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ABSTRACT

This note contains some disconnected minor remarks on number theory .

1 . Let

(1)

	

Iz j I=1, 1<j<co

be an infinite sequence of numbers on the unit circle . Put

n
s(k, n) _

	

z~, Ak = Jim sup I s(k, n)
j=1

	

k=oo

and denote by B k the upper bound of the numbers I s(k,n)j . If z j = e 2nij'
a =A 0 then all the Ak 's are finite and if the continued fraction development of
a has bounded denominators then A k < ck holds for every k (c, c 1 , • • • will denote
suitable positive absolute constants not necessarily the same at every occurrence) .
In a previous paper [2] 1 observed that for every choice of the numbers (1),
lim supk =~,Bk = co , but stated that I can not prove the same result for A k .
I overlooked the fact that it is very easy to show the following

THEOREM . For every choice of the numbers (1) there are infinitely many
values of k for which

(2)

	

A k > c 1 log k .

To prove (2) observe that it immediately follows from the classical theorem of
Dirichlet that if I y i I = 1, 1 _5 i 5 n are any n complex numbers, then there is an
integer 1 <_ k <_ 10" so that (R(z) denotes the real part of z)

1
(3 )

	

R(yk) > 2 , 1 S i :5 n .

Apply (3) to the n numbers Zrn+l, "',Z(r+1)n, 0 r < oo .'We obtain that there
is a k < 10" for which there are infinitely many values of r so that

(4)
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n
Zrn+! > T

6
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(4) immediately implies Ak >_ n / 4, thus by k <_ 10 n (2) follows, and our Theorem
is proved .
Perhaps Ak _>_ ck holds for infinitely many values of V. In this connection I

would like to mention the following question : Denote by f(n,c) the smallest
integer so that if I z i I >= 1, 1 < i 5 n are any n complex numbers, there always is
an integer 1 < k < f (n, c) for which

n

Y. z i I > c .
i-1

A very special case of the deep results of Turán [8] is that f(n,1) = n . Rényi and
I [3] obtain some crude upper bounds for f (n, c,) if c > 1, but our results are too
weak to improve (2).

IL Is it true that to every a > 0 there is a k so that for n > no every interval
(n, n(1 + s)) contains a power of a prime p i < p k ? It easily follows from the theorem
of Dirichlet quoted in I that the answer is negative for every a < 1, since the
above theorem implies that to every q > 0 there are infinitely many values of m
so that all primes p i < pk have a power in the interval (m, m(1 + q)) and then
the interval (m(1 + q), 2m) must be free of these powers . Let us call an increasing
function g(n) good if to every rl > 0 there are infinitely many values of n so that
all the primes pi <_ g(n) have a power in (n, n(1 + rl)) . It easily follows from the
theorem of Dirichlet and n(x) < cx/logx that if

(5)

	

g(n) = o (loglog n • logloglog n)
loglogloglog n

then g(n) is good. I leave the straightforward proof to the reader . i can obtain
no non-trivial upper bound for g(n) .

Let 1 < a < 2 and put

(6)

	

A(n, a) _ I'1 / p

where in 1' the summation is extended over all primes p for which n < ps < an
for some integer 1 . (5) and Z n<y l / p = loglog y + 0(1) implies that for
infinitely many n
(7)

	

A(n, a) > loglogloglog n + 0(1) .

Now we are going to prove

(8)

	

lim inf A(n, a) = 0 .
n=CO

To prove (8) we shall show that to every e > 0 there are arbitrarily large values
of n for which
(9)

	

A(n, a) < e .
* By a remark of Chime, we certainly must have c < 1 . Added in proof : Clunie proved

f (n,c) < g(c) n log n, A k > c k § .
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Let k = k(e) be sufficiently large . Consider E'A(2', x) where in Y-' the
summation is extended over those l, 1 < l 5 x for which the interval (2', (x2')
does not contain any powers of the primes p;, l 5 i <_ k . Put

k

	

L0g(t + a)
D(x, k) _ f 1 -

	

.
i =2

	

log Pk

Let x,, x k be positive numbers which are such that for every choice of the
rational numbers r,, r k not all 0, Ek= i r,x ; is irrational . The classical theorem
of Kronecker-Weyl states that if we denote by x,,, 1 5 n < oe the point in the k
dimensional unit cube whose coordinates are the fractional parts of nx i , l _<_ i <_ k
then the sequence x„ is uniformly distributed in the k dimensional unit cube .
From this theorem is easily follows that the number of summands in !'A(2', x)
is (1 + o(1))xD(x, k) . Thus to prove (9) it will suffice to show that for every
sufficiently large x

(10)

	

E'A(2', x) <
2

D(x, k)x .

We evidently have

Y-

	

tI(j,x)
Pk<Di< 2X

	

pj

where u(j,x) denotes the number of those integers 15 l < x for which the interval
(2',x2') contains a power of p j , but does not contain any power of p i , 15 i <__ k .
For fixed i we obtain again from the Kronecker-Weyl theorem

(11)

	

u(j,x) _ (1 + o(1))D(x, k)
1og(1 + x) x*

log P.i

Put

'A(2, x) _

	

X

	

u(j,x)_
2:i + 2: z

p k <p ;<2Y

	

Pi

where in Y, pk < p i < T= T(k,s) and in 12 T< p i _<_ 2 x. From
we have for sufficiently large k

(13) ~:, < (1 + 0(1)) D(x, k) log(1 + x) x
j=k+1

I1 / p i logp i converges . To estimate Ez observe that there are
powers of p i not exceeding 2'; thus for every j and x

(14)

	

u(j, x) 5 x log 2 / log pj .

From (14) we have for sufficiently large T= T(k,cp(-)

(15)

	

Y- z 5 x log2 Z I / p .i log p .i <
4

D(a, k)x
pr>~

since

1 /
pi

logp i < 4

(11) and (12)

D(a, k)x

[xlog2/log pi]
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(10) follows from (12) (13) and (15) . By a refinement of this method one could
perhaps prove that for infinitely many n

A(n,a) < c/logloglog n .

Using the classical result of Hoheisel [6]

7r(x + X 1_,) - 7r(x) > cxl _ Q / log x

we obtain by a simple computation that for all n

c l / loglog n < A(n, a) < c2 logloglog n .

III Sivasankaranarayana, Pillai and Szekeres proved that for 1 < l _<_ 16 any
sequence of l consecutive integers always contains one which is relatively prime
to the others, but that this is in general not true for 1 = 17, the integers 2184
<= t <- 2200, giving the smallest counter example . Later A . Brauer and Pillai [1]
proved that for every l >_ 17 there are l consecutive integers no one of which is
relatively prime to all the others .
An integer n is said to have property P if any sequence of consecutive integers

which contains n also contains an integer which is relatively prime to all the
others. A well known theorem of Tchebicheff states that there always is a prime
between m and 2m and from this it easily follows that every prime has property P.

Some time ago 1 [5] proved that there are infinitely many composite numbers
which have property P. Denote in fact by u(n) the least prime factor of n.n clearly
has property P if there are primes p l and P2 satisfying

(16)

	

n-u(n)<pl<n ;

	

n<P2<n+u(n) .

One would expect that it is not difficult to give a simple direct proof that in-
finitely many composite numbers satisfy (16), but I did not succeed in this . In
fact I proved that there are infinitely many primes p for which p - 1 satisfies (16)
but the proof uses the Walfisz-Siegel theorem on primes in arithmetic progressions
and Brun's method [5] .
In fact I can prove the following

THEOREM . The lower density ap of the integers having property P exists
and is positive .

We will only give a brief outline of the proof, since it seems certain that the
density of the integers having property P exists and our method is unsuitable to
prove this fact ; also our proof is probably unnecessarily complicated .
To prove our Theorem we need two lemmas .

LEMMA 1 . For a sufficiently small e > 0 we have (p l = 2 < p 2 < . . . is the
sequence of consecutive primes) :
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11(R+1 - R) > c i x

where in E, the summation is extended over those p i ,, < x for which

(17)

	

Elogx<pi+ ,-pi <(t-E) log x .

It is easy to prove the Lemma by the methods used in [4]

LEMMA 2 . Put N k = IIQ<k p and let 1 = a, < a z < . . . < a0(NO = Nk - 1 be
the integers relatively prune to N O Then for sufficiently large k

z(ai+ 1 - a,) < Nk / k

where in Y-2 the summation is extended over those is for which ai+ , -a i >_ k/2 .

The Lemma can be deduced from [6] without any difficulty .
Now we can prove our Theorem . It is easy to see that if n does not have property

P then it is included in a unique maximal interval of consecutive integers no one of
which is relatively prime to the others . Denote these intervals of consecutive
integers by 1 1, 12 • • • where I, are the integers 2184, 2185 . . . 2200. Let I r be the last
such interval which contains integers <--_ x . I I I denotes the length of the interval I .
To prove our Theorem it suffices to show

r

(18)

	

1 IIjI < x(1 - C2)
j=1

Clearly none of the intervals I ; contain any primes . To prove (18) it will suffice
to show that for some C 3 < C,

(19)

	

u31 Ii I < (C1 - C3)x

where c, is the constant occuring in Lemma 1 and in `3 the summation is extended
over those 1.0 1 :-5J <_ r which are in the intervals (p;, p ; + ,) satisfying (17) .

Let T be sufficiently large and consider in the intervals (17) those integers all
whose prime factors are at least T. It easily follows from Lemma 1 and the Sieve
of Eratorthenes that the number of these integers not exceeding x is at least

(20)

	

(1 + o(l))c,x F1 (1 - l /p) > c,x /log T
P< 7'

Further these integers can clearly not be contained in intervals I j with I Ij I <_ T
for otherwise they would be relatively prime to all the other integers in If . Thus
to complete the proof of our Theorem we only have to show by (20) that for
sufficiently large T

(21)

	

E1 I I i I <

	

c4x / log T

where in `4 the summation is extended over the I j in 1:3 for which I I j I > T.
The Ij in E4 satisfy
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(22)

	

T < I I; I <(I - e) log x .

Write

(23 )

	

"4I Ii I

	

L E4") I IJ

where in E4') we have (r = 0,1 . . •)

(24)

	

2'T < I I; I < 2'+'T

if 2' + 'T> (1 - e)logx, then the upper bound in (24) should be replaced by
(1 - e)log x . Now we show that for sufficiently large T and every r

(25)

	

E4')I h I < 2x / (2'T)2 .

From (25) and (23) (21) easily follows for sufficiently large T. Thus to prove
our Theorem we only have to show (25) . The integers in the If of J:4') can not be
relatively prime to N z r+~ . T (Nk is the product of the primes not exceeding k)
therefore if I i is in an interval

I j must lie in an interval (a, + uNz r+1 .T , a,+i + uN z r+'_T) where

1 =a, < . . . < a,,(Nzr+, .T) = Nz r+1 .T - 1

are the integers relatively prime to N z r+ ,, . , Since 2'+ 'T <_ (1 - e) logx, it follows
from the prime number theorem that N2.+1-7- o(x), hence we easily obtain from
Lemma 2 for sufficiently large T

(r)

	

x ' / z

	

'/ zf IIiI < ( L

	

I Nzr+I,Tl(2'T)< 2x/(2'T),
N2'+

.
TI

+

thus (25) and hence our Theorem is proved . Unfortunately I can not handle the
I Ij I > log x and thus can not prove that the density of the integers having property
P exists .

COROLLARY . There are infinitely many composite integers satisfying (16) .

By ap > 0 there are infinitely many composite integers having property P,
and if there would be only a finite number of integers with property (1) then
for sufficiently large i in the set of integers p; < t < pi+i no one would be relatively
prime to the other, thus only a finite number of composite integers would have
property P . This contradiction proves the corollary .

Let us say that the primes have property P o, the composite integers satisfying
(16) have property P l . By induction with respect to k we define : An integer n has
property Pk if it does not have property P, for any j < k, but both intervals
(n, n + u(n)) and (n - u(n), n) contains an integer having one of the properties
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Pj , 0 < j < k . It is easy to see that for every k >_ 0 the integers having property P k
have property P too, and conversely every integer having property P has property
Pk for some k > 0 .

It is easy to show by induction with respect to k that the integers having
property Pk have density 0, hence from aP > 0 we obtain that for every k there are
infinitely many integers having property P 1,
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