Mathematica XVI/1- 2
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A suggestive notation for the assertion of this theorem would be

PROM . Put a= m =co, ; it-w,,+i . Let S={y,,J„}, . Then we can write
[S111-~ . p„ -Q# .

1 . Let o <n. Put S„= { yo „ y,,, ; and Z,-{X,, : n- oAAX - 5,, ; . We can write

S„ - ix(o, Et) : p =n :„ 1
and

Z„X[0, o)

	

((X(Q, 11), v(Q, 10) : ti ._n o i,

where in„ and n„ are initial ordinals not exceeding m. We can find inductively numbers
a(o, ti) m, for J.<n,,, such that x(n, 6(0, p))EX(Q, µ)-{x(o,

	

µ} for
Then x(o, 6(Q, h))EX(o, Ei) for µ--i7,, ; 6(0, It) X 6(0, ~) for

Z . Let n Q < rt . Then there is exactly one

	

with _~-(~, T(o, ~)) = yrz .
There is a partition (3) such that

Yrz,Y } Ehte ., i- if µ<n„ and T(o, ~)=6(Q, Ei)

This condition does not define the partition since the

	

with T(o,n)~
E ta(o, Ii) : µ=n„} may be placed into any arbitrary class 1,

Now let A, B(- S; AI =a ; BI =a+ ; v o -=n . Then there is oo <-fa with A Z oo .
Next, we can find y„ F B with v o , oo - o n . Then (A, v,) EZ„ X 1,0, o), and hence
there is 14 --n„ with (A, v E,)=(X(o, p), v(o, It)) . Then x(o, 6(0, p)) = y, for some
zr --- o, and we have

x(Q, 6(L),1O)-yn-x(Q7, T(.), n)), T(L) . n)--07(L),11) ;

y `1

	

-I

	

Y =x(o, (F (O ;q))`-X(Q,p)=A ; Y„EB .

This proves that the partition (3) has the required property . and Theorem 17A .
follows .

We are now going to sharpen Theorem 17 .
( -,-) THEOREM 18 .

]` .for all 7 .

PROOF . If x=cf(a), then the assertion follows from Theorem 17 . Now let
7 = cf(7) . We consider the set V'(7) introduced in 1 l . 3, together with its two orders
x --y and x <y. Put a= „ n1=(!)x ; n-m,,, ; S-- V'(7) . Then we can write
S== ; y o „ i„}, . For P, Q ` S the relation P --

	

means that whenever x , P and
yE Q then x may . If P-- {x} then we write x Q instead of {x} Q . Similarly we
use P-< Q . We write [S]"={Xo „ X„} : .

1 . Let o_,- n ; S ={}-' o „ y } ; Z = [X n : 77

	

Xn v =X ; . We can write

Z„X [0, Q) - ( (X(0,11), PQ, h)) : It = nj,

where nn„ and n„ are initial ordinals not exceeding m. We can find inductively numbers



6(0, i. <m„ for n-n o such that

x(0. a (0 . It)) EX(0, µ)-{x(0, a (0 . ~)) : )_-II}

	

for µ
Then

x(0, 6(0, 10)EX(o, µ) for µ-n o ;

g(0, µ)T6((2, I)

	

for A-µ-n,, .

2. Let >z < 0--n . Then there is exactly one T(0, 7r)-m„ with x(a, T(o, 7r)) =y. .
There is a partition

[S1 2 = I+'f'(v--n)I,,
defined by the rules :

(Yn,YeiEI„( 041) if z(0,7T)=6- (0,It) ;

kY" Y .,1 E l

	

if T(0, 7), !a (0, it) : ,n-n o} .

It now suffices to prove that this partition has the following properties :

(i) If XcS and [X]2I=0 . then IX I-a' .

(ü) If X r- S : vo- )I ; [X]2j,.= 0, , then IX--,t.
3 . PROOF OF (i) . Let Xc S and [X]2j= 2) . Then we can write

Let 1,>r, o < <-{ 0,, : ;--k,'. Then there is µ<n„ such that {yn,ye}EI,,0,µ) ;

T (o , T)-a(EI, 1I) ;
Yn=x(0,T(0,7T))=x(0, 6(0 , a))EX,,,,EZE, .

By definition of Ze we have X,, µ -< y„ <X F„ y,< < y, < yn . Hence tp (X, -) =k*, and
by H . 5 (ü), JX J _ ~kj -a' . This proves (i) .

4 . PROOF OF (ü) . Let X---- S ; v o -<n ; ~X 1 =a+ . We want to find a., y EX with
~x, 0 EI,. o . It is well known that there are sets A, BE [X] , with A-B. This follows
for instance from 11 . 5 (ü) and [1], p . 446, Lemma 1 . There is oo =n with X o cB.
There is ;, - 17 with [0, (2 o) +E(yn EX„,,)[0, 7r) _ [0, ),) . There is y„ CA with ~, v o -o < n .
Then (X,, o , v,) EZ„ X [0, o), and hence there is µ <n, with (X,,, v o) =(X(o,,u), v (0, u)) .
There is n-0 with x(0, (7(<_) . It)) = yn=x(0, T(0, zz)) . Then r(o, n) = a(o, it) ; {yn, YQ } E

EIv(°li)

	

Iv ,, ;

Y~ = x(,?, a(t), N))(- X(0, u) = X, BCX, y, EA LX .

This proves (ü) and completes the proof of Theorem 18 .
Let us now consider the case r-_- 3 . By Theorem 11 we have

	

+-
-[ x , . r--11' . The following theorem gives a best possible generalization of this

result .
( +) THEOREM 19. For r - 3 and every a,

r~a+! -~lI - E 1, ~a+I)\,T~

This theorem will follow as immediate corollary of Theorem 28 which will be proved
in 19 . 2 . It is clear that Theorem 19 does not settle the problem of deciding whether

10*
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for any given cardinals b o „ b

	

a+ , we have ,+

	

[b o „ b„]r . We shall consider
such problems later, in 18 . 9 .

Let us now turn to relations of the form Na, --[b o „ Q, when a cf(ot) . Here
our results are almost complete for every r--2. Unsolved problems remain only
when á is inaccessible and greater than N o .

Consider first the case when a > cf(a) _ t3 + 1 so that cr (a) =cf(/3) .
Case 1 . r =2. We have to discuss the relation ,, -- [b, 0,x ) '1 2 when N~ < b

	

a
and 2-e-- a .

Case 2 . r~3. Then we have

	

-(b o , bj , for every bo , b i < , . For there is
io < a with bo , b J < R Ra , and then, by Theorem I,

K ~ ~Ro+(r-2) -(b, , 1 )r .

Also, by Theorem 12,

	

r+l)r . Thus there only remains to discuss the
relation ,--[b, (N,) C ]r when r<b--N a and 2--c-- a . The following best possible
theorem settles all these questions for - , N . when , is singular .

(+) THEOREM 20. If r==.2 ; a,cf(a) ; c> ~, then

S`a]C'

Instead of Theorem 20 we shall prove the following stronger theorem involving
a V-relation .

( -) THEOREM 20A . If' r -- 2 and Rá < c < fi x , then
r

x

	

x c,Ha
It is clear from 18 . 6 that Theorem 20A implies Theorem 20 .

PROOF . Let I S Í= K ; [S]r = E'(v«(c))I, (partition d) . Then, by Lemma 3,
there is a set T = E'(µ < in) S,, ,:-: S such that m =co,~ F(a) ; Í TÍ = R a , and d is canonical
in (S,,, S„,) . Let ro + + r,,, = r. Then there is f(ro „ i ) < co (c) such that whenever
XcT and IXS„Í =rµ for p it?, then XEIf(ro,, ;_) . Hence

[T] r C2: (r'Q++r,,, = r) If(rp„r ),

and the assertion follows from

r (r o r ro ++r = r

	

m

The following best possible theorem settles the case when c

	

á and a > cf(a)

( + ) THEOREM 21 . Let a. = cf(a)

	

+ 1 and c

	

Then.

(i)
,

(~a)c] ' o

(ii) a +' [r'+1, ( a)j r for r-3 .

PROOF . We may assume c==gyp+r . Let cotj , 1 =n ; S=2:'(v-_n)5,, ; IS,I < I SÍ=te a
for v = n .

PROOF OF (i) . By Theorem 18, there is a partition

[[0, n)]` = S (v <n)I„



which brings into evidence the relation
Rp+i , [Z~ p + ~ (

Z~fl
+I i¢p + J2

This means that if D. E- [0, n) then [D] 2I- _ , implies JDJ -- Nb. and, for 1 - v < n,
[E] 2Iv =

	

implies

	

Then

[S] 2 = S'(r n)Ir
where

IV = S({~, µ} Eh)[S„ Su]t' 1

	

for l -- v <n .

Put D(X)= ° r : XS, Q} for X-- S . Then, if X- S and [X]210 = 0, we have
[D(X)] 2I0

	

and hence 1XÍ =ÍD(X)I-átá • If Y--S; 1--v,11 ; [y]2j = Q) ;
I YÍ = ta , then D(Y)Í

	

[D (Y)] 2 Iv = q which is a contradiction. This proves (i) .

PROOF OF (ü) . Let r-3. Then. by Theorem 19, there is a partition

[[0 , n)]r = 1'(v<n)I

which brings into evidence the relation

Then
[S]' = :'(I.{rt)1,,

where
1, = S({v 0 ., y r - i I FI,)[S,.o „ S, -

	

for 1--v--n .

Then exactly as in the proof of (i), we obtain the desired properties of this last
partition, and Theorem 21 follows .

The relation of Theorem 20 is valid for every singular ., and Theorem 21
shows that this relation is best possible provided that á is not inaccessible . If, on
the other hand, á is inaccessible then we have the following result which is in
some ways stronger .

( ) THEOREM 22. Let r = 2 and x > cf (a.) . Then

(I)

	

a
__ [, ,]r

2' -

#1 in addition., either cf(a.) =0 .. or cf(a) > 0 and W á is measurable,* then

(11)

	

a
y [Nj'r for c> 2-1 ;

(Ill)

	

x~[ a]c .2"-i

	

to"

PROOF OF (i) . Let n = Coc f (a) : S = 2:'(v < n) S,„ Í Su < S = t; a for v < n. Then
there is a partition

[S]" _

	

r p - r -1I' r 0 + + r p - I = r)I(ro,,

where I(ro ,_ r p - r ) is the set of all A E [S]r such that, for some v 0 < < v p - r <n, we
have ÍASv Í =-rz for 1 =p . It follows that if XE [S]H- then IXS~l -r for at least r
values of v . But then [X]rj(ro „ r p-) 0 for every choice of (r0 „ rp and since
there are exactly 2r- I such systems the assertion follows .
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* s, e., does not possess property P, of [24) . See 8 . 2 .
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PROOF OF (iii) . Let ISI= a ; rn=coor(a) ;

[S ]r = E'(µ-w(c))I,,

	

(partition d) .

Then, by Lemma 313, there is a set T = E'(1, - n) S, c S such that d is super-
canonical in (So „ S„), and ISCI ITI = Za for v-n. Put D={lv : [T]rIµ 0 .
Then, by definition of super-canonicity, IDI --2 r- r, and the assertion follows .

PROOF of (ü) . This relation follows from (iii) by 18 . 6. This proves Theorem 22 .
REMARK. In some sense (iii) is best possible . For we have

(iv)

	

if dá á< ~ and r-2 .

To prove this, let n, S . S, be as in the proof of (i) . Put D(X) = tv : XS,

	

}
for X(- S. Then

[S] r = 2:'(E C [[0, n)]~ ,)I(E) (partition A),
where

I(E)=[S]r{X: D(X)=E1 .

We have Id I

	

« . Now let X,- - S and IXI

	

Then D(X)I = í and hence

I{E : [X]rI(E) 7-1 011 = '

which proves (iv), in fact by means of the same partition for all d .
Up to this point the following problem remains open. Let x>cf(a) and let

Ra be inaccessible . Is then

fA~ --- [b, (N,)C-1] r

true for 3--r--b = t x ; 2-c-2" - ' ? We shall show that this problem can be reduced
to a finite combinatorial problem provided either ,tx=or Z~x is measurable .

18. 8 . DEFINITION . For r 1 and every m denote by Fr,,, the set of all functions
f which are defined on the set Vr of all systems (ro ,, rp_ J ) with r, ., r,-, -- I and
r o ++rp_, _- r . and whose values lie in (0, nn) . We have ;V,I =2r - ' .

( *) THEOREM 23 . Let r - 1 . Suppose that a > a' _ o or, more generally,
a :-- a' and a'-(a', a') 2 . Let b o „ b,n =a. Then the relation

(4)

	

a -- [bo„ b,n]r

holds if and only if the _following finite combinatorial condition is satisfied : Either
(a) m > 2r- ' or (b) in-2- 1 and, given any function , f r Fr,„ , there always exists a
number v=v(f)-nn such that at least one of the following four conditions (i)--(iv)
.holds :

(i) b,. - (r - 1) 2 ; b, . = co + + c,; .for some k and some c () , . q -_ 1 such that
whenever io - < p < k. and r, -- c,,, for - < p and (r o r p) r V,. . then f(r o . . rp) - v

(ü) (r--1)z<b,=a' ;f(1 ., 1) -~ .
(iii) (r --I)' -b,. -a ; f(r) - v .
(iv) b,, =a ; . f (r o . . rp) - v for all (r o ., r p ) r V, . .
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REMARKS . l . The theorem implies that if in-21 -1 and a a, bn „b,„=a ;
a'- (a', aT . then (4) is equivalent to the relation

(5)

	

a

	

[bz~„ bnm„ (a ) ,, • (ca ), , (a)„„] r •
where

1, 0 „ ;„, 0 }, _ {v : b,. -(r-1)2 ; ; In I = I( v : (r-1) 2 =b,.-a'JI,

in, --I{v : a'--b,

	

t , : in ; _ 1 {v : b,,-a}1 .

Also, if (5) holds for one such a it holds for all such a .
2. The theorem implies that (4) holds whenever a >a' . a'--(a', a')", b,, b,,,-- a,

and (r-1)'- b, -- a for at least two values of v<m . For in this case either - (a) or
(b) (iii) holds .

3. The hypothesis a'-(a' . a')' is only required for showing that (b) implies (4) .

PROOF . Put I --tn(a') . 1 . Suppose that (4) holds for some r, a, m . ba ,, b„, such
that c:>a' and r-1 . Let m-2"- ' . and S-2:'(/.-/)S, . where S,1 , 11 S!=a for
ti < l . Let f E Fr ,,, . Then a partition

[S] r - ~ (~ ~ rn)Ilv')

is defined by the following rule . if A E [S] r : ',) < _ l p mi l ; AS, rz ; =r for r <P :
(r o „ rp) E V r , then A E I(f(r,„ r p) . By (4) there are v <rn and X E [S]h° such that
[X]rI(v) = C/, . Then there are numbers fro < -/1,, - l such that Xc 2:(i -~ k) 5,,, and
XS',,, = c„ -1 for x<k. Then c,++ck - b, . Let o < = r <k : r,,-c,,r for
n <p, and (rrp) F Vr . Then there is A E [X] ' such that jAS,, I =r, for r gyp . Then
A EI(f(r o , . r p )) . On the other hand, AE [X]r and hence ACS I(v) . Therefore f(r o , .. !•p ) v .

Case 1 . b,, = (r -1)'- . Then (i) holds .
Case 2 . (r-1) 2 -b,.-a' .
Case 2a. c, = r - for some r < k . Then we may take above p =1 and r r, =r .

and (iii) follows .
Case 2b. c --r for all -k. Then k -r . and we may take p =r and r, _ = rp =1 .

Then (ü) holds .
Case 3 . a'=b a. Then c, =r for some <k, and as in case 2a we deduce

that (iii) holds .
Case 4 . b,.=a . Then c,-r for at least r values of z . and (iv) holds since in

this case any system (r, r p)E V r may be taken .
11 . Let either (a) or (b) hold . Put n =min (in, 2 r

	

+1). Let !S i =a : [S]"
= 2 '(p _m)I(p) . Then [S]r - S'(v-n)I'(v) ( partition _A3 ), where

151

I'(V)=l(i .)

	

`tor 1-Vn .

Then, by Lemma 3B . there is a set T = S'(i. <I) S;, z S such that d is super-canonical
in (So ,, S) : I S,, = a,, < a - IT I for l, and r -a , < < a . This means that there
is a function t'E F,.,, such that A F(f(ro ., rp )) whenever A [ T]r, IAS,,,I =- r;, for
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Case 1 . (a) holds. Then n--2" - ', and there is r- n such that ,f(r o .,v,) v
for all (r o . . i• P ) c ["- Then

[T]'•I(t,)-[T]"1'(t') _ 0, ;

	

ITI=a-b,,

so that the requirement for (4) is satisfied .
Case 2 . (b) holds. Then n=in . and 1'(v)_ 1(v) for v-- in . There is I„_l such

that for every t , -- m we have either h,.-a or b, --a, . . If (i) holds then we can choose
for z=-k . Put X =: £(z k) X, . Then IX I-h, . and [X]"1(v)- as

required by (4) . If (ü) holds then we choose .v ;. E S,, for % 1 and put X=- I X, .

Then IXI =- a'-h, : [X]"1(v)= ~ . If (iii) holds then IS,,,I--h,. and [S,,,]'•I(v)- O7 .
If (iv) holds then IT =-a-h, and [T]1I(0= ;/ . This proves Theorem 23 .

18.9 . Let r= 3 : i - =c T - ' . By Theorem 23 there is a least unite number
hh c) such that whenever a =-a'- N,,, then ri---[b. The choice of n is
irrelevant. The value of ("(r . c) can be found by solving a finite combinatorial
problem Much we are unable to do . We have only very incomplete results which
we do not propose to discuss its this paper .

18. 10 . Let us now return to partition relations whose left hand side is a cardinal
of the first kind . As has already been pointed out our results here are rather incomplete_
First a "stepping up proposition .

(- ) T~nORi-vt 24 . Lei

r+1Then a -- [h, ],', implies a' -- [b, - 1 ], .<,,, .
The proof is parallel to that of Lemma 2 anti is omitted . One might conjecture

t hat . i n analogy to Lemma 5, under the hypothesis (6) and some other fairly wide
assumptions

ril
l71

	

cr

	

implies a , -[ h,.+

but we have only been able to prove this in very special cases .
A best possible result is given by the following theorem .

(

	

} THEOREM 25 .

(9) PROOF of (8) . We have \,,

	

A,)2 and hence \, --[„o . N,]' . -,~ , --

[\,, .

	

and (8) follows from Theorem 24 . We omit the proof of (9) since
it employs a rather special method .

By Theorem 17 we have ,t,for 2=c •= -= l ; . Hence the conjecture (7)
Would imply that

for 2-c -

but we are unable to prove this relation . Thus the simplest unsolved problem here is .

( * ) PROBLE 3 .
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We cannot even prove the weaker relation

~\, z

	

[+1z,

	

1+

	

1

	

I] 3 .

We mention that the proof of the conjecture (7) would not settle all the problems
arising in the present context . Thus we have, by Theorem 22,

	

J23 . Hence,
by Theorem 24, N,+I [x„13 . Also, by Theorem l,

	

+i ~(+~o

	

,) 3 i . e . 8,„+r
~[ o , x,1 3 . Therefore. trivially, 8,„+I ~[ o , , b]3 for any b . Hence one might
conjecture that a best possible negative result is

(10)

	

m+1

	

[ L gym • ~a+1] 3 •

This problem remains unsolved, and it can certainly not be settled by means of
the conjecture (7) . Instead of (10) we can only prove the weaker relation

~, - I-1 2 ~m+ ~co+l] '

which, in fact, follows from our next theorem .

( ) THEOREM 26 . (i) Let a > á = ,¢ o . Then

(II - [ N2, a. a + 1 3 .

(ü) Let a>a'-No and suppose that a'--(a' .a')' . Then

a+-- [a'++ . a, a+] 3 .

We shall prove Theorem 26 in section 19 . Many further problems could be
stated here but we are not even able to give a complete discussion of the unsolved
problems. Now we turn to the relation V .

18 . 11 . Let iS =a -- no and i•- 1 . Then there is a partition

[S]r = 1 ' ( V «(a))I,,

such that !I,1 1 for I, <-w(a) . Hence we have : if a~ N o and r~- 1 . then the relation

a -- [b],, .d

holds if and only if, either (i) b< o and d-(b), or (ü) b- o and d= b. Therefore
in studying relations a--[b]r,, d it suffices to consider the case c-a.

( } 18. 12 . Consider first the case a á . Then, by Theorem i, a--(b), holds
for b, c a, and therefore a--[b], ., . Hence we need only consider relations of the
form
(11)

	

a -- [a]c_d

where r i and d -- c° < a. Theorems 20A, 21 and 22 give an almost complete
discussion of the relation (11) . We have, assuming (-*) : a--[a]'., if either
(1) Cl-d~c<a or (ü) a'= o and 2- I --d-c< o . ate--[a]c ,d if either (iii) d<á-c
or (iv) d < á = e+ and d < c, for some e, or (v) d < c . 21 - I

These statements follow immediately from the theorems quoted, except that re-
latíng to (iii) . Let us, therefore, assume that d-a' = c-a . Let n=w(a'); S=
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=~'(r /I) S,. ; I: S,. 11 - - (I= !S, for r<n. Then there is a partition [S]
r =

where, for A E [S]'', we have .4 F_ I,, o whenever I , , = min (AS,. 0)i% Now let X t [S],, .
Then {v : XS,. 0,'! = a' and hence {v : [X]rl,

	

= a'>d. This proves ate--[a]" .d .
If the truth of the relation a [a]~, d , where a -- a' . is not decided by any of the

results relating to (i)-(v) above, then we have

2r -1 -d`=c<a'=a'->Z~o

so that cl is inaccessible and greater than ~ o . Thus we do not know whether for
such an a the relation a--[a]3 , is true or false .

18 . 13 . We now consider the case when a=a' and r=2 . If a is inaccessible
then, of course, every problem remains open . Suppose now that a=e+ . By I8 . I I

we need only discuss the relation e+ [b] 2 d where b-e+ and e-c>d. It follows
from Theorem 17 that e +_[e+]2._ d for d-<('--e . On the other hand we have, by
Theorem 2, e*--(e)',, for (-< e' and. by Theorem 1 . e ` (b)2 if b < e and c -e. Hence
we have

( ) 18. 14 . Let c - 11,~ o . Then

e+ - [e]2 . 1 for c < e

e+ --[b]<, 1 for b, c <e .

Furthermore . c+-•(3)é by Theorem 8, and dT

	

(3), for d~- t~ o , by Theorem 2 .
Hence. by an obvious transitivity property of our relations .

(-*) 18.15 . c`-t--[d++]2 .d for

We can also say something about the case d- By Ramsey's theorem . there
is a least number f(d)<\o such that f(d) (3) 2, . Then, by the same transitivity
property, c - • [ f(d)]~ d for Hence, given d < ~ 1, - c, there exists a least
number g o (c, d)<,o such that c - [g o (c, d)]2 .d . and we have g o (c, d) f(d) .

As a corollary we obtain c [ o ] C . , for d =N o==c. In fact it can be proved that
go(c, d) = d+2. This follows easily if instead of Theorem 8 we use a result of
P . ERDŐS and J. TUKEY„ which states that the complete graph of power c+ can
be decomposed into the union of c trees . if c-~~ .

By comparing the results proved in 18 . 13 . 18 . 14 and 18 . 15 we see that in
the case a-a"=e+ the following problem remains open :

The simplest unsolved cases are :

( -) PROBLEM

	

1 . (a)

	

? \ ~ [+~ 1],22`t .2

	

o :

N ?

	

[ ~ N( )

	

1\ 3~

	

\

[~ ]z3

	

1 R . .W

Problem 3. 1 (a) was known to 11s before we introduced the relation V . We came

y This result, for (

	

. was first proved by ERDŐS and TUKEY but not published. Then proof
is published in ['3? .
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to it when considering a problem of ULAM. It seems to be the most difficult and
interesting unsolved problem on the relation V .

Added in proof (23 . 111 . 1965) . It has been recently proved by F. ROWBOTTOM
that Gödel's axiom of constructibility implies

18.16 . We now consider- relations of the form a+--[b]"d where a-a' . It
can be seen from 18 . 13-18. 15 that the only case with b =a which still needs discuss-
ing is
(12)

	

? c,+ , [a]C, d for a' --= c-a ; d_1 .

Also, the only case with c=a is

(13)

	

? a+ -[('+]a .' for a -d=%t o .

About (12) we now prove :

( x-) 18 . 17 .
(14)

	

a + [a]2• . d

	

if' a -a'>d ;

(15)

	

a+ --[a] ;,, .

	

if a--a' and c a .

PROOF OF (14) . Let a=s2 . We use the definitions and notation of 11 . 3 . Let
S=V'(x) and ill = (o(a') . Then there is a partition

[S] 2

	

E'(v __ m) J,.

where 1,,-[S]`{-;x,y~< :xy=v; for v<m . If XcS, D~[0,m); ID d ; [X]~~
c S (r r D) J,. , then there is v -- m with D [0. v) . Then {x, y} # r-X implies xy < v,
and

~`YI =n(EL r') ~xu =(~a„)~~~ ~ ~a

as required for a proof of (14) .

PROOF OF (15) . By Theorem 20A, tl _ [a]2,,, . which implies (15) .
About (13) we prove :

18.18 . a+_[d+]2 .d if a'---d'-d<a .
PROOF . l . Let

	

S=V'(x) ; r7i-w(a') . We can write

i(L), c . i) : n'6<mn,n2 , _ {(o,., 6,. .

	

1 ''o)'i=-

Then [S]'

	

where the I„ are defined as follows . If {x, y}

	

S;
xy - / ; x=(xo . . .C,J ; ti' = (yo,, y ) ; ( A ; o y;-, ;)-(n), are ~-r)> then fx, y j EJ,. .

2 . Let X - -S ; [X]--E(vED)J,, ; D-[0,o)j ; IDj-d . Put D,=iT :z<wa,A
A(yv)(vFDI,iE{o,.,6,, )} for ;.- M. Then D;,1-2jDj-d. If {x,y} cX; x -
- (x o ,,x y=(yl) , then there is I,eD with {x, y}EJ, . . Put xy=%. Then we
have : If x --y, then (x; . =(o,._ c,. . Z,) ; and if x > y . then (y;. , x; . cr,. . i,) .
Hence in any case .
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J . Let X=(x0+ l,r ,) E X. Put f(x) =v.f0(x)>,J,,(x)) where, for / ,m ., .f;.(x) = xn
if .x 'D and f,,(x) = 0 otherwise . It follows from 2 that {x . Y} # c X impliess
f(x) f(y) . Hence, since

IXJ = j1f(-v) : x z lX 1 j = EI (~-< YJ4)(I~,,I 1) `d =d
This proves 18. 18 .

We do not know what happens when the condition a'-d' is replaced by
a' d' . The simplest unsolved problem here is

( ) PROBLEM J. 2 .

REMARKS . Our proof gives in fact more than a - -[d'],-,
For the partition which put this relation into evidence is independent of d so that
it has the required property for all d simultaneously . One could ask quite generally
whether whenever it is known that a --[q(d)f, for some fixed a, e and every member
d of a set M, it is then always possible to find a single partition which has the required
property simultaneously for all c!` A/ .

We wish to remark that one can obtain new problems of the Ramsey type
relating to the V-relation in the case of finite sets, i . e. when a- but we do not
investigate this .

Having just discussed a generalization of the ordinary partition relation 1 we
are now going to introduce a similar generalisation of the relation It .

18. 19 . DEFINITION . The relation

a

	

[b],.ó °„ (relation V1)

expresses the following condition . Whenever ~Sj =a and

[S]r

	

-Y'(v--co(c,.))I(r, v) for r- ~u,),

then there are a set :V' [S]b and numbers r () and vo(r)-co(c,) such that

[X] ,I(r. r~(r)) = C for r = r o .

Clearly, by 3.2 the relations a (b) ; and a---[b]z "'; are equivalent. Also, if c r --d,
for r-<u . then the relation

a
implies

a -~ [b] ~R0

This shows that the relation VI leads to new problems only in cases when a,--(b)2' Ro .
and here there are interesting and perhaps difficult questions . With our present
methods we cannot solve even the simplest problems . We now state some of the
simplest unsolved problems .

PROBLEM 4 . Is it true that . either when c r =~2Q for all r or merely when .
sup(/-- ~u)c r = u~, we have

either <
o

	

[

	

,„,,,o]C,,
s

	

or
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We can only prove the following simple result .

THEOREM 27 . If 2 :~-m « then 2" ' , [ o ], n, f .

PROOF . Let S be the set of all real numbers x in 0 x-_ I . For r-1 and
A=1ao . . a,.- t } < = S put

f(A) =.f(ao . .a,-I)=1{ .o :o<r-I a„+t-a„--I/r}I .

Then there is a partition
[S]" = S'(v < M) I(,.. V)

such that. for A E [S]', we have
AEI(r,v) if r=nvn(f(A),m-I) .

Now let XE[S]lo . We shall find r o such that [X]'"I(r, v) o for r--r, and v-<m .
We proceed as follows. We may assume that X={x o „ Q1 < . There is r,--m such
that x µ+ , -xu - I Jro for all It < m-1 . Let r -- - r, and v < m . Then, for all sufficiently
large n =co, .f(xo „ zV , x„+ ,,,, x„+,)=v, and Theorem 27 is proved . We have in
fact proved somewhat more than is stated in the theorem since our partition is in
a certain sense independent of m. If m increases by l then one class splits into two
classes while the other classes remain unchanged . An obvious modification of the
proof shows that, more generally, if ISI=2s- then there are partitions

[S]' - E'(v <r)I(r,

	

v),

for r-w, such that, given any set XE [S]I o and any number v <o), there is a number
ro(X, v) - o) such that

[X]'"I(r, v)

	

for r-ro(X, v) .

Since our stepping-up method does not seem to work in problems of this kind
we do not know whether

respectively.

* It will be seen that r,,, for the purpose of this proof, need only satisfy a condition which
is weaker than what follows .

2

	

-"_[ o]g 3 .

19. FURTHER REFINEMENTS OF RELATIONS I AND IV

Corollary 7, with P-0 and r=3 . gives r te( i ,4) 3 . Thus if ~Sj=?fi t then
there is a partition [S] 3 = Io +I, such that whenever XcS and [X]3 cI,, then
IX I < , , and if Y c S and [Y] 3 c I, , then I Y J < 4 . The following problem arises :
let S = , and [S] 3 = Io +h . Suppose that whenever Xc S and [X] 3 c10, then
IXI Does this imply that there always is Yc S with I YI =4 and ~[Y] 31 t i -2
or perhaps even ; [ }'] 3II 1 ---3? If the answer is in the affirmative then we denote
this fact by the relations

t - ( R1' [21

	

or

	

(
~1 [3]) 3
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Generally we introduce the following extension of the ]-relation a-(b o „b
and IV-relation a---[ho„bJr .

19 . 1 . DEFINITION . Let, for each v--m, the symbol Fv denote either a cardinal

b,, or a pair
iv

, of finite cardinals . Then the relation
Jv

a-(To„ h'J'

is said to hold if the following condition is satisfied . Whenever IS I =a and [S] r =
S(~ -m)1,., then there always exist a set Xc S and a number v-m such that.

either F,_=b,. ; IX I -b„ [X]rc1,l

	

or I -,.=[j

	

~Xl=iv ; I[XI ,II =Jv .

19 . 2. DEFINITION . Let F,, be as in definition 19 . 1 . Then the relation

a --- [Fo „ !-„ ],.

is said to hold if the following condition is satisfied . Whenever I S I=a and [S]''=
S'(v < nz)I,,, then there always exist a set X - S and a number v -In such that

either F,.=b, . ; IX I =6,. ; [X]rl,,= 0 or T,.=[ . j ;, ; IX -= w> [X] rS(Ir ~')1 =J. ..

Our new relations coincide with the I-relations and the IV-relations if all F, - h, .
.lust as in the case of the relations I and IV we shall use the obvious abbreviations
when a number of F,, are equal . Clearly the genuinely new cases in which the new
relations have to be studied are of the following form . Suppose that we know that

and that some of the b,, are finite . Then we replace some of these b,,

by a symbol
1bJ,

and can then ask whether the new relation, now of the form

a (( - o „ F)r, is true. We cannot give a systematic discussion . We are going to
prove only some isolated results relating to cases where either interesting new

pheno-mena arise of where these results help us in deciding the truth of some of the original
relations l or IV .

( -) THEOREM 28. T/ a z~„ and r =3, then

t•7-1

	

'
a I - [ _ ],(a - ),,

PROOF. Put n=co(af) and S=[0, n) . Then we can write [S]°={A o „ ,9„}
For v -- n put

Zv = 'A„ : p -~ v/~ A 1 , c_ [0 . v)} .

Then Z,, __ {A,.,, :

	

for some q,,--v . For fixed v---n we can find, by trans-
finite construction, sets

X(v, o , or) [S] -' for o

	

v and u v

such that X(v, o, u) ,-- A, for o---- q v and 6-=v, and

(1)

	

X(v, Qo, Co)X(Y- oi, 6J)= 0 if (oo . moo) -(oJ> 61) •

Then there is a partition
[Slr = S'(6 --11)I,



such that, for A=-{v o „ r,._, <

	

S and I--a -n, we have .11_1" if and only if

l'o t'r-2 i =X0',.-I , Q- 6) for some cf -- y,.

This partition has the desired properties . For :

l . Let B==

	

S ; [B]''(I,-+1„) ;--3 . Then there are sets X,, X, such
that

	

Xlis

	

[B]' : t-,EX oXI : X o E/QO ; X,EI, : I-a o =a, -1 t . Then Xo -{v,.}=
= X(1',, 20, a o )

	

X I - iv,.l = X(r,., o I . a,) : (oo , co) E(L)I , a l ) . Then, by (1),
(Xo-)(Xl--

	

2(r--1)=',B-iv,.), ,=r which is a contradiction .
2. Let S` - S ; S'', =a+ ; 1 -- aq, _ 17 . Choose A E [S']" . Then A = A,, . for some

v o -n. Then there is r with r o , a o < v - n : v E S A, ) - [0, r) . Then A,,,) C Z, and
hence A,,, -A,., o for some Lfo - (/,. . Then

X(v . _o o . a (,)

	

A,_,, = A,. o -[0 . r)

and therefore X(r • L) o , a o )

	

v ; [S']'1",, . Hence [S']11,

	

and Theorem 28
follows .

REMARKS. 1 . Theorem 19 is a corollary of Theorem 28 .
2. By arguments similar to those used in the proof of Theorem 28 it would

be easy to determine the least j(s) - u,) such that

but We omit this .
In some sense Theorem 28 is best possible . For we have

(2)

( x ) THEOREM

PARTITION RELATIONS FOR CARDINAL NUMB ERS

l f% (s) )'
(a { ),, .

29 . If a \o and r=3, then

We note that (2) is the same as aT
-' ( (1 ` I ~, a

) . The proof is easy and will be
omitted . It follows from Theorems 28 and

J
29 that, for a to and r--3,

(3)

	

a -- (, el-
i

,

(4)

Lemma 5B shows that whenever r = 3 and y,, - , ---(r + 1,

	

1 )" then . for every s .
4

	

( --

	

4

	

)1'+5

The question arises whether such a stepping-up method works for our generalized
relations . By an application of the Ramification Lemma we can step up the relation
(3) and obtain

( ), ) THEOREM 29 A . If' 7--0 and r-3, then

-r1+s
`x+

	

([ 2 +r J
, ~ +1) for all s .
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We omit the proof. The problem whether this theorem is best possible remains
open. We cannot similarly step up the formula (4), i . e. we cannot prove that

Nz+r+s -+' ([r 3+s sI'fix+r)
"+s

not even in the simplest case a= 0 ; r = 3 : s = 1 .
In what follows we restrict ourselves for the sake of brevity to the generalized

l-relation .
Consider the formula

a

where r - 3 and a > á . We mention without proof that if a' is accessible then, by
means of the usual methods, one can prove that the least j for which (5) holds is
again j = 3 the case a > á = N, . The following result covers .

( ) THEOREM 30 . Let a>a' and r-3. Then

+]
(6)'

	

a-

	

r
3 ,, a) " .

	

provided that a'--(a', a')',

(5)

(7) a-~--([r 4
a) .

PROOF OF (6) . Let I S I =a ; [S]" _ 1(0) +'I(1) (partition A ) . Let co (á) =n .
Then, by Lemma 313, there is a set S' = s'(v < n) S„ S such that o IS,! < I S'j =a
for v<n, and A is supercanonical in (5,,, . S„) . This means that there is f(rp „ i•,)<2
such that A EI(f(ro „ r,)) whenever A E[Sly ; {v : AS, . 7- v2) ; = {v o ,, v„ JAS,, =r ;
for % < t .

Case I . l(r, ) „ r,)=1 whenever r o =-+r, = r . Then [S']' -I(1) ; IS'j=a .
Case 2 . There is (rp ,, r,) with f(-,;,, i-,)=0 .
Case 2a . t E { l, r,) . Then, clearly, there is A' F_ [S] s ,) with [X]'c 1(0) .
Case 2b . 1 t -- r . Then there is cr < t with rQ -2 . Choose X, E [S']" ' such

that A oS,' -r, for - E[0,1)-and ', X0 SR j = rQ +1 . Then there are exactly
ra + 1 sets .~ F [X o ]" with jA S,l =rQ , and all these sets A belong to 1(0) . Hence
á[X0 ]"I,I

	

r„+1 --3. and (6) follows .

PROOF of (7) . Let S = i'(1, n) S, : n= o)(a') ; - IS ; = a for v n . Let
A-S; {v : .1 S_1 0, _ {v o ,, ; IA S,. r l,=r, for r _ Put g(A) =(r,r , . r) . Then
there is a partition [S]" = Io +'I, such that

Io = [S]" A : g(A)E i(2„ 2) . (l . 2 ., 2), .

Then, if X,-S and [X]"c I,, it follows that X1 < a. Now let YcS' Y! =1-+I,
g( Y)=(r'o, .

We want to deduce that i.-_4 .
Case 1 . r = 2s. Then s - t s + 1 .
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Case I a. t = s . Then there i s a -- t with rl = 3 and r, = 2 for r a . Then i = 3 .
Case 1 b . t = s + I . Then there is a < t with r, =1 and r, = 2 for r a . Then

= 1 .
Case 2 . r = 2s+1 . Then s+1-t-sá-2 .
Case 2a . t =s+] . Then i 3 .
Case 2b. t = s + 2 . Then i 2 . This proves (7) and completes the Proof of

Theorem 30 .
REMARK. It is worth noting that in the case of the relation (6) the stepping-up

method does not seem to work, and so the following simple problem remains
unsolved.

(-*) PROBLEM 5.
51 .

'R.+i ~([4 too,)

$y

To

Theorem 30,
([41 , t~" )

conclude this section we shall apply some of the results so far obtained
to prove Theorem 26 which was stated in 18 . 10 .

PROOF of THEOREM 26. We are given that a>á and a'->(a' á) 3 , and we have
to deduce that
(8)

3
Let j S ; =a+ . We have, by Theorems 28 and I respectively, a+ ~-(3], a+) and
a+ -;- (a a'+) 3 Hence there are partitions

[S] 3 = Ip+ "ll = JO+ ' Jl
such that
(9)

	

if XE [S] -', then I[X] 3 10 ' < 3,
(10)

	

Cl+i VI13-
(11)

	

aj [JO]3 ,
(12)

	

Cl' + 4 [J1]3 .

We now form the new partition

[S] 3 = Ko +K, +K,

	

(partition d),
where

K,) = Jo -1,, ; K, _= J,-10 ; K,=1o .

We now show that d has the properties required by (8) .

1 . Let [X]3,- K_ Then 'X <a"++ . For suppose that IXj_a'++ Then,
by Theorem 1, 'X ; -~(a'+, a') 1 and hence '',X', -(a' [3])

3 .
There is X'`X such

that either (i) iX'j = a + and K, J, which contradicts (12), or (ü) X''', =4
and 3 - j [X'] 3Kz j = [X']3 10 which contradicts (9) .

11 Acta Mathematica XVI 1 -2

a+ i-[a' - +, a, a+13 .
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2. Let [X] 3 --K2 +K0 . Then IX I -<a . For suppose IX I -a. Then, by Theorem 30,
3

1XI-
4
3 , a , and hence there is X'--X such that either (i) IX'1=4 and 3

~[X'] 3K2 1 _ [XI]3jo 1 which contradicts (9), or (ü) IX'j =a and [X]3 c Ko c::
which contradicts (11) .

3. Let [X] 3 c K o +Ki . Then

[X]3(f0 - I0)+(fl - I0) _ [ S] á _ 10 = IJ

and hence, by (10), JX J < a+ . Our three results l , 2 and 3 prove (8) .

20. FURTHER PROBLEMS RELATED TO THE ORDINARY
PARTITION RELATION I

In this section we shall formulate some general problems concerning partitions .
Here we have no essentially new results . As applications of our results about I-relations
we shall obtain the answers to a number of simple questions and we shall point out
some interesting unsolved problems of a new type.

20. 1 . Let m - l, and let a, a,,, b„ c, be cardinals, for v < m . Let ; S'! =a . If
a-~--(b o „ b,,,)r then there is a partition [S]r = £( v < m)I, (partition d) such that
b y $ [I,,] r for v <m . One can ask the question whether there is a partition d satisfy-
ing h, q [Ij r for v --m and, in addition, having the property that whenever v < m
and X E [S]r, then a, . E [[X]r1J r . The fact that the answer to this question is negative
will be expressed by the relation

r
(1)

	

(ct, coo>> a,,.)
~b,,, b"'j

Explicitly, (1) has the following meaning : if ISi=a and [S]r = 10++I,,,, then
either (i) there is v < m with b, E ['Jr, or (ü) there are v < m and X E [S]" , with
av q [[X]''I„]r . It follows from this definition that the relation (1) is increasing in a
and in each a, and decreasing in each b, and in each c,. . Also, (1) is always true
if there is v with ar -- b,, . We shall investigate the special case when (1) is of the
form

a- r
(2)

	

(a, '1o , 0) -
bo,

+)eo , a

We shall write (2) more simply as

(a, ao)-(bo, ( , o) 1 .
Thus the relation
(3)

	

(a, b)--(c, d)''

means : if j S I =a and [S]r = Io + IL , then either (i) c E [I0]r or (ü) there is X E [S]`r
with b4 [[X]rl o] r . The relation (3) is increasing in a and b, and decreasing in e and
d. The negation of (3) is

(a, b)-(c. (1)r

and means : if ;SI=a . then there is a partition [S]r = I,+I, such that (i) cC [Io] r
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and (ü) whenever X E [S]d then b E [[X]"Io], . . The following remarks establish connect-
ions between our new relation and the ordinary I-relation .

20. 2 . (i) If a -> (c, d)' and b -- i•, then (a, b) (c, d)r .
(ü) If a---(c, do)r and d--(b, (1o)r, then (a, b)-+>(c, d)r .

PROOF of (i) . Let I S 1 =a and [S]r = Io +I, . Then there are two cases :
Case 1 . c E [I0],. .
Case 2 . d E [I I - I,], . Then there is X E [S]d with (XI , c II -Io . Then [X]rIo = 0

and hence bq [[X]rlo ] r .

PROOF of (ü) . Let IS =a. Then there is a partition [S]r = Io +I, such that
cJ [Io] r and do q [I, ] r . Let XE [S]° . Then there are two cases :

Case 1 . b e [[X]'I,]r
Case 2. do E [[X]1I,] r . Then do E [[X]"I,] r c [I,], which is a contradiction . This

proves 20.2 .
As corollary of 20.2 and Theorem I we have for r=2 :

( -*) 20. 3 .
(i) (a, 2) --> (c, d) 2 if a - o and c, d < a .
(ü) (a, b)-+-(a, a) 2 if b-a and a is infinite and not inaccessible .
(iii) (ye a , 2) (Kr(a),s,)2 except possibly when cr (a) >0 and Rcr(a) is inaccessible .
(iv) (zt « ,

	

except possibly when cr (a) >0 and

	

ar(a~ is
inaccessible.

PROOF OF (i) . By Theorem 1, a---(c, d) 2 . Hence the conclusion follows from
20. 2 (i) .

PROOF OF (ü) . Put a = ~, . By Theorem I we have a--(a, ,(a))2 and a (b, N cr (a)) 2,
and the conclusion follows from 20. 2 (ü) .

PROOF OF (iii) . By Theorem 1, '%~,~(

	

and the conclusion follows
from 20. 2 (i) .

PROOF OF (1V) . By Theorem I We have Z~x~l cr(a) a)
2 and

	

(cr(a)> a)
2

e
and the conclusion follows from 20 . 2 (ü) .

The results just proved show that here we get new problems concerning the
relation (3) only if a = d = fit, and cr (a) < a - 1 . Thus we have to investigate the cases

(I)

	

where /1>cf(/1),
and

(ü) a>-a .
In case (i) we have no further results and the following are the simplest of the open
problems :

(+) PROBLEM 6 .
9

	

co+1 , At) - ( a

	

m+i)` .

(~ +I> ~I)~( „, w+r)
2 for 2 -n --

In
In fact we cannot even decide whether R J2 holds for any n < co .
This problem seems to be interesting and difficult . There are many classes of problems
where the first difficulty arises for the cardinal \„+I We shall formulate some of
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these in connection with polarized partition relations . Here we are going to formulate
another unsolved problem belonging into the general field under discussion .

PROBLEM 7, Let tS!

	

and [S]- - I0 -I, , Suppose that whenever
X E [S]'', then R i E [[X] 2 I,] z . Does this imply that fit,„ + E [1,] z

It follows from the definition of the relation (1) that if

f~1 s co+
0- Z~

1

then the answer to the question in Problem 7 is in the affirmative .
Let us return to the relation (3) . We want to consider the case a--a', Here

we have the following results which often allow us to reduce the cardinals which
enter a relation under discussion,

20 . 4 . Let r = I and a, a',

(i) If (a, b) -(c, a) ', then (a', b)--(c, a')',
( ) (ü) if c <a and (a', b) -((-,a')", then (a, b o ) --(c, a)', where b o =b if

either r=2 or b - o , and b o = (b -1)(/-- 1) + 1 otherwise .

PROOF . Let co(a')=n ; SI=a ; N=[0,it) .

PROOF of (i) . Let [N]' =lo +'h ; S = E'(v < n) 5,, ; I SF ,I < I S,j < a for µ < v --r1,
Then [S]' = 10 +' I, , where

10 = E v ({o„ v,_ 1 J < E I 0*)[S,.o „ S,. 1P .,L

Then we have the following cases :
Case 1, cE[I0 ],, Then there is XE[S]' with [X]'--l0 , Put N' _ {v : XS,, 0 ;,

Then I,N'I = c ; [N']' c I* ; c E [Ió], .
Case 2, There is X( [S]" with bQ[[X]'Io],, Put N'={v :XS,. Q'- Then

IN'l =a',
Case 2a, b E [[N']'*I,],, Then there is N" E [N']l with [N

	

10 . Then there
are x, E XS,, for v E N ", Put X' _ {x,. : v E N '}, Then X' E [X]I ; [X']' c 10 ; b E [[X]'1 0],
which is a contradiction .

Case 2b, bg [[N']'I*], . This proves (i) . We did not require ( ) for this part .

PROOF or (ü), Let [S]' = Ió +'I, (partition J). Then, by Lemma 3, there is
a set S' = E'(v<n)S,,cS with c-IS,,I<!5, . -~ S! =a for µ<v--jt, such that d
is canonical in (So „ S„), Choose x,. E S,, for v <n, Then [N]'' = 1O +'Ii, where
10 = l(VO„V,-,'f< : {x," x,, _,J EI0 1 . We have the cases:

Case 1, c E [h], . Then there is N' C [ N]° with [N']' = Io , Put X = Ix,, : v E N'} .
Then ',X =c : [X]'cI. ; cE[10], .

Case 2 There is N' E [N]a' with b [[N']''Io], . Put X = S(v E N') 5, ., Then
jXl=a, Let X' - X : [X']''--IO, Put N'"={v : X'S,.

	

Z,1 . Then

	

0 ; N"1--- N,
and hence N " ; b .

Case 2a. 1X'S,,I -r for vEN",
Case 2a1, b< 0 . Then X' ~ N''(r-1)á(b-1)(r-1)<bo bo L[X]'Io],. .
Case 2a2, b= o , Then X'I-IN"I(r-1)<=b = bo ; bo4,[[X]''10], . .
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Case 2b . X'5,.1 --r for some v E N". Then, since d is canonical, we have
[Sj 'C Io ; I, S,,I -c ; c E [Ia ] . This proves (ü) .
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To prove (i) we notice that, trivially, (a', á+)--(c, a') , . and 20 . 4 (ü) gives the result .

PROOF of (ü) . If (a, a')- (c, a)" then, by 20 . 4 (i), (a', á)- (c, a')" . But this is
obviously false as is shown by the partition in which I I = 0 .

It follows from 20 . 5 that if a- c < a, then the relation (a, b) -(c, a)r holds if
and only if b > a' .

The first unsolved problems arise for a= when á = We have,
by 20 . 5 (ü), (a, a')--(c, a)'- for c > a' . The question is to decide if this is best possible .
By 20. 3 (ü) we have (a', a' - )-t-(á, a ')- and hence, by 20. 4 (i), (a, a' - ) -,-(a', a)2
which does not yet answer our question . The following problems remain open :

?

	

0) 2

for 2-=n < w. By 20. 4 this reduces to Problem 6 .
Consider now the case r=3 . Here we have the following nontrivial results .

The proof of (i) can be conducted by induction on c, and (ü) follows from (i) by
means of 20. 4. We omit the details in order to save space .

By comparing these relations with trivial applications of 20 . 2 we see that the
following are among the simplest problems that remain unsolved .

( X) PROBLEM 8 .

? ( 3~

	

0)~( I,

	

3)3 ,

? ( 2 , 4) --(\, >

	

I) 3 ,

? ( S'
~1) 3 .

Finally we formulate a typical instance of another class of unsolved problems for
r=3 .

( -X-) PROBLEM 9. Let S

	

Does there exist a partition [S]3 = I0 +h
Such that :

0) '1~1i[I,,]3 for r-2 ;
(ii) whenever X' [S]` then there are sets X,, X E - [X]s~ such that [X, .] 3 -- I,

for I , - 2 `'

The following is a corollary of 20.4 .

20.5 . Let r - l and a :-a' . Then

(i) (a, a'+)- a (c, a)r for c-a,

(ü) (a, a')- ;--(e, a)r for c>a' .

(-*) 20.6 . If 3-b<c<w, then

(1)

(ii)

(a+, b) -(c, a+)3

(a, b)-•( c, (i)'
if a -Ao ;
if a >-a' ::- a - .
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REMARK . We know that there is a 3-partition such that (i) holds since, by Theorem
N, ) 3 . Also, the formula to o _( o X0) 3 implies that whenever X E [S]R'

then either Xo or X, exists satisfying the requirement stated in (ü) . But it does not
necessarily follow that both, Xo and X r , always exist simultaneously .

PART 11

POLARIZED PARTITIONS

We are now going to discuss relations of the form

(h
a)

	

lbo, h'I '
which will briefly be denoted by

(b) (b, b r
The commas will be omitted whenever possible . When any of a, b, a,,, b,, are infinite,
we shall always put

a- „ b-a,.- 7 ,, b,,-

It will be shown that if a, b = z~ o then the discussion of the general case can be
reduced to that of the two special cases D(= /t and x l = /i . We shall also discuss
the "relation with alternatives"

(")

	

a o Va,a 3
I?

	

(b o , b,, b z v b 3 ~

which was defined in 3 . 3 .

21 . PRELIMINARIES

21. 1 . DEFINITIONS. Let ST= 0 . We shall write instead of [S, T]r •r , which
was defined in Section 2, the symbol [S, T] . Let

(1)

	

[S, T] = I,+ I, .

Relative to a partition (1) we put, for x o E S ; yo E T ; v <2,

P,,(xo ) = T{ y : {x o . Y'} E I },

Q,( .Y'o) = S{x : (--v .Y . 1, ~ h , } •
Also, [Iv ] denotes the set of all pairs (c, d) such that there are sets X E [S]" and
YE [T]d with* [X, Y] c I , .

First we prove a negative result .

21 .2 . (a) ~-tc(
1 a) for a 0.

P . ERDŐS, A . HAJNAL AND R . RADO

* It will always be clear from the context to which partition (1) these notions refer .
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PROOF. Let co(a)=n ; S={xo„ x„i ; T= fyo,, yn~ ; ST= 0 ;

[S, T] = Io +'I,,
where Io = { {x,, y, .} : y - i, < n} . Let µ, v < n . Then

1Q0(y,)I=1V+II--a ;

	

IPr(x,)1=1EI;<a .

This proves the result . The case a=/1 is closely connected with the theory of set
mappings .

21 . 3 . DEFINITION . Let ISj =a . A set mapping on S is a function f: S-P(S)
such that x q f(x) for x E S . The set mapping is of order p if f(x)j --:p for x E S .
If S'c S then we put f(S')=F(xE S')f(x) . The set S' is called f-free if S'f(S')= 0 .

21 . 4. A set family (A, . : v N) is said to possess the property D(e, d) if
N' E [N]° implies 117 (v' N')A,i <d. We express this by writing (A, : v EN) ED(c, d) .
The set mapping f(x) on S has the property D(c, d) whenever the set family
(.f(x) : x E S) ED(c . d). The property D(c, d) . with a different notation, was intro-
duced in [29], p . 871 . definition (1 . 3) .

For the sake of brevity we introduce the following definition

21 . 5. DEFINITION . The relation

(2)

	

a

	

[[p, c. d- q]]

expresses the following condition . Whenever IS I =a, and f is a set mapping on S
of order p having the property D(c, (1), then there exists a f-free set of cardinal q .
It follows that the relation (2) is increasing in a and decreasing in each of p, e, d, q .
The relation (2), in a different notation, was introduced in [14], p . 281 . We need

( ) LEMMA 7. Let a=a' and IS =a+ . Then there is a set family F=(A, : vEN)
such that :

(i) N 1 =a+ ; (ü) A, E [S]° for r E N ; (iii) FED (2, a) ; (iv) whenever. N' E [N]"
Men S-S(vEN')A,.I <a+ .

COROLLARY. If a =a' then a'. --[[a,' 2, a . a+]] . Lemma 7 is a theorem of
A . HAJNAL [14] . We shall apply it to obtain partition relations, and we shall also
deduce further results on set mappings . Some of the open problems stated in [14]
will be settled . In section 27 we shall return to the theory of set mappings and shall
formulate the simplest problems which still remain unsolved .

As a corollary of Lemma 7 we have

a+

	

a+, a v a+
( ) THEOREM 31 . If a =a' then (a+)

	

a+, 2 v 1
PROOF. Let rt=co(a ) ;

S= rxo ., x ~r= : T= {yo,, y„} ; ST= 01 .

Let the family F=(A, . : vEN) have the properties stated in Lemma 7 . By (i) and
(iii) we can write ,A,. : vEN _ Fo,, F„}

	

Then we have

[S. T] = Io 1-'h

	

(partition I),
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where I, _ {lx,„ y,,} : x,, E F,,} . Then A has the required properties. For let T' E [T]°' .
Put F' _ {F, : y,, ET'; . Then VI =a+ and hence, by (iv), IS- E(y,ET')Q,(y,,)I =
_ IS- S(F,.EF')Fj <a+ . Hence, if S',- S and [S', T']clo , then ~S'j <a+ . On
the other hand, by (iii), Q, (y,)Q, (y,)11 _ ! F', F,., -<a for 11-v--li and, by (ü),
I Q,(y,)I < a+ for v < n. This proves Theorem 31 .

REMARK . If a > a' then the conclusion of Theorem 31 is in general false . We
shall return to this point later .

(-)K) THEOREM 32. If a - o then, putting h =a+, tire have

b

	

bva,bva
('3)

	

b - (avb avb '

PROOF . Let S and T be as in the preceding proof . By Theorem 17A there is
a partition [S]- = Ió + such that, whenever S' E [S]° ; S` E [S- S']b ; ~ < 2,
then [S', S"]I* 0 . Then the partition [S, T] - Ir, defined by

Io = {{x µ , y, .} : ~ .~",~~, x2e+t1 EIó ,

has the properties required by (3), arid Theorem 32 follows .

(*) COROLLARY 16. If a- ,~„ then

(
a
a+ _

,,
(
u
a+

u
a+

We shall need the following theorem of A . TARSKI*.

(*) LEMMA 8 . Let

	

~S~=a ; F=(A, : v(N) ;
v E N. Then

(i) if a' b' then Fu D(a+, b) ;
(ü) if c-_b then FgD(a+F

	

().

N1 =a+ ; A,,E[Sf~bfor

22. POSITIVE RESULTS FOR THE CASES z- fl AND a+1 =/l

( ) THEOREM 33 . If a = %, r, and a, - a, then
Cf

(a+

	

(aa+ a
a , +

.

PROOF. Case 1 . aThe result is trivial for a, =0 . The conclusion would
follow for all a, if we can prove the following more general proposition :

If rf= o ; c<a<b' ; (a)

	

a c
b -' (b b)

(4)
then

	

a

	

a c I 1
(h y `b b )'

PROOF OF (4) . Let ST= L7 ; Si-a; TI-b,

[S, T] - Ia +1, ; (a, b) [[J .

* [l51 p. 211 Theorem 51, and p . 213 Corollary 6 for (i) and (ü) respectively .
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Then there are Xo E [S]" and Yo E [T] 1 with [Xo , Yo ] --I, . Put Y, = Yo -
S(.vES-Xo)P,(x ) .

	

Then

	

[S-Xo .Y,]clo ; S-Xo =a ; Y, <b ;
jS(xES-X0)YO P,(x)! = b ; S-Xoj = a=b', and hence there is x,ES-Xo with
Yo P, (x,) =b. Then [Xo + i-Y o}, YoPI (xo)] I, ; Xo + I I i = c + 1, and (4) follows..

Case 2. a > o . We define az as follows . If a = a' then az =a, , and if a > a'
then a, =a, a'+ . Then in any case . (1 1 a2 -- (I and a2' tea' . Put a+ = b . Let
ST= 0, ;

I S I =a,

	

T' =6 ; [S, T] _ ]o +'1, .

Put To=T,1y : Q, (y) I - (IZ )) ; F = (Q1(y) : yE To ) .
Case 2a . F-iD(b . a2 ) . Then there is T, E [To ]' such that D(y E Ti) Q,(y)I Paz .

Then
[II(y(T,)Q,(y),T,]--I, ; (a,,b)E[I,I .

Case 2b . F E D (b, a 2 ) . Then, by Lemma 8 (i), I To l < b, and hence IT-- To l = b .
Since a2 Vi a, there is a partition S = Z '(µ < m) S, with I Sr, = a for p -:in, where
in =o)(a ; ) . But IQ I (y) <az for yET-To . Hence, given yET-To there is p(y)<m
with S',t,.,Q,(y)= 0 . Then there are a number po <m and a set Yo E [T- TO]'
such that p(y) =Ei o for yEYo . Put Xo -SI, o . Then X0 1 =a : XoQI(y)=0 for
y E Yo , and [Xo , Yo] Io ; (a, b) E [I0], and Theorem 33 follows .

Our next theorem is now almost trivial .

THEOREM 34. Let c ~o a. Then (a+) _(a c)

PROOF . Let this be true for e = c o < Ro, It suffices to deduce that it holds
for c = co +l . Let ISI=a ; ITI =a+ ; ST= 0 ; [S, T] = I0 +I, ; (a, a + )j[10] .
Then there are sets S' E [S]" ; T' C [T]"- with [S', T] --I, .

Case 1 . 'IS'Q,(y)I <a for yET-T' . Put

T(ao) _ (T- T') {Y : Í S Q,(y) = ao } for ao - a .

Then there is ao --a with IT(oo);=a+ . We can write S' = S'(µ<m)Sµ , where
m = co (ao) and I Su ; = a for fi < m . If y E T(ao) then I S'Q,(y)I = ao < jm„ and hence
there is ji(y)<m with S„t,.~Q,(y)=

	

Then there are YOE[T(ao)]°' and po<m
with µ(y)=µo for }'E Yo . Put X,=Sµ0 . Then X0 Q, (y)=Q~ for yEYo , and
[Xo , YO ] ,- I0 ; (a, a+)E[I.] which is a contradiction .

Case 2 . There is yo ET-T' with j .S'Q,(y o )I =a. Then

[S'Q,(y'o) . T'+ iyoi]--I, ; (al. co+1)=[I,],

and Theorem 34 follows .

LEMMA 9 . Let f(_v) be a set mapping of order p on S . where ;Sj = a

	

o and
p - a. Then there exists a f-free set of cardinal a .

This lemma was first proved by P . ERDŐS using (-x-) . It can be proved without
assuming (--) . See [16] and [17] .

A corollary of Lemma 9 is

THEOREM 35 . If a ~o and b, < a, then (a) (ar b,
) ,
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PROOF . Let n=a)(a) ; S={x o „ x„}, ; T-{y o „ y„} # ; ST- 0 ; [S, T] = I0 +'I, .
Assume that (1, b,) j [I, ] . Define a set mapping f on [0, n) by putting

.f01) _ ([0, 11) - {µ}) {r : y, E P,(x',)} for µ < n .

Then Lf(p)I - ÍP,(xµ)I-b, for f«n, and by Lemma 9 there is a f-free set
N E [[0, n)]" . Then y„ ~ P,(x„) for It, r c, N' and hence [{x„ : p EN}. {y, : v E N}] Io ;
(a, a) E [lo ], and Theorem 35 follows .

(->K) THEOREM 36 . Let a=a' and d+ --a . Then a, -[[a, a, d, a]] .

PROOF . Let this be false. Then there is a set mapping f of order a on a set S,
where ISI =a, such that fED(a, d) and, at the same time, there is no f-free set of
cardinal a . Put n=w(d+) . We define sets So „ 5,, . Let vin, and let So „ S,,E[Sya .
We now define S, . Put S* = So + + S, ; Sv * =f(S*) . Since a - a' we have I S* <a
and 1Sv* <a. Hence S v = S-(S*+S**) 0 . Let S,, be a maximal f-free
subset of Sv . Then I - I Sv ! < a and SF,Sv = 0 for p < v . This defines So ,, S, Put
S* = So ++S„ and S**=f(S*) . Then !S*j-Int d+ . Also, since In! <a, we
have !S*-ES"!-a, Put T = S-(S*+S**) . Then ;T !,=a . Let xET. Then, by
the maximality of S, . we have f(x) Sv - 0 for r < n . Hence, for x E T.

j(x) S * ' =X(r<n)I.f(x)S,.I~d+ .
Put S*I-C .

Case 1. e+--a . Then {f(x)S* :xET}1-21s*l=e+<a . and there are a set
T' E [T]" and a set A E [S]'-d' such that f(x) S* =A for x E T' . Then

11 (XET')f(x)S * I = Al mo d+

which contradicts the hypothesis f E D (a, d) .
Case 2 . C+ -a. Then c' =a. Consider the family F=(f (x) S' : xET) . Since

fED(a, d)=D(c+, d), we have FED(c+, d) . On the other hand an application of
Lemma 8 (ü), with a, b, c, S, N in the Lemma replaced by c, d+, d, S* . T respectively.
yields Fq D(c+, d) . This contradiction proves Theorem 36 .

(+) THEOREM 37 . Let a= á. Then

(i)

	

a -- [[a, a, d, a]]

	

for d < a ;

(ü)

	

a1--[[a, a, 1, a'+]] .

Part (i) can be deduced from Theorem 36 in the usual way by means of Lemma 3,
and part (ü) is established by means of a trivial "canonical" counter example . Since
Theorem 37 will not be used in our discussion we omit the proof .

(+) THEOREM 38 . If a

	

o and co, c,+ tea, then

(a) (a, e J v a )

PROOF . Let n=o)(a) ; N=[O, n) ; S={xo „ x a}, ; T={yo „ ya }

	

ST= ;
[S, T] = Io +'I, .



Case L a= a' . We define set mappings fo and f, on N as follows .

fo(v) _ [0, v) {µ : xµ E QJYv)J

	

for v < n ;

f, (1I) _ [0, FI) iv : Y, E P,(xµ ) I

	

for µ < n .

Then fo and f, are of order a.
Case la . f0 D(a, co) . Then there is N' E [N]° with 11(v (N')fo (v)I =co . Put

X'=n(vCN')Q,(yv) and Y'={y,, : vCN'} . Then [X', Y']cl, ; X'J~co ; IY'I=a ;
(co • a) E [I I I •

Case lb . f, , D(a, c,) . Then, by symmetry, (a, c,) E [I,] .
Case lc . f, E D(a, c,) for ;- 2 . Then, by Theorem 36, there is a set No E [N]°

which is fo -free . By applying Theorem 36 to the set mapping Nof,(p) we obtain
a set N, E[Nj" which is both fó-free and f -free . Let N, ={% o „ %„', ; X=

{x,,2µ : I t III ; ) ={ y~. ,,, : v--II} . Let x. EX and y,E Y . If u r then a .fo(T) ;
x, f-, and if (Y =T then i< (T ; -i ~f,(o) ; y, al',(x,) . In either case, {x, y,}E I0 .

Hence [X, Y] c Io ; (a, a) E [Io] .
Case 2. a > a' . Let o = co (a') and

By Lemma 3A there are sets SQ , T, and numbers h (a, r) -2 such that £'(6 < o) SQ c S,
I"(a-o)T,,-T ;

SQ I ='TQ ! = a,

	

for a- o,

and
[SQ , T,] ci I,,, )

	

for u, c -- o .
Let

W= ( Ia • o „ 11'„i ; UW= 0 .
Then

[U, W] = Io +'I1
where

to - ,ua , Ir,, : h(6, T) op

Since a is regular we have, by case 1,

a')

	

, cí v 1a'-(a'

á, 1 va')'

Then there are the following cases :
Case 2a . ((I', a') E [I (;] . Then there are sets Uo E [U]u' and Wo E [ Wl

	

with
[Uo . Wo]=1ó . Put Xo =E(u„EUO)S, and Yo =Y(ir,EW,)T, Then
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co,c, ~- ao- --a „ <a = sup (u < L»,1, .

[Xo, Yo]Clo ; IX,I=IYoj = a ; (a,a)e[I,] .

1?1

Case 2b . (a', 1) E [IN . Then there are a set Uo E [Ul and an element w,,,E W
with [Uo , { Ir, o }] ch. Put Xo =Y(u, E Uo) SQ and Yo =T,,, . Then [Xo , Y01--I, ;
!Xol=a ; iYol=a o _ej, (a,c,)E[h] •

Case 2c. (1, a') E [I I ] . Then, by symmetry, (c,, a) E [I,] . This proves Theorem 38 .
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( ) THEOREM 39 . If a

	

o then

a

	

a,a+va
(a+)

y
(a, a /a+

PROOF . We shall deal with the cases a=a' and a>a' simultaneously . Put:
e=(Aa') ; n - u)(a) : m=w(a + ) . Let XO Yp =O ; Xoi=1Yo1=a+ ; [X0, Yo] _
= Io +'I, . We assume that

(a+, a), (a, a+)~ [h]

and we shall deduce that (a, a) E Vo l . If a > a' then we choose ao „ c ,_, with a, = ate
for o- , o and
(6)

	

<ao<--_(F,,-a = sup(6-o)a,
If A E [X0 ]° and B= [Yjl - , then

[A, B

	

(x E A) P0 (x)] -- I,
Hence, by (5),

(7)

	

iB-Z(xEA)Pjx)j

	

a.
By symmetry, if A = [X0]u' and B E [Yo]°, then

(8)

	

JA - 2:(yEB)Qo(y)j ` a .

Now let
A E [X,,]°; BE[Yo]°' , á -<p =p'< a .

We shall show that there are a set A*CP(A) and a function U(X) from A* into
P(B) such that
(9)

	

iA*! Via ;

(10)

	

A-,-- [A] p .,

(11)

	

[X, U(X)] --Io for XEA* ;

(12)

	

~B-(XEA*)U(X)j - a.

This is a generalization of Theorem 33 for the case a > á. In the proof that follows
we cannot apply Lemma 8 directly but our proof is based on the same ideas as
Tarski's proof in the corresponding case .

Put Y, - B y : 1 AQo(y)! Bpi and Yz = B- Y1 . If we assume that j Y,', -a+

then, since by Theorem 34 (a+) (~1 (Ij it follows from [A, Y,] c to +I, that
either (a . 1) E [[A . Y,]IO] which contradicts the definition of Y,, or (a, a+) E
E [[A, Y,]I,] which contradicts (5) . Hence I Y,~--a . There is a partition A -
=2:'(u -o)AQ with 'A Q =a, for 6-0. Put A* _ 2:((7<o)[AQ]n . Then A*j
-~2:(a-0)aá=a, and (9) and (10) hold . We put U(X) = Y,{y : VcAQ,(y)} for
XEA' . I f, now, p c Y, then there is X E Al with y E U(X). For otherwise A,Qj y) I < p
for Q - n and, using the definition of Y, and the fact that ;oj =a'-p --p, we obtain
the contradiction p -' I A Qjy)I = Z((7 -o)IA,Q,(y)l < p . This shows that Y, -
= r(X=A`) U(A'), and (11) and (12) follow . By symmetry we have : if A E [X,J ]°' ;



PARTITION RELATIONS FOR CARDINAL NUMBERS

.BE [Yj ,, ; a'-p

	

then there are a set B" --P(B) and a function V( Y) from
B* into P(A) such that
(13)

	

1B*I <a ;

(14)

	

B* -- [B]P ;

(15)

	

[V(Y), Y] -10 for Y- B* ;

(16)

	

IA -2~(YEB*) V(Y')j - a .

Let X0 =ixo ,, .x- } ; Yo = {Yo>,y,ri$ S=[O,rn) . For X~- X0 ; Y- Y,; S'_S
put M(X) _ '111.x1,EX } ; M(Y) _ {v : y,EY }- ;

X(S') _ {x, : EI E S' J ; Y(S') _ k, y, : v ` S' ; .

We now define a ramification system R on S of length t) and order n . We use
the notation of Lemma 1 . Let a-o. We assume that for r-a and I,,- :~ n the
sets F(vo „ vj and S(v o „ v) have already been defined . Now let I, 0 ., v, <n. We
have to define F(r (,,, vQ ) and S(v o „ v,) for v, < n . Throughout the rest of the whole
proof we abbreviate, whenever possible, the sequence v o , . v Q to the single letter v .
If I S'(v) ; a then we put F(v) = S'(v) and S(v, v,) = 0 for v, < n . Now let I S'(v)l =a+
We recall that ordinals of the form 27 are called even and those of the form 2; -E-1
odd .

Case 1 . a = a' .
Case 'la . of even. Then we choose

R,(v) = ix (v, v,) : v„ =ni # [X(S (v))1
Put

E, (v) = Y(S'(V»-E(V,-11)Po(x(V . v,)) ;

R(v) _=_ M(R,(v» ; E(v) = M(E,(v» ; F(v) = R(I,)+E(I,) .

Then S(v) - F(v) _ (v, -n) S(I,, v,), where

S(v, I ,,) _ S'(v) IV(PI,(x(v, V,») - F(v)

	

for v,-n .

This follows by a straightforward application of the definitions given above .
Case I b . 6 odd . Then choose

RI(v) = {y(I,,v,) :v,-nJ#(-[Y(S'(v))1a
Put

E I,(l') = X(S (v)-2: (vQ<11)QO(), (1' . l a )) ;

R(I,)

	

N1(R,(v» ; E(v) _ 41(Eo(v» ; F(v) = R(v)+E(v) .

Then S'(v)-F(v) = 2;(i,,-n)S(v, v,), where

S(v, I',) - S'(v)v,)))-F(v)

	

for v,-n .

This follows by symmetry from case 1a .
Case 2. a > rl .

173
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Case 2a. a even. Then choose R,(v) E [X(S'(v))] . Let*

A* (v) _ {X(v, v,) : v, -- n}

be a subset of P(R,(v)) and U(v, X) a function on A*(v) such that (9)-(12) hold
for A*=A*(v) ; U(X) = U(v, X) ;

A=Ro(v) ; B-Y(S'(v)) ; p=a, .
Put

E, (v) = Y(S'(v))-E(VQ<n) U(v, X(v, v o)) ;

R(v) = M(R O (v)) ; E(v) = M(E,(v)) ; F(v) = R(v)+E(v) .

Then S(v) - F(v) = E (v, -z n) S(v, v.), where

S(v, vim) = M(U(v, X (v, v j)) - F(v)

	

for vQ < n .

This follows from our definitions .
Case 2b . a odd. Then choose R,(v) E [Y(S'(v))] Let

B* (v) _ {Y(v, v,) : v Q <n}

be a subset of P(R,(v)) and V(v, Y) a function on B*(v) such that (13)-(16) hold
for B*=B*(v) ; V(Y) =V(v, Y) ;

A=X(S'(v)) ; B=R,(v) ; p=a, .
Put

EO(v) = X(S'(v))-E(v,<n) V(v, Y(v, v,)) ;

R(v) = M(R,(v)) ; E(v) = M(E,(v)) ; F(v) = R(v)+E(v) .

Then S'(v) - F(v) = E (v, < n) S(v, v,), where
S(v, vQ ) = M(V(v, Y(v, v,)))-F(v)

	

for vQ <n .

This follows by symmetry from case 2a . We have completed the definition of the
ramification system R on S and, irrespective whether a =a' or a > a',

(17)

	

R is of length Q and of order n .

We now define for vQ < n a set f(v, vQ) c R(v) . If I S(v) 1 a then we put
f(v, v,) = 0 . Now let IS'(v)I =a+ .

Case 1 . a = a' .
Case Ia . a even. Then put f(v, vQ)=M({x(v, vQ)}) . Then

f(v, v,)cM(R,(v)) = R(v) .

Case lb. a odd. Then put f(v, vQ)=M({y(v, v,)}). Then

f(v, v,)-M(R,(v» = R(v) .
Case 11 . a > a' .

* There is no risk of confusing the function X(S') defined for subsets S' of S, and the function
X(v, v a) defined for sequences vo „ v,, . Similarly later with Y(S') and Y(v, v,) .
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Case Ila. a even . Then put f i, , va)=M(X(v, v,)) . Then
f(v, vo) c M(R O (v)) = R(v) .

Case Ilb. o odd . Then put f(v, vQ)=M(Y(v, v o)) . Then
f(v, v .) c M(R,(v)) = R(v) .

This completes the definition of f(v, v Q) for o < o and v o „ v Q <n . We have in any
of our cases

For in case l this follows from (7) and (8), and in case 2 from (12) and (16) . Now
we have, using (17), (18) and (19),

1ST=a + ; Io1 <a + ; in1 <a + ; IF(v)l<a+ .

Hence Lemma 1 (v) applies to R and yields numbers v o „ v,<n such that

17 (a < O) S(v, i,,)

	

0 .

From now on v o ,,

	

are fixed . Put Z,=f(v, v Q) for Q<o ;

S o = {2T:T<o} ; S, _ {2T+1 :i<o} ;

X* = S(6 E SO)X(Za) ; Y* = S(6 ( SI) Y(zQ)-

To complete the proof it suffices to show that

(2D)

	

X X E [Xo]° ; y, E [Yo] ° ;

(21)

	

[X', Y - 1- 10 .

PROOF OF (20) . Xx X o :, Y-c Yo . By Lemma 1 (i),

R(ro_ i,,)R(vo_ v r) = 0

	

for 6-zT<o .

Case A . a=a' . Then IZ j _ f(v, vj = l and hence

X*i=1So !=a :

	

Y*1=IS i 1=a .

Case B . a > a' . Let a < o . If cr is even then, by definition of f(v, v Q) and (10),
Z,1 _',M(X(v, a,, and if a is odd then IZQ ! _ ~ M(Y(v, v,# = a, . Hence
X* ==S(QES,)a,=a ; Y*i=S(gFA)a,=a .

PROOF OF (21) . Let a E So , T E S, . Then a ~T . It suffices to show that

(22)

	

[X (7- o ), Y(Z,)] c 10 .
Case 7 . -=T . Then

Z . = h(I'o>> I',)'--R(~'o

	

I'r)

	

S'(i'o„ vr)`S(vo,, va) .

F(v) = R(v)+E(v) ; f(v, v,)cR(v)
and, by definition,
(18) 1 R (v) I -- a .
We also have
(19) E(v) I -- a .
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Case Y 1 . a = a' . Then

[X(Zl), Y(Z1)1 [(x(r, v"), Y(S(r'" VQ))] c [{x(r l' V' ) j Y(M(Po(x(l' . I!,))))] _

R (i', VQ)i, Po(a(v, V'))1 _I0 .

Case 7.2 . a>a' . Then Za =ELI(X(v, v,)) and

S(v, VQ) c M(U(v, X(v, V,))) .
Hence

Y(Z,) c Y(S(v o „ v Q)) c U(v, X(v, VQ )) .

But X(Z")=X(v, v,) . By (11), when applied to A*(v),

[X(Z,), YVA C- [X(v, v"), U(v, X(V' t"))] c Io .

This completes the proof of (22) in case x .
Case fl. r - o. Then (22) follows exactly as in case x, for reasons of symmetry .

This proves Theorem 39 .
As an immediate consequence of Theorem 39 we have

( * ) COROLLARY 17 .

(a+)
(a a'a a) for a - a .

In [1] it is proved that (N °) - ° No) . Using ( ) we shall now prove the following
generalization of this result .

( ) THEOREM 40 . If a'= a then

(a ) (a+ X0)

PROOF . Let ;A'j = a ;

	

r+ ; AB = 0 ; [A, B] = to -1, .

(a, a+) E [Ij

In the proof that follows we shall always suppose that A,, E [A]" and B, E [B]" . We
can write a == a o ++á,,, where ao ., á,,<a . We define inductively D,., 8,, . A,., v,v
for v - w as follows . By Theorem 33 there are Do E [A] and Bo B with [Do , B„] _ I, .
By Theorem 34 there are A, (7:A and y o E B o with [A 0 , { yo }] c h . Generally, for
1-v<co : By Theorem 33 there are D,,E[A,,_r]"- and B,_B,,_i-',y, . ,f with
[D, .Bj cI t . By Theorem 34 there are A,, A,._, and y,. E B,. with [A,,, { y,. f ] c 1, .
Put X = D o

	

D,, ; Y= i y'o • • Y i . Then XE [A]" and Y~[B] 1 0 . If r s then
[D„ {y,f c [D r , B,] ,- [D,, B,.]cl, . If r• -s then [D,.,

	

[A ., .

	

11 . Hence
[X, )']c-- Ii , and Theorem 40 follows .

( ) THEOREM 41 . If a > cl and b -_a . then

(
a
a

as
(a h



PROOF . We may assume that a'< b = b'< a . Put o =o)(a') . Let b < ao < < <
-<a = sup (u<_Q)a, ; a Q =aá for 6<0.

XO Yo =

	

jXo =a ; I
Yo =a + ; [X0, Yo] = Io +'II .

We may suppose that
(23)

	

(a, b) E [II ] •

Now let a'< p = p'< a . Let A E [X0 ]° and B E [Yo ]° . Then there are a set A* c P (A)
and a function U(X) from A* into P(B) such that

(24)

	

IA* I--a ;

(25)

	

A* c [A]n ;

(26)

	

[X, U (X)] c Io for X E A` ;

(27)

	

IB-f(XEA*) U(X)1 -- a .

The proof is identical, including the notation, with that of (9)-(12) in the proof
of Theorem 39 . We now define a ramification system R on S= Yo of length Q and
order n=vo(a) . Let (7-<:Q and v o „ v, <n . We write v in place of v o „ v. .

If j S'(v)! -- a then put R(v) = q and E(v) = F(v) = S'(v) and S(v, v,)= 0 for
vQ < n .

Now let 1 11 S'(v)j =a+ . Then we choose any set R(v) E [S'(v)] ,, . Then there are
a set AI(v)`P(X0 ) and a function U(v, X) on A*(v) such that (24)-(27) hold for
A=Xo ; B=S'(v)-R(v) ; A*=A*(v) ; U(X) =U(v,X) and p=a, We can write
A* (v) _ {X(v, v,) : v Q < n, . Put S(v, vQ) = U(v, X (v, v,)) for v Q < n ;

E(v) = S(v) - S (v, < n) S(v, v,) ; F(v) = R (v) + E(v) .
Then

S'(v) - F(v) = S (v, < n) S(v, v,) .

This defines R . Lemma 1 (v) applies . For we have ISI=a+ ; o1 = a'<a+ ;
jn1 = a<a+,

F = R+(E-R)1= IR+((S'(v)-R)-S(v,<n)U(v,X(v,v,»)

fR1+1(S'(v)-R)-E(XEA*(v»U(v, X) 1

	

a .

By Lemma 1 (v) there are v o „ n„ <n with S'(vo „ v„) 0 . From now on v o „ o
are fixed . Let a < L). Then S'(v)j =a+ . There is a one-one map

x- H(v, X)
of [X,111- onto [R(v)]°- . Put

f(a) =H(v, A'(v, v,» .

Then ,f(r» E [R (v)1- . Put Aa =X(v, v,) ; 8, =.f(6) ;

A = A o ++A,„ B = BO ++B,, .
Then
(28)

	

A E [XO] ° ; B E [)" o ] ,, .
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If u < r < (L), then Bt - .f(r) `- R (vo,, vr) 7 S (v o „ v i ) ` S (v, v,) . By (26), [X(v, ti a),
U(v, X(v, v,))] C I, . Hence
(29)

	

[AQ, Br ] c Io for cr - r < o .

By Lemma 3A there are sets Aá E [A]"- and Bá E [B]°- and numbers h(Q, r) < 2 such
that AA', = BáBí = 0 for a -- r < o, and

(30)

	

[Aá, Bí] -I,,( ,,, ) for Q, r < o .

Let MO = {uO ,, ű„}

	

11111 = 1 1 - 01, ú„}, ; MOMJ = 0 ;

(31)

	

[MO , M,] = Ii +'I*,
where

Iá ={{uQ , r,} : h(Q, r)=0} .
By Theorem 38,

(a'l _(a, á v 1
a J

	

la , 1 v a'

By applying this formula to the partition (3l) we see that we have only to consider
the following three cases :

Case l . There are M E [[0, o)] and ro < q such that

h (Q, r o) = I for 6 E M .

Then, by (30), [A" Bí,,] 7, , where A" = E (a r M) Aá . Then IA '"I = a ; (a, a,,) E [Ij
which contradicts (23) .

Case 2 . There are o-O < _o and .4f E [[0, o)] such that h (u O , r) = I for r EM.
Then [Aá,,, B"'] - I, , where B" = E (r C 11) B' . Then I B"! = a . Choose zo E A,, . Then
[{zO }, B"] - I, . Also, there is a, < o such that z O E AQ , . Hence, by (29), B" - BO + + B,
and we obtain the contradiction

a = B°

	

'BO + + B,, i = ao + + a,, a .

Case 3 . There are sets M', M" E [[0, L))]`' such that

h(a, r)=0 for a EM' and rF_M

Put A° =1(6 E M")A, and B° =1(r E M") B . Then A"--[XI"; B° E [Yo]°; [A", B],-
-1, . This proves Theorem 41 .

( ) THEOREM 42 . If (t'= O then
a
(a})

_(a
a
s
a

PROOF . If a= \o the assertion follows from Theorem 40. Now let a > O so
that a tea' _ ',~ O . Let I S) =a ; I T I =a+ ; ST= 0 ; [S, T] = I o +I, . The letter A
will always denote subsets of S and the letter B subsets of T. Assume

(32)

	

(a, a) ; [] o ] .
Let

a,, «a <,~Cí = a,++a <,, : IAI=a ; IBI=a - ; n- )) .

Then, by (32) and Theorem 33, there are A', B' such that

(33)

	

9' _ [A]"" ; B' E [B]

	

[A', g] ,- h .
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By (32) and Theorem 41, there are A", B" such that
(34)

	

A„
E

[A]n ; B„ E [B]Q„ ; [A„ B°] h .
We now define inductively for n < co the sets

A n , A n , An, A n , Bn , B n , B n , B n -

Put Aó = S; B** =T. Let n < o), and suppose that AV and B* have been defined for
v n and that Av , Av, A,,, B,,, B', Bv' have been defined for v<n. Suppose also
that IA*n l=a and 1Bn1=a + . Then, applying (33) to A=A* and B=B,*, we find
A„ and B„ such that
(35)

	

An E [An °", Bn E [Bn]n+, [An', Bn] CI, .

Applying (34) to A= A*,, and B=Bn, we find A„ and Bn such that

(36)

	

An E [An l° ; Bn E [Bn]°° ; [A n, Bn] c II .
Put
(37)

	

An = An ; Bn= Bn ; An+, = An ; B ' I = Bn •

This completes the inductive definition . We have, for n-co,

(38)

	

An DAn+1 ; Bn DB,+I ; IAnl=a ; IB,I =a+ ;

(39)

	

AnI = IBnj =an .

Put A = Ao + + Á1, and B = Bo + + Bw . Then, by (39), IA I = IB I = a . Let m, n - w .
It suffices to prove that
(40)

	

[An„ Bn] C- II .

If m-n then, by (37), (36), (38), (35),

An,=An ; Bn=BncB,,=Bn+IcBm+I = Br,, ,,,

[A,n , Bn] , [Am Bm] C II .

If in > n then, by (37), (35), (38), (36),

Bn =Bn ; An,=A,'n-AncA,+I = An,

[Ann, Bni] C [An , B,] C II .

This proves (40) and completes the proof of Theorem 42 .

23. COUNTER EXAMPLES FOR THE CASES 7=/3 AND x+1 = Q

) THEOREM 43 .

(i) If a'> ~, then

(ü) If a'= 0 , then

a, ava

(

a

	

-
a+

	

o v 1

aa++)_,_(aa,+,
2 v1 1

)

.
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( -) COROLLARY 18 . If a'> o , then

(a+) + (a+ `o ) and

( ) COROLLARY 19 . If a'= 0 , then

(a+) -(a+ z ) and

a
+a )

u

	

a a
(a+

	

(a+

	

)z

PROOF OF THEOREM 43 . Put m=o)(a) and n=co(a+) . Let

ST=0 ; ISI =ITI=a+, T={yo„yn}# .

By (*) we can write [S]a={X0„X„}# . Put F,={Xo „X,} for i7-n . We shall
define a partition [S, T] = 10 +'1, by defining the sets Q, (y,) for v<n. First we
shall define elements x (v, u) of S for v < n and a < m . Let v < n and suppose that
x(µ, a) has been defined for p - ::v and u <m . We have to define x(v, a) for am.

If v < m then we choose any set

(1)

	

{x(v, 0)„ z(v, m)} # C S-~(µ < v) {x(µ, 0)„ z(µ, m)1 .

Now let vi--m. Then we can write [0,v)_ jp(v, 0)„ fi(v, m)}, . Put XA,(,,,«-X(v, e)

and yf,(,,,)-y(v, o) for o<m. Then F,={X(v, a) : 6<m} # . We now define x(v, 0)„
z(v, m) inductively. Let 6<m and, let x(v, 0)„ (v, a) be defined already . Put

(2)

	

T(v, a) _ {x (v, T) : T < u} + S (e < a) {x (u (r, e), T) : T u

Then
(3)

	

I T(v, 6)I

	

161 + I6 + 1 161 < a .

Hence, since IX(v, Q)I =a, we can choose

(4)

	

x(v, a) E X(v, a) - T(v, o7) .

This completes the definition of the x(v, o-) . We now put

Q(y) _ {x (v, a) : a <m; for v <n .

By (1), (2) and (4) we have

(5)

	

x(v, i) x(v, a) for v <n and i « <m.

Also,

(6)

	

Qt(yv) S; I QJ (y,) I = a for v < n .

We now prove that

if A 0 E [S]° and Bo E [T]", then [A0 , Bo] ~:- to

There is [t o <n with A, = X,,,) . Then, since IBo l=a+, there is vo such that

m,µ0-i,0--::n, and _v,. E Bo .

Then Xµo CF,, and hence X, a =X(vo , 6 0 ) for some 60 <m. Then, by (4), x(vo, 6o)E
EX(v o , ao ) . Also, x(vo, (j0) E QJ(y,,) . Hence ix(v 0 , ao), y,• o } E [A o , B 0]h, and (7)



follows. Next, we prove that

if Ei <

	

then there is o (li, v) < m such that
(8)

	

whenever u > Q (p, v and x (p, T) = x (v, u), then i > 6 .

In fact, if t , in then we may put o (u , v)=0. Now let v-m . Then µ=µ(v, o o ) for
some o o -m . We put o (it, v) = g o . Then, if T - o we have, by (2), x (µ, T) _

= x(II(v, o o ), T) E T(v, a) and, by (4), x(µ, T) #x(v, 6) . This proves (8) . In view of
(6) and (7) the parts (i) and (ü) of Theorem 43 follow from (9) and (10) respectively,
where :
(9)

	

If a'> o and BE[T]"o, then 1(yEB)Q,(y)I <a •

(10) If á=R, and B' E [T] , , then i!I (y E B') Qj y) I < a .

PROOF OF (9) . B= ,

	

y,,,}, where vo < < v I <n and 1 w . Since a'> Ro,
there is g o -m such that

(11)

	

o(I'p, v,,)<o o for p-q-w.

Let xC17(p<(o)Q,( ),,.p) . Then there are u p <m with x=x(vp, u p), for p<w. If
60„ Qw > g o then, by (8), c o > ő. which is impossible . Hence there is po -< a)
with up .-o o . Then xE{x(vpo , a) : a-o o } and hence

III (p-(o)Q1(y,

	

Í1(p<w) ix(vp, a) : u`=oo}I n 1o o +II o <a .

This proves (9) .

PROOF OF (10) . Let (to«á,,<a = sup (p<(0)a p . Put

f(o) =min ((9(a,,)> q) F for o < m .

Then f(o) < w and o < w(a f( „ E) for o < m . We have

[B'}~ = E(~ <w)I**

	

(partition d M),
where, for J. < w,

II<v<nily,,,y',.EBVj(o(II,v))

By Theorem 1, ~, -(~ o) „ . Hence there are a set BE [B'] o and a number <w
such that [B] 2 -I;. . We have B={y,, o ,B where I--w and v o < < v, <n. It suffices
to prove that 117(p-o~)QI(y,,p)~<a. By definition of I we have

f(o(vp, v,))=J. for p<q<w.
Put

	

Then
o(I'p, "q)<w(af,,:IvP .,y,))=w(aa)=oo

for p < q < w . From here on the proof of (10) is identical with the proof of (9) from
(11) onwards . This proves Theorem 43 .

REMARK . In the proof of (ü), more precisely, in the proof of (10), we used the
relation z-i(~o) 2

	

_2~ although by Theorem I the stronger relation R z (R I ) ~ holds .
But in spite of this our proof does not in fact establish (ü) with z replaced by i
since by Theorem I, and we cannot prove any special property of the
partition d * which would lead to the sharper result .
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( ) 24. SUMMARY OF THE RESULTS ABOUT THE CASES a=/i
AND a-f 1 = /3. PROBLEMS

Throughout this section (*-) is supposed . We use the notation introduced at
the beginning of Part 11 . We shall always assume that

a_=b ; 0-ao , a, -a ; 0<bo , b, mob .

Case l, a+ =b . We have to discuss the relation

(1)

	

(a+)

	

(ho b,)
where a Z o .

Case IA . min (a o , a,) <a . Then (1) holds by Theorem 33 .
Case I B . a o = a, =a .
Case IB (i) . coax (b o , b,) =a+ . Then it suffices to discuss the relation

(2)

	

(ú+ ) (a+ b,)

Here we have the following results :
(2) is true if a'> o and b, < o (Theorem 34)
(2) is true if a'= o and b, _ o (Theorem 40)
(2) is false if a'> s~ o and b, _ o (Corollary 18)
(2) is false if a o and b, =a' (Corollary 16)
(2) is false if a'= o and b, _

	

(Corollary 19) .
We do not know if (2) holds when a a' _ o and b, _ , . Here the simplest
unsolved problem is

PROBLEM 10 .

q

	

w

	

\/I

	

r

	

co

Case iB (ü) . bo , b, <a+ . Here one might conjecture the following best possible
result

(3)

	

(a+
) (b al

for a = o .

We distinguish three cases

	

J

:
Case IB (ü) a . a'= o . Then (3) holds by Theorem 42 .
Case 1B (ü) b . a~- a'> o . Then Theorem 41 shows that the following result,

which is weaker than (3), holds :

(a+) (a b,) for b, < a .

We do not know whether (3) holds for any a with a > a'> o . Here the simplest
open problem is :



PROBLEM 11 .
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Case 113 (ü) c . a = a'> ;, . In this case we only

remark. If, for some b--a and some bo , b F --b, we have (b) _( n al)b ), then (a + )
-~

(ao a
bb,. Here the simplest unsolved problems are :

PROBLEM 12 .

183

have the following trivial

Case 11 . a= b . Here the problems are more ramified .
Case IIA . a=a- . First of all, let us consider relations without alternatives .

We assert that

(4)

	

(a) (bo b,)
holds if and only if
(5)

	

min (ao , b, ) < a and min (a, , b o) < a .

In fact, if (4) holds then, by 21 . 2, the condition (5) follows . Now, vice versa, assume
that (5) is true. To deduce (4) we have to establish the following propositions :

In fact, (7) follows from Theorem 38 . We shall deduce (6) from Theorem 44 which
will be proved in section 26 .

From Theorem 38 it is clear that in the case under discussion the only genuine
problem for relations with alternatives is that of deciding the truth of the statement :

(al

	

a, a v a,
b 1
y a. b i v a ) for aF . b, < a.

and again Theorem 38 shows that this statement is true . Thus case 11 A is settled .

1) 9 I

2)
(~3)

9 2 2

2

)

2 ~2

2 1 2J3

REMARK . We know that ( 2)

X3)

(~2 ~2) since in fact, by Theorem 33,
~0

2

)

2

(6) if b,, b, < a, then a
(a)

bo b,
(a o

)

(7) If a, , b, < a, then a
(a) (a a, )

a b I .
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Case II B . a=e+ . Again we begin with relations without alternatives . We have
to discuss the relation

lc + ,

	

(b, b, .
If either a o -b, =c+ or a, =b,=( - ', then (8) is false by 21 . 2 . Now suppose that
min (a,, b,) -c and min (a,, b o)-c . For reasons of symmetry it suffices to consider
the following cases :

Case I I Ba . ao , a, , b,, , b, - e . Then (8) holds by Corollary 17 .
Case I I Bb . ao =a, =e , ; b o , b, --c . Then (8) holds if and only if min (b o , b,) < c .

For if min (b o , b,)-e then (8) follows from Theorem 33, and if bo =b, =c then
(8) is false by Corollary 16 .

Case 11 Be . ao =bo = c+ ; a,, b, - c .
Case II Be (i) . a,, b, <c . Then (8) holds by Theorem 38 .
Case II Be (ü) . a, c ; b, =c . Here we have the following results :

(9)

	

If a,= l then (8) holds by Theorem 35 ;
(10)

	

if a,>1 and c=c', then (8) is false by Theorem 31 ;

(I1)

	

if either a,--Nz and c'= o ,
or a, -- o and c'> o , then (8) is false by Theorem 43 .

Thus here the simplest unsolved problems are :

PROBLEM 13.

(c+) ~ (c c )'

for 2-a, - , .

a, j
ofor 2-a,+~m

Case It Bd . a o =e' : a, , b o , b, -c . Here we have : If min (b o , b,) c then (8)
holds by Theorem 33 . There remains to consider the relation

If a, -< then (12) is true by Theorem 34 . If either c', ~ o and a, o , or c'= o
and a, 7 z , then (12) is false by Theorem 43 . If e= o and a, then (12) is
false by Theorem 32 . If c'= o and a, then (12) is true by Theorem 40. Here
the simplest unsolved problem is

PROBLEM 14 .

Thus many cases under It B are settled if we restrict ourselves to relations without
alternatives . Let us now consider in case li B relations with alternatives . We shall
show, without going into details, that the theorems proved so far, together with
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Problems 13 and 14, essentially cover all cases . We want to consider relations of
the form

ao v a, , a, v a3
bo v b,, bz v b 3

where ca.-\ o and

	

for v<4. We make a fresh start with our sub-
division into cases .

Case A* . There is c < 4 with a,, b,. - e . Then we may assume ao , h o - c By

Theorem 39 we have (`+) (bó , c v c+) . Hence (13) is true if there are r, s

	

3}
with a„ b,- c . Hence we may assume that az =a3 =c,+ and it suffices to discuss
relations of the form

(14)

	

uo va,,c
(bo v b,, d

where a,, b,--c and 1 -d-c+ . We shall in fact not make any use of these last

inequalities . If do , d, < c then, by Theorem 38,
(c + ) (d o v c c . Therefore

(14) holds whenever there are r, s E {0, 1 1, with a,., b, < c . Hence we may assume
that either a,, a, -- c or b,, b, - c .

Case A+ 1 . d=c+ . Then we may suppose that ao , a,--c . If a o =a, =c and
bo =b, =1, then (14) holds by Theorem 35 . On the other hand we have the following
negative results :

If c=c' then (c+) »(2 v 1 + c +)

	

(Theorem 31) .

_ )c +

	

c v e + , c .
If c> c'

	

~ o then

	

c + 1- z v 1, c+

(15)
We note that the case

(c +)

(c +, _
(e h,,, , c )'

(c(o v a '
c+

(Theorem 43) .

If c

	

then (c, ,

	

' ve++) -(
e

e 1, c+

	

(Theorem 43) .

Thus the following refinements of Problem I I remain open :

9 ( m+1/

_(ho
gym ~m+

	

for 2I ro+l)

	

-_b= s
l/

	

v l

	

0 = ~1
~~+I

	

,

	

')+I

q ( m,+1)

	

( ~c.>>
V

	

+I=

~c,t -,)

	

for 2-bo

	

~ .
toi+l

	

0

	

mi+1

Case A+ 2. d=c . If bo , b, <c then (14) holds by Theorem 33, and if b o =
=b, =c+ then (14) is false by 21 . 2 . These remarks lead us to consider relationss
of the form

where b, -c,
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will not be covered but we shall omit its discussion . If ao < o then (l5) holds by
Theorem 34, and if c'> o and a o =,~ o , then (15) is false by Theorem 43 .

Case A` 3 . d<c . If min (bo , b,)-c then (l4) holds by Theorem 33, and in
the remaining case br =b, =c+ the relation (14) is false by 21 . 2 .

Case B - . max (a, , b,) = c+ for r < 4. If there is r E {0, 2} such that either
a,=c+ or b,,=b, + , =c+ . then (13) reduces to a relation of the form (14)
which has already been discussed . Hence it only remains to discuss relations of
the form

(i6)

	

(c +)

	

(bo v c+,bz vc+)^

where a,, a 3 , b,, . b-, --c . If min (a,, a 3 , b o , b,)<c then (16) is true by Theorem 33 .
and in the remaining case a J =a ; =60 =b, =c (16) is false by Theorem 32 .

25 . LEMMAS FOR THE CASE P>z-1

LEMMA 10. Let \,-:2 11 < b : c < b : b > b' . Then

PROOF . Let m -(!)(b') : AI =a : 'B, =b ; AB=AS= 0, where S= [0, m) . There
are numbers bo . .

	

and sets Bo , . 8 such that 2 c < bo < < b,,, <b ;

B=~'(r~m)B,. ; ;B,,I=b, .=b,' for v<m.

PROOF OF (i) . Let [A, S] = 16 +'1 1 . Then [A, B] = Io +'I, , where

Io =2:(,x, v 1, Eló)[{xl,, B,] .

By hypothesis there are a number i =2 and sets X [A]"- . YE[B]h with [X, Y] I_ .
Put Y'= , v : YB,

	

,- . Then Y'- [S]"' ; [X, Y] ` I,, and (i) follows .

PROOF OF (ü) . Let [A . B] = Io +'1, and r < m . Then

LQo(i •) :y-- B,.,i =~ 2"<b,.=ÍB,.I, .

and there are sets A, A and B,: E[Bj1 such that Q„(y)=A,. for yEB, . Then
[A, S] = 1 () where 1~ _ { ix. r} : x E A,' ^ v < m) . By hypothesis there are a
number r < 2 and sets X., [A]

	

Y' E [S]" such that [X, Y]

	

Put Y =
(v E Y') B,: . Then Y E [B]h ; [X, Y] ` 1„ and (ü) is proved .

PROOF of (iii) . Let Ir , 1., be as in the proof of (i) . Put co =b ; c, = l . By hypothesis

(i)

	

If
(
h

a)
' (b° b

a,) .
then (b,, > (h' h `) .

a
(>>)

	

If

	

b , ) >
a, a, l

(b , b,
) ,

then
a

( 1 ) -y
a o a t
(b b ~'

al aGat
),

~~ ~~0a1

(b1 > (b 1 then (b,) (b , 1 ) .

(i~ )

	

If

	

b-) ' h e 1 ) , then
(b b o c11 ~
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there are a number ;- < 2 and sets XE [A]° YE [B]c, such that [X, Y] ,-I, . Put
"= {v : YB,, Q } . Then Y'--S ; [X, Y'] c l . If x=0 then ÍY1 =b ; ÍY'Í =b', and

if x = I then I Y'I = 1 . This proves (iii) .

PROOF OF (iv) . Let 1-, B,, A,, , I be as in the proof of (ü) . Put co =b' ; c, =1 .
Then there are a number x <2 and sets X E [A]"YE [S]I- such that [X, Y'] c I .* .
Put Y=Y(vE Y) B,, . Then Y.-B ; [X, Y]c1, . If x=0 then IY'I =b' ; IYI =b, and
if x= 1 then Y'={v o } for some v o =m, and we have Y' = B,'.~Í -b,, o :~- c . This proves
(v) and completes the proof of Lemma 10 .

LEMMA 11 . Let

	

Then (b) (bb)
REMARK . Lemma 11 is obviously not best possible . It will be used in the proof

of Theorem 44 which gives a necessary and sufficient condition for (a) (a a)
'b ~bb'

PROOF . Let ÍA', =a ; IB'i =b ; AB= 0 ; [A . B] = Io +'I, . Then

b =Y(A'-A)ÍB{y : Qo(y)=A'}I .

Since ÍP(Á)Í = 2n<b', there are sets A'-A and B'E[B]h such that Qo(y)=A' for
yEB' .

Case 1 . A'j =a . Then [A', B'] ,-- lo .
Case 2 . Í A'Í < a . Then IA -A'Í = a ; [A -A', B] - 1, . This proves Lemma 11 .

26. POLARIZED PARTITION RELATIONS IN THE GENERAL CASE .
DISCUSSION AND PROBLEMS

In the general case we do not investigate relations with alternatives . It is obvious
that such relations only lead to interesting question provided a'=b' but we omit
this. We shall discuss the relation

(b) (bo b,)

We begin by considering the special case when ao =a, =a and bo =b, =b . We
need some definitions .

26 . 1 . DEFINITION . The distance d(a, ~) of two ordinals a, ~~ is defined by
the equations

d(a, g+ó) = d(x+b, a) = 6 for all y, v .
We put d(,t„ íáp) =d(7, fl) .

26. 2. DEFINITION . Cardinals a, b are called disjoint if a, b ~ o and

d(x, y) > 1 for x E {a, a "f and y E {b, b' .

(4 ) THEOREM 44 . Let a, b=\ o . Then (ab)

	

a h h
_

	

if and only if a and b are

disjoint.
PROOF . Put

P = {(a, h) : a, b

	

(b) (b h)} .

187
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Throughout the proof we suppose a, b-- o . We shall frequently use, without
reference . the following propositions :

1 . If a+ b . then (a, b) E P if and only if (a, b') E P (Lemma 10) .
2. If a 4- < b' then (a, b) E P (Lemma 11) .
3 . If d(a, b) -1 then (a, b) q P (2] . 2 and Corollary 16) .

In proving the theoremm we may assume a-b.

Case L a, h disjoint . Then a+ _b.
Care 1 a . a } < b' . Then a+ < b' = b" ; (a, b') E P ; (a, b) E P .
Case lb. a+ b' . Then b'+<a . Since d(a',b')>1 we have (a',b')EP . Then

(a, b') F P ; (a, b) E P .
Case 2. a, b not disjoint .
Case 2a . h -a+ . Then d(a, b) 1 , (a, b) ff P .
Case 2b. b >a+ . Then d(a', b) =d(a, h) > 1, and since a, h are not disjoint, at

least one of the following four cases arises :
Case 2b 1 . d(a, b') -1 . Then (a, b') (t P ; (a, b) ,' P .
Case 2b 2 . a'=b' . Then (a', b') ,T P ; (a, b) J P. Let us assume that (a, h) E P .

Then (a, h') E P . Then, since (a, b') E P but (á , b') ~ P, we have a--b"- . Then
a-=h" a'+ ; a'-a=a'+ ; a E {a', a`,} . Hence a is regular ; (a, a)=(a, b') EP which
is a contradiction . Therefore (a, b)2 P .

Case 2b 3 . a'+ -b' . Then (a', b') 4 P . Let us assume that (a, b) E P. Then (a, b) E P ;
d(a, a'+)=d(o, b) 1 ; a>á ; b' = á+<a ; b'+-a ; (a', b')EP which is a contradic-
tion . Hence (a, b) 4k P .

Case 2b4 . á=b'+ . Then (á, h')q P . Let us assume that (a, b) EP . Then
(a, h')EP . Then, since (a, b') EP but (a', h')~ P, we have a-b'+=a' ; a=á;
(a', h') ~- ((t, b') P which is a contradiction . Hence (a, b) q P, and Theorem 44
follows.

26 . 3 . We now turn to the general case

(1)

	

a

	

ao ar
h)

	

b„ b,)

Throughout we suppose that a, band
l -av -a ; 1 --- b,--b for v <2.

Also, ( >_ ) will be assumed . The case d(a, b) = 1 was discussed in section 24. We
may therefore assume al <b . By Theorem 44 the relation (1) holds whenever a.b
are disjoint. We may now assume that a, b are not disjoint . Then at least one of
the following six cases arises :

We now show that if a-b'+ and if one of the cases 4A, 5A, 6A holds, say the case
(3+k)A, then already case k holds (k=-1,2, 3) . In fact, under these circumstances

l . a =b' ; 2 . a=b' ; 3 . a- b'+ ;

4 .A . i = b' ; SA . a'= b' ; 6A . a'= b'+ .
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we have a- o=b' 1 -a'++, so that aE{a',a'+ a'++t and a is regular. Then case
k applies . Thus we have the following six cases to deal with :

Clearly, the cases 1, 2, 3 are exclusive, and the cases 4, 5, 6 are exclusive . Also,
in each of the cases 1, 2, 3, we have a=b'+ so that all six cases 1-6 are exclusive .

Our assumptions are therefore : ,<a+, b, and exactly one of the cases 1--6
applies. We note that by Theorem 44 in any of these cases,

(2)

	

(b) (b b)

The discussion that follows will settle the truth of (1) in all cases except for
the sub-case of case 3 which is given by the conditions

a=6' + ; a + <b ;

a,, a, <a ;

	

ba =b,=b.

a+<b . Here we have the following two results whichCase 1 . a= b' and
settle this case :

(3)

		

(ha) _ (b a,) for a, a .

PROOF . By Lemma 10 (ü) it suffices to prove

a

	

a a,
b')

	

(b' b'

and this last relation follows from Theorem 33 .

(4)
(
h
a) (ab

b,) for b, < b .

PROOF . By Lemma 10 (iv) it suffices to prove ( h
cl

:) --(b, 1), and this last relation
follows from Theorem 34 .

We see from (2), (3), (4) that in case 1 the relation (1) holds if and only if
either min (a,, a,) <a or min (bo , b,) =b .

Case 2 . a=b" and a+ <b. We shall settle this case . By 21 .2 we have

(b,)
+~(1 h') and hence, by Lemma 10 (iii),

(5)

	

(b)

	

( Ir b)
Case 2a . bo , b, <b . Then

(6)

	

(h
(1)

	

(b„ b
a

, )

PROOF. Since b'=a<a+<h we may suppose that a+<bo=b,=bí---h, and
then (6) follows from Lemma 11 .

1 . a+ =h' ; 2 . a=b' ; 3 . a=b'+ ;

4 . a>-h` and a'+=b' ; 5 . a :-b'+ and a' - b ; 6 . a,b'+ and a'=b'+
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Case 2b . b, < b o = b . Then

(7)

	

(b) (b o b,)
holds if and only if a, -<a .

PROOF . If (7) holds then, by (5), a, -a. Vice versa, if a, < a then, by Theorem

35, (b') _ (b' 11) which implies (7), by Lemma 10 (iv). This establishes the assertion
relating to (7) .

Case 2c . b o < br = b . Then, by symmetry,

(b) (b
ao
o b,)

holds if and only if a,-< a .
Case 2d . b o =bi =b . Then (1) holds if and only if

(8)

	

ao , a J < a and min (ao , a,)<a- .

PROOF . We have b' = a < a+ < b . First of all, suppose that (1) holds . If we
then assume that ao =a then

(b ) (b b)

and so, by Lemma 10 0 ), (b ,) (b. b') which contradicts (5) . Hence ao , a, < a .
Next, if we assume that min (a o , a,)--a- then b'-=a--a, <a=b' ; b'=c+ for
some c, and

((b-) -.(b
b) .

Therefore, by Lemma 10 (i), (~+ - (c+ c+ which contradicts Theorem 32. Hence
min (a o , a,) -a - , and (8) follows .

Now suppose, vice versa, that (8) is satisfied . By Lemma 10 (ü), the relation
(1) is a consequence of

(b
(1
) (b' b1 )

Hence it suffices to prove the following two propositions :

(9)

	

If a =a- and (t o , a, < a, then b -
ao
b' h') .

(10)

	

If a=c- and a J <c, then
a
b' _

c
b'

a
b

,
') .

In fact, (9) follows from Lemma 11 . and (10) follows from Theorem 33 .
By analysing the results in cases 2a-2d it will be seen that we have proved :

In case 2 the relation (1) holds if and only if at least one of the following three
conditions (x), (/)'), ( y) is satisfied :



(a)

	

bo, b, < b ;
(/3)

	

there is v < 2 with a, < a and b„ < b ;
(y)

	

min (a o , a,) < a- and ao , a, < a .

Case 3 . a = b' - and a+--b . Here there remain some open questions . First
we prove

(11)

	

(b) _(b Ib)
for b, -<b .

PROOF . By Theorem 33, (b) _ (b ~), and (11) follows from Lemma 10 (iv) .
By comparing (2) and (Il) we see that to settle case 3 we have to investigate

the relation

(12)

	

(a) _ (ao a,)b

	

b b

when min (a o , a,) -a . By Lemma 10 (i) and (ü) the relation (12) is equivalent to

(b') _ (bo a, ) , and this last relation was discussed in section 24 .

Corresponding to the cases IB (i) and IB (ü) in section 24 we distinguish now
the cases max (a o , a,) =a and ao , a, < a .

Case 3a. max (a o , a,)= a . We have to study the relation

(b) (b b 1 )

This relation can be discussed completely . As pointed out above, (13) is equivalent to

(14)

	

(b') ' (b' b')
If we put b' = c then (14) becomes

(c )
_

(c e

Here c = e' = b' . By section 24, case I B (i) we have

If b'> Z~ o then (13) is true for a, < \ o and false for a,

	

o .
(15)

	

If b'=,t o then (13) is true for a I

	

and false for a I

Case 3b . a o , a l <a. This case reduces to section 24 . case IB (ü) c where we
had only trivial results . Although the problems in our present case are equivalent
to those stated in the earlier section we state here explicitly those equivalent to
problem 12 . 1 :

PROBLEM 15 .
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? ( z)

	

o

	

o)'

o
(£\'~

"')
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Case 4. a'~=b' : a>b' - ;a +<b . Here we shall obtain a complete discussion .
We prove :

(16)

	

( a) (b a, ) for a, < a .

PROOF . By (1l) we have . for a, -a,

(b') _ (b' b')

Hence, by Lemma 10 (ü), (16) follows .

(17)

	

(b) _(a b ) for b, < b .
J

PROOF . By (15),

(b') (b' 1)
and (17) follows by Lemma 10 (iv) .

It follows from (2), (16), (17) that in case 4 the relation (1) holds if and only if
either min (a o , a,) ~a or min (b,, b,) <b .

Case 5 . a' = b' ; a > b'T , a

	

b . Here we obtain a complete discussion .

(a) (b 1)

PROOF . By (5), (b,)
_(b1,

~) , and (18) follows by Lemma 10 (iii) .

(19)

	

(b(1) -- (
o i
b b) if b,, b, < b .

PROOF . We may assume a+ ,bo =b, =b, mob . Then (19) follows from Lemma 11 .

(20)

	

(b(1) -(b h(11)
if a, - et and b, mob.

PROOF. By (7), (b,) --
(a, if and (20) follows by Lemma 10 (ív) .

(18)

P . ERDŐS, A . HAJNAL AND R . RADO

(b(1) - (bC/,, h, ) if a,,, a, -: a .

PROOF . We may assume b'*<ao=a,=ai<a . Then, by Theorem 44,

a ) (b° 41`), and (21) follows by Lemma 10 (ü) .

It now follows from (18)-(2) ) that in case 5 the relation (l) holds if and only if
either a o , a, <a, or bo , b, b, or there is ti --2 with a,. a and b, <b .

Case 6. a'= b' - : a>-h- ; a- - <b. Here we have a complete discussion .

('_2)

	

(ha) (b b , ) if a, <a .



PARTITION RELATIONS FOR CARDINAL NUMBERS 193

PROOF . By (4), (b') _ (b' a, ) , and (22) follows from Lemma 10 (ü) .

(23)

	

(a) _(a h) if b r < b .
I

PROOF. By (3), ( a ) (b, ~), and (23) follows from Lemma 10 (iv) .

It follows from (2), (22), (23) that in case 6 the relation (1) holds if and only if
either min (a,, a,) -: a or min (bo , b,)< b .

27 . THE THEORY OF SET MAPPINGS

In this section we shall state some problems and results concerning the set
mapping relation

(1)

13 Acta Mathematica XVI I-2

a

	

[[p,

	

d, q]]

which was defined in 21 . 5 . It follows almost immediately from that definition that

(2)

	

if a-(c+d, q) 2 then a-[[at, c, d, q]] .

Problems about this relation were first stated in [21] and discussed in [14] . Throughout
this section let a - I II . Our Theorem 36 states that

(+) a-[[a . a, d, a]] if a=a' and d+ <a,

and Theorem 37 states that

a -- [[a, a, d, a']] if a > a' and d < a,

a-1-[[a, a, l , a'+]] if a >a' .

On the other hand, using the method of canonical partitions employed in
Lemma 3, it is easy to prove

( ;f ) THEOREM 45 . If c. d < a and a > a', then a--[[a, c, d, a]] .

We omit the proof. Thus if /)-_a and a>a' then the relation (1) is completely
discussed. The case on inaccessible cardinals is settled by Theorem 36 . We there-
fore restrict ourselves to a discussion of the relation

(3)

(

When d --a then Theorem 36 gives a best possible positive result . We are therefore
led to consider the relation

a

	

[[a 1 , c, a, q]] •

Here Lemma 9, which is a theorem of [14], yields :

a- -[[a+ , 2, a, a ]] if a=a' .
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On the other hand, from a+ (a+, a') 2 we obtain, by (2),

(*) THEOREM 46 . a+ --- [[a+, a+, a, a']] .

Thus (3) is settled in the case when a is regular. For singular a the following
relations are still left undecided by the theorems listed so far :

(4)

	

? a+--> [[a+, c, a, q]] for 2--c--a+ and a'<q-a+ .

In [14], Problem 1, the simplest case of (4) is stated, which is to decide the truth of

w+, --- [[á.+1 , 2 , w, 1]] .

We cannot solve the problem (4) but by a direct application of some of the results
of the present paper we can obtain a partial solution .

By using the method of proof of a+ -+-(a+, (3)a .)' (Theorem 10) as well as the
relation a'++->(3)a, one can obtain

( ) THEOREM 47. a+-+-[[a+, a+, a, a'+ ]],

By putting d=a it is seen that Theorems 46 and 47 leave undecided only the
following case :

(*,) PROBLEM 16 . ? a* --[[a+, a+, a, a'+]] if a >a'. On the other hand, Theorem
43 implies

( ) THEOREM 48. Let a > a', and suppose that either (i) c ~- z and a'='~ O ,
or (ü) co o and a', o . Then

a+--[[a+ , c, a, a+ ]] .

Using the ramification method of Lemma 1 but also some new ideas one can
prove :

( ) THEOREM 49. If' c<a and a a', then a

	

[[a-, c, a, a]] .

Detailed proofs of Theorems 47, 48, 49 are reserved for a later publication .
The following problems remain unsolved :

(A)

	

? a + -- [[a + , c, a, a+]]

if either (i) 2-cam 1 and a= N o , or (ü) 2--c<',~ o and a~a'>-

(B)

	

'- a + - [[a+ , a, a, q]] if á<q--a .

Thus the simplest open questions in this connection are

( ) PROBLEM 17 .

(i) ? w+1-[[gym+1, e , w, , ]] for 2--c-- 1 ,

?

	

C,

	

,+l]] for 2~cC1v~'

(ii) ?

	

R,,, w, q]] for ',~ 1 -q

	

~ ;

? ~„+1~[[ ~,+1, Nw,, ~~,,,q]] for

	

2 ~- q- ;t,,, .
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Finally we mention that we have omitted the investigation of the case

a+ - [[a++, e, d, 9]],

i . e . the case where the set mapping is not restricted at all . Most of the problem
in this case are equivalent to problems about the ordinary partition relation I and
their complete discussion would be very lengthy.

Added in proof (20. IV. 1965) : Recently A . H . KRUSE (A note on the parti-
tion calculus of P. Erdős and R . Rado, Journ . London Math . Soc ., 40 (1965), pp .
135-148) proved a number of negative partition relations mostly of the form
a-!--(b, r+ 1)' .
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