SOME REMARKS ON NUMBER THEORY

BY

P. ERDÖS

ABSTRACT

This note contains some disconnected minor remarks on number theory.

I. Let

(1)
$$|z_j| = 1, \ 1 \leq j < \infty$$

be an infinite sequence of numbers on the unit circle. Put

$$s(k,n) = \sum_{j=1}^{n} z_{j}^{k}, \quad A_{k} = \limsup_{k=\infty} \left| s(k,n) \right|$$

and denote by B_k the upper bound of the numbers |s(k,n)|. If $z_j = e^{2\pi i j \alpha}$ $\alpha \neq 0$ then all the A_k 's are finite and if the continued fraction development of α has bounded denominators then $A_k < ck$ holds for every k (c, c_1, \cdots will denote suitable positive absolute constants not necessarily the same at every occurrence). In a previous paper [2] I observed that for every choice of the numbers (1), $\limsup_{k=\infty} B_k = \infty$, but stated that I can not prove the same result for A_k . I overlooked the fact that it is very easy to show the following

THEOREM. For every choice of the numbers (1) there are infinitely many values of k for which

$$A_k > c_1 \log k.$$

To prove (2) observe that it immediately follows from the classical theorem of Dirichlet that if $|y_i| = 1, 1 \le i \le n$ are any *n* complex numbers, then there is an integer $1 \le k \le 10^n$ so that (R(z) denotes the real part of z)

(3)
$$R(y_i^k) > \frac{1}{2}, \quad 1 \leq i \leq n.$$

Apply (3) to the *n* numbers $z_{rn+1}, \dots, z_{(r+1)n}, 0 \leq r < \infty$. We obtain that there is a $k \leq 10^n$ for which there are infinitely many values of *r* so that

(4)
$$R\left(\sum_{l=1}^{n} z_{rn+l}^{k}\right) > \frac{n}{2}.$$

Received February 10, 1965.

(4) immediately implies $A_k \ge n/4$, thus by $k \le 10^n$ (2) follows, and our Theorem is proved.

Perhaps $A_k \ge ck$ holds for infinitely many values of k^* . In this connection I would like to mention the following question: Denote by f(n,c) the smallest integer so that if $|z_i| \ge 1$, $1 \le i \le n$ are any *n* complex numbers, there always is an integer $1 \le k \le f(n,c)$ for which

$$\left|\sum_{i=1}^n z_i^k\right| \geq c.$$

A very special case of the deep results of Turán [8] is that f(n, 1) = n. Rényi and I [3] obtain some crude upper bounds for f(n, c) if c > 1, but our results are too weak to improve (2).

II. Is it true that to every $\varepsilon > 0$ there is a k so that for $n > n_0$ every interval $(n, n(1 + \varepsilon))$ contains a power of a prime $p_i \leq p_k$? It easily follows from the theorem of Dirichlet quoted in I that the answer is negative for every $\varepsilon < 1$, since the above theorem implies that to every $\eta > 0$ there are infinitely many values of m so that all primes $p_i \leq p_k$ have a power in the interval $(m, m(1 + \eta))$ and then the interval $(m(1 + \eta), 2m)$ must be free of these powers. Let us call an increasing function g(n) good if to every $\eta > 0$ there are infinitely many values of n so that all the primes $p_i \leq g(n)$ have a power in $(n, n(1 + \eta))$. It easily follows from the theorem of Dirichlet and $\pi(x) < cx/\log x$ that if

(5)
$$g(n) = o\left(\frac{\log\log n \cdot \log\log\log n}{\log\log\log\log n}\right)$$

then g(n) is good. I leave the straightforward proof to the reader. I can obtain no non-trivial upper bound for g(n).

Let $1 < \alpha < 2$ and put

(6)
$$A(n,\alpha) = \sum' 1/p$$

where in Σ' the summation is extended over all primes p for which $n < p^{\beta} < \alpha n$ for some integer $\beta \ge 1$. (5) and $\sum_{p < y} 1/p = \log \log y + 0(1)$ implies that for infinitely many n

(7)
$$A(n,\alpha) > \log\log\log\log n + O(1).$$

Now we are going to prove

(8)
$$\liminf_{n=\infty} A(n,\alpha) = 0.$$

To prove (8) we shall show that to every $\varepsilon > 0$ there are arbitrarily large values of *n* for which

(9)
$$A(n,\alpha) < \varepsilon$$
.

* By a remark of Clunie, we certainly must have $c \leq 1$. Added in proof: Clunie proved $f(n,c) < g(c) n \log n$, $A_k > c k^{\frac{1}{2}}$.

P. ERDÖS

Let $k = k(\varepsilon)$ be sufficiently large. Consider $\sum A(2^{l}, \alpha)$ where in \sum' the summation is extended over those $l, 1 \leq l \leq x$ for which the interval $(2^{l}, \alpha 2^{l})$ does not contain any powers of the primes $p_{i}, 1 \leq i \leq k$. Put

$$D(\alpha, k) = \prod_{i=2}^{k} \left(1 - \frac{\log(1+\alpha)}{\log p_k}\right).$$

Let $\alpha_1, \dots, \alpha_k$ be positive numbers which are such that for every choice of the rational numbers r_1, \dots, r_k not all 0, $\sum_{i=1}^k r_i \alpha_i$ is irrational. The classical theorem of Kronecker-Weyl states that if we denote by $x_n, 1 \leq n < \infty$ the point in the k dimensional unit cube whose coordinates are the fractional parts of $n\alpha_i, 1 \leq i \leq k$ then the sequence x_n is uniformly distributed in the k dimensional unit cube. From this theorem is easily follows that the number of summands in $\sum A(2^t, \alpha)$ is $(1 + o(1))xD(\alpha, k)$. Thus to prove (9) it will suffice to show that for every sufficiently large x

(10)
$$\sum A(2^{l},\alpha) < \frac{\varepsilon}{2} D(\alpha,k)x.$$

We evidently have

$$\sum' A(2^l, \alpha) = \sum_{p_k < p_j \leq 2^x} \frac{u(j, x)}{p_j}$$

where u(j, x) denotes the number of those integers $1 \leq l \leq x$ for which the interval $(2^l, \alpha 2^l)$ contains a power of p_j , but does not contain any power of p_i , $1 \leq i \leq k$. For fixed j we obtain again from the Kronecker-Weyl theorem

(11)
$$u(j,x) = (1+o(1))D(\alpha,k) \ \frac{\log(1+\alpha)}{\log p_j} x.$$

Put

(12)
$$\Sigma' A(2^l, \alpha) = \sum_{p_k < p_j \le 2^x} \frac{u(j, x)}{p_j} = \Sigma_1 + \Sigma_2$$

where in $\sum_{i} p_k < p_j \leq T = T(k, \varepsilon)$ and in $\sum_{i} T < p_j \leq 2^x$. From (11) and (12) we have for sufficiently large k

(13)
$$\sum_{1} < (1+o(1)) \ D(\alpha,k) \ \log(1+\alpha) \ x \ \sum_{j=k+1}^{\infty} 1/p_j \ \log p_j < \frac{\varepsilon}{4} \ D(\alpha,k) x$$

since $\sum 1/p_j \log p_j$ converges. To estimate \sum_2 observe that there are $\lfloor x \log 2/\log p_j \rfloor$ powers of p_j not exceeding 2^x, thus for every j and x

(14)
$$u(j,x) \leq x \log 2 / \log p_j.$$

From (14) we have for sufficiently large $T = T(k, \varepsilon_p c)$

(15)
$$\sum_{2} \leq x \log 2 \sum_{p_{j} > T} 1/p_{j} \log p_{j} < \frac{\varepsilon}{4} D(\alpha, k) x$$

[March

(10) follows from (12) (13) and (15). By a refinement of this method one could perhaps prove that for infinitely many n

$$A(n,\alpha) < c / \log \log \log n$$
.

Using the classical result of Hoheisel [6]

$$\pi(x+x^{1-\varepsilon})-\pi(x)>cx^{1-\varepsilon}/\log x$$

we obtain by a simple computation that for all n

$$c_1 / \log \log n < A(n, \alpha) < c_2 \log \log \log n$$
.

III Sivasankaranarayana, Pillai and Szekeres proved that for $1 \le l \le 16$ any sequence of *l* consecutive integers always contains one which is relatively prime to the others, but that this is in general not true for l = 17, the integers 2184 $\le t \le 2200$, giving the smallest counter example. Later A. Brauer and Pillai [1] proved that for every $l \ge 17$ there are *l* consecutive integers no one of which is relatively prime to all the others.

An integer *n* is said to have property *P* if any sequence of consecutive integers which contains *n* also contains an integer which is relatively prime to all the others. A well known theorem of Tchebicheff states that there always is a prime between *m* and 2m and from this it easily follows that every prime has property *P*. Some time ago I [5] proved that there are infinitely many composite numbers which have property *P*. Denote in fact by u(n) the least prime factor of *n.n* clearly has property *P* if there are primes p_1 and p_2 satisfying

(16)
$$n - u(n) < p_1 < n; \quad n < p_2 < n + u(n).$$

One would expect that it is not difficult to give a simple direct proof that infinitely many composite numbers satisfy (16), but I did not succeed in this. In fact I proved that there are infinitely many primes p for which p-1 satisfies (16) but the proof uses the Walfisz-Siegel theorem on primes in arithmetic progressions and Brun's method [5].

In fact I can prove the following

THEOREM. The lower density α_p of the integers having property P exists and is positive.

We will only give a brief outline of the proof, since it seems certain that the density of the integers having property P exists and our method is unsuitable to prove this fact; also our proof is probably unnecessarily complicated.

To prove our Theorem we need two lemmas.

LEMMA 1. For a sufficiently small $\varepsilon > 0$ we have $(p_1 = 2 < p_2 < \cdots$ is the sequence of consecutive primes):

1965]

where in $\sum_{i=1}^{n}$ the summation is extended over those $p_{i+1} < x$ for which

(17)
$$\varepsilon \log x < p_{i+1} - p_i < (1 - \varepsilon) \log x.$$

It is easy to prove the Lemma by the methods used in [4]

LEMMA 2. Put $N_k = \prod_{p \leq k} p$ and let $1 = a_1 < a_2 < \cdots < a_{\phi(N_k)} = N_k - 1$ be the integers relatively prime to N_k . Then for sufficiently large k

$$\sum_{2} (a_{i+1} - a_i) < N_k / k^{\frac{1}{2}}$$

where in $\sum_{i=1}^{n}$ the summation is extended over those i's for which $a_{i+1} - a_i \ge k/2$.

The Lemma can be deduced from [6] without any difficulty.

Now we can prove our Theorem. It is easy to see that if *n* does not have property *P* then it is included in a unique maximal interval of consecutive integers no one of which is relatively prime to the others. Denote these intervals of consecutive integers by $I_1, I_2 \cdots$ where I_1 are the integers 2184, 2185 \cdots 2200. Let I_r be the last such interval which contains integers $\leq x$. |I| denotes the length of the interval *I*. To prove our Theorem it suffices to show

(18)
$$\sum_{j=1}^{r} |I_j| < x(1-c_2)$$

Clearly none of the intervals I_j contain any primes. To prove (18) it will suffice to show that for some $c_3 < c_1$

(19)
$$\sum_{3} |I_{j}| < (c_{1} - c_{3})x$$

where c_1 is the constant occuring in Lemma 1 and in \sum_3 the summation is extended over those I_i , $1 \le j \le r$ which are in the intervals (p_i, p_{j+1}) satisfying (17).

Let T be sufficiently large and consider in the intervals (17) those integers all whose prime factors are at least T. It easily follows from Lemma 1 and the Sieve of Eratorthenes that the number of these integers not exceeding x is at least

(20)
$$(1 + o(1))c_1 x \prod_{p < T} (1 - 1/p) > c_4 x / \log T$$

Further these integers can clearly not be contained in intervals I_j with $|I_j| \leq T$ for otherwise they would be relatively prime to all the other integers in I_j . Thus to complete the proof of our Theorem we only have to show by (20) that for sufficiently large T

(21)
$$\Sigma_4 |I_j| < \frac{1}{2} c_4 x / \log T$$

where in Σ_4 the summation is extended over the I_j in Σ_3 for which $|I_j| > T$. The I_j in Σ_4 satisfy

10

$$(22) T < |I_j| < (1-\varepsilon) \log x$$

Write

(23)
$$\Sigma_4 |I_j| = \sum_r \sum_{i=1}^{r} |I_j|$$

where in $\sum_{4}^{(r)}$ we have $(r = 0, 1 \cdots)$

$$(24) 2rT < |I_j| \le 2^{r+1}T$$

if $2^{r+1}T > (1-\varepsilon)\log x$, then the upper bound in (24) should be replaced by $(1-\varepsilon)\log x$. Now we show that for sufficiently large T and every r

(25)
$$\sum_{4}^{(r)} |I_j| < 2x/(2^r T)^{\frac{1}{2}}$$

From (25) and (23) (21) easily follows for sufficiently large T. Thus to prove our Theorem we only have to show (25). The integers in the I_j of $\sum_{4}^{(r)}$ can not be relatively prime to $N_{2^{r+1}}$. $_T(N_k$ is the product of the primes not exceeding k) therefore if I_j is in an interval

$$(uN_{2^{r+1}}, (u+1)N_{2^{r+1}})$$

 I_i must lie in an interval $(a_i + uN_{2^{r+1},T}, a_{i+1} + uN_{2^{r+1},T})$ where

 $1 = a_1 < \dots < a_{\phi}(N_{2^{r+1}.T}) = N_{2^{r+1}.T} - 1$

are the integers relatively prime to $N_{2^{r+1}\cdot T}$. Since $2^{r+1}T \leq (1-\varepsilon) \log x$, it follows from the prime number theorem that $N_{2^{r+1}\cdot T} = o(x)$, hence we easily obtain from Lemma 2 for sufficiently large T

$$\sum_{4}^{(\prime)} |I_j| < \left(\left[\frac{x}{N_{2^{r+1},T}} \right] + 1 \right) N_{2^{r+1},T} / (2^r T)^{1/2} < 2x / (2^r T)^{1/2},$$

thus (25) and hence our Theorem is proved. Unfortunately I can not handle the $|I_j| > \log x$ and thus can not prove that the density of the integers having property P exists.

COROLLARY. There are infinitely many composite integers satisfying (16).

By $\alpha_p > 0$ there are infinitely many composite integers having property P, and if there would be only a finite number of integers with property (1) then for sufficiently large *i* in the set of integers $p_i < t < p_{i+1}$ no one would be relatively prime to the other, thus only a finite number of composite integers would have property P. This contradiction proves the corollary.

Let us say that the primes have property P_0 , the composite integers satisfying (16) have property P_1 . By induction with respect to k we define: An integer n has property P_k if it does not have property P_j for any j < k, but both intervals (n, n + u(n)) and (n - u(n), n) contains an integer having one of the properties

1965]

P. ERDÖS

 $P_j, 0 \le j < k$. It is easy to see that for every $k \ge 0$ the integers having property P_k have property P too, and conversely every integer having property P has property P_k for some $k \ge 0$.

It is easy to show by induction with respect to k that the integers having property P_k have density 0, hence from $\alpha_p > 0$ we obtain that for every k there are infinitely many integers having property P_k .

REFERENCES

1. A. Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soc. 47 (1941), 328-331: Sivasankaranarayana Pillai, On m consecutive integers III, Proc. Indian Acad. Sci. Sect. A, 12 (1940), 6-12.

2. P. Erdös, Problems and results on diophantine approximation, Compositio Math., 16 (1964), 52-65, see p. 52-53.

3. P. Erdös and A. Rényi, A probabilistic approach to problems of diophantine approximation, Illinois J. Math., 1 (1957), 303-315, see p. 314.

4. P. Erdös, The difference of consecutive primes, Duke Math J., 6 (1940), 438-441.

5. P. Erdös, Amer. Math. Monthly, 60 (1953), 423.

6. G. Hoheisel, Primzahlprobleme in der Analysis, Sitzungsber., Berlin (1930), 580-588.

7. C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith., 8 (1962-63), 343-347.

8. P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Budapest 1953.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY,

HAIFA