SOME REMARKS ON NUMBER THEORY

BY
P. ERDÖS

ABSTRACT

This note contains some disconnected minor remarks on number theory.
I. Let
(1)

$$
\left|z_{j}\right|=1,1 \leqq j<\infty
$$

be an infinite sequence of numbers on the unit circle. Put

$$
s(k, n)=\sum_{j=1}^{n} z_{j}^{k}, \quad A_{k}=\limsup _{k=\infty}|s(k, n)|
$$

and denote by B_{k} the upper bound of the numbers $|s(k, n)|$. If $z_{j}=e^{2 \pi i j \alpha}$ $\alpha \neq 0$ then all the A_{k} 's are finite and if the continued fraction development of α has bounded denominators then $A_{k}<c k$ holds for every k (c, c_{1}, \cdots will denote suitable positive absolute constants not necessarily the same at every occurrence). In a previous paper [2] I observed that for every choice of the numbers (1), $\lim \sup _{k=\infty} B_{k}=\infty$, but stated that I can not prove the same result for A_{k}. I overlooked the fact that it is very easy to show the following

Theorem. For every choice of the numbers (1) there are infinitely many values of k for which

$$
\begin{equation*}
A_{k}>c_{1} \log k \tag{2}
\end{equation*}
$$

To prove (2) observe that it immediately follows from the classical theorem of Dirichlet that if $\left|y_{i}\right|=1,1 \leqq i \leqq n$ are any n complex numbers, then there is an integer $1 \leqq k \leqq 10^{n}$ so that ($R(z)$ denotes the real part of z)

$$
\begin{equation*}
R\left(y_{i}^{k}\right)>\frac{1}{2}, \quad 1 \leqq i \leqq n . \tag{3}
\end{equation*}
$$

Apply (3) to the n numbers $z_{r n+1}, \cdots, z_{(r+1) n}, 0 \leqq r<\infty$. We obtain that there is a $k \leqq 10^{n}$ for which there are infinitely many values of r so that

$$
\begin{equation*}
R\left(\sum_{l=1}^{n} z_{r n+l}^{k}\right)>\frac{n}{2} . \tag{4}
\end{equation*}
$$

Received February 10, 1965.
(4) immediately implies $A_{k} \geqq n / 4$, thus by $k \leqq 10^{n}$ (2) follows, and our Theorem is proved.

Perhaps $A_{k} \geqq c k$ holds for infinitely many values of k^{*}. In this connection I would like to mention the following question: Denote by $f(n, c)$ the smallest integer so that if $\left|z_{i}\right| \geqq 1,1 \leqq i \leqq n$ are any n complex numbers, there always is an integer $1 \leqq k \leqq f(n, c)$ for which

$$
\left|\sum_{i=1}^{n} z_{i}^{k}\right| \geqq c .
$$

A very special case of the deep results of Turán [8] is that $f(n, 1)=n$. Rényi and I [3] obtain some crude upper bounds for $f(n, c$, , if $c>1$, but our results are too weak to improve (2).
II. Is it true that to every $\varepsilon>0$ there is a k so that for $n>n_{0}$ every interval $(n, n(1+\varepsilon))$ contains a power of a prime $p_{i} \leqq p_{k}$? It easily follows from the theorem of Dirichlet quoted in I that the answer is negative for every $\varepsilon<1$, since the above theorem implies that to every $\eta>0$ there are infinitely many values of m so that all primes $p_{i} \leqq p_{k}$ have a power in the interval ($m, m(1+\eta)$) and then the interval $(m(1+\eta), 2 m)$ must be free of these powers. Let us call an increasing function $g(n)$ good if to every $\eta>0$ there are infinitely many values of n so that all the primes $p_{i} \leqq g(n)$ have a power in $(n, n(1+\eta))$. It easily follows from the theorem of Dirichlet and $\pi(x)<c x / \log x$ that if

$$
\begin{equation*}
g(n)=o\left(\frac{\log \log n \cdot \log \log \log n}{\log \log \log \log n}\right) \tag{5}
\end{equation*}
$$

then $g(n)$ is good. I leave the straightforward proof to the reader. I can obtain no non-trivial upper bound for $g(n)$.

Let $1<\alpha<2$ and put

$$
\begin{equation*}
A(n, \alpha)=\Sigma^{\prime} 1 / p \tag{6}
\end{equation*}
$$

where in Σ^{\prime} the summation is extended over all primes p for which $n<p^{\beta}<\alpha n$ for some integer $\beta \geqq 1$. (5) and $\Sigma_{p<y} 1 / p=\log \log y+0(1)$ implies that for infinitely many n

$$
\begin{equation*}
A(n, \alpha)>\log \log \log \log n+0(1) . \tag{7}
\end{equation*}
$$

Now we are going to prove

$$
\begin{equation*}
\liminf _{n=\infty} A(n, \alpha)=0 . \tag{8}
\end{equation*}
$$

To prove (8) we shall show that to every $\varepsilon>0$ there are arbitrarily large values of n for which

$$
\begin{equation*}
A(n, \alpha)<\varepsilon . \tag{9}
\end{equation*}
$$

${ }^{*}$ By a remark of Clunie, we certainly must have $c \leqq 1$. Added in proof: Clunie proved $f(n, c)<g(c) n \log n, A_{k}>c k^{\frac{1}{2}}$.

Let $k=k(\varepsilon)$ be sufficiently large. Consider $\Sigma^{\prime} A\left(2^{l}, \alpha\right)$ where in Σ^{\prime} the summation is extended over those $l, 1 \leqq l \leqq x$ for which the interval $\left(2^{l}, \alpha 2^{l}\right)$ does not contain any powers of the primes $p_{i}, 1 \leqq i \leqq k$. Put

$$
D(\alpha, k)=\prod_{i=2}^{k}\left(1-\frac{\log (1+\alpha)}{\log p_{k}}\right) .
$$

Let $\alpha_{1}, \cdots, \alpha_{k}$ be positive numbers which are such that for every choice of the rational numbers r_{1}, \cdots, r_{k} not all $0, \sum_{i=1}^{k} r_{i} \alpha_{i}$ is irrational. The classical theorem of Kronecker-Weyl states that if we denote by $x_{n}, 1 \leqq n<\infty$ the point in the k dimensional unit cube whose coordinates are the fractional parts of $n \alpha_{i}, 1 \leqq i \leqq k$ then the sequence x_{n} is uniformly distributed in the k dimensional unit cube. From this theorem is easily follows that the number of summands in $\Sigma^{\prime} A\left(2^{l}, \alpha\right)$ is $(1+o(1)) \times D(\alpha, k)$. Thus to prove (9) it will suffice to show that for every sufficiently large x

$$
\begin{equation*}
\Sigma^{\prime} A\left(2^{l}, \alpha\right)<\frac{\varepsilon}{2} D(\alpha, k) x \tag{10}
\end{equation*}
$$

We evidently have

$$
\Sigma^{\prime} A\left(2^{l}, \alpha\right)=\sum_{p_{k}<p_{i} \leq 2^{x}} \frac{u(j, x)}{p_{j}}
$$

where $u(j, x)$ denotes the number of those integers $1 \leqq l \leqq x$ for which the interval $\left(2^{l}, \alpha 2^{l}\right)$ contains a power of p_{j}, but does not contain any power of $p_{i}, 1 \leqq i \leqq k$. For fixed j we obtain again from the Kronecker-Weyl theorem

$$
\begin{equation*}
u(j, x)=(1+o(1)) D(\alpha, k) \frac{\log (1+\alpha)}{\log p_{j}} x \tag{11}
\end{equation*}
$$

Put

$$
\begin{equation*}
\Sigma^{\prime} A\left(2^{l}, \alpha\right)=\sum_{p_{k}<p_{j} \leqq 2^{x}} \frac{u(j, x)}{p_{j}}=\Sigma_{1}+\Sigma_{2} \tag{12}
\end{equation*}
$$

where in $\Sigma_{1} p_{k}<p_{j} \leqq T=T(k, \varepsilon)$ and in $\Sigma_{2} T<p_{j} \leqq 2^{x}$. From (11) and (12) we have for sufficiently large k

$$
\begin{equation*}
\Sigma_{1}<(1+o(1)) D(\alpha, k) \log (1+\alpha) x \sum_{j=k+1}^{\infty} 1 / p_{j} \log p_{j}<\frac{\varepsilon}{4} D(\alpha, k) x \tag{13}
\end{equation*}
$$

since $\Sigma 1 / p_{j} \log p_{j}$ converges. To estimate Σ_{2} observe that there are $\left[x \log 2 / \log p_{j}\right]$ powers of p_{j} not exceeding 2^{x}, thus for every j and x

$$
\begin{equation*}
u(j, x) \leqq x \log 2 / \log p_{j} \tag{14}
\end{equation*}
$$

From (14) we have for sufficiently large $T=T\left(k, \varepsilon_{p} c\right)$

$$
\begin{equation*}
\Sigma_{2} \leqq x \log 2 \sum_{p_{i}>T} 1 / p_{j} \log p_{j}<\frac{\varepsilon}{4} D(\alpha, k) x \tag{15}
\end{equation*}
$$

(10) follows from (12) (13) and (15). By a refinement of this method one could perhaps prove that for infinitely many n

$$
A(n, \alpha)<c / \log \log \log n
$$

Using the classical result of Hoheisel [6]

$$
\pi\left(x+x^{1-\varepsilon}\right)-\pi(x)>c x^{1-\varepsilon} / \log x
$$

we obtain by a simple computation that for all n

$$
c_{1} / \log \log n<A(n, \alpha)<c_{2} \log \log \log n
$$

III Sivasankaranarayana, Pillai and Szekeres proved that for $1 \leqq l \leqq 16$ any sequence of l consecutive integers always contains one which is relatively prime to the others, but that this is in general not true for $l=17$, the integers 2184 $\leqq t \leqq 2200$, giving the smallest counter example. Later A. Brauer and Pillai [1] proved that for every $l \geqq 17$ there are l consecutive integers no one of which is relatively prime to all the others.

An integer n is said to have property P if any sequence of consecutive integers which contains n also contains an integer which is relatively prime to all the others. A well known theorem of Tchebicheff states that there always is a prime between m and $2 m$ and from this it easily follows that every prime has property P. Some time ago I [5] proved that there are infinitely many composite numbers which have property P. Denote in fact by $u(n)$ the least prime factor of $n . n$ clearly has property P if there are primes p_{1} and p_{2} satisfying

$$
\begin{equation*}
n-u(n)<p_{1}<n ; \quad n<p_{2}<n+u(n) . \tag{16}
\end{equation*}
$$

One would expect that it is not difficult to give a simple direct proof that infinitely many composite numbers satisfy (16), but I did not succeed in this. In fact I proved that there are infinitely many primes p for which $p-1$ satisfies (16) but the proof uses the Walfisz-Siegel theorem on primes in arithmetic progressions and Brun's method [5].

In fact I can prove the following
Theorem. The lower density α_{p} of the integers having property P exists and is positive.

We will only give a brief outline of the proof, since it seems certain that the density of the integers having property P exists and our method is unsuitable to prove this fact; also our proof is probably unnecessarily complicated.

To prove our Theorem we need two lemmas.
Lemma 1. For a sufficiently small $\varepsilon>0$ we have ($p_{1}=2<p_{2}<\cdots$ is the sequence of consecutive primes):

$$
\Sigma_{1}\left(p_{i+1}-p_{i}\right)>c_{1} x
$$

where in Σ_{1} the summation is extended over those $p_{i+1}<x$ for which

$$
\begin{equation*}
\varepsilon \log x<p_{i+1}-p_{i}<(1-\varepsilon) \log x \tag{17}
\end{equation*}
$$

It is easy to prove the Lemma by the methods used in [4]
Lemma 2. Put $N_{k}=\Pi_{p \leqq k} p$ and let $1=a_{1}<a_{2}<\cdots<a_{\phi\left(N_{k}\right)}=N_{k}-1$ be the integers relatively prime to N_{k}. Then for sufficiently large k

$$
\Sigma_{2}\left(a_{i+1}-a_{i}\right)<N_{k} / k^{\frac{1}{2}}
$$

where in Σ_{2} the summation is extended over those i 's for which $a_{i+1}-a_{i} \geqq k / 2$.
The Lemma can be deduced from [6] without any difficulty.
Now we can prove our Theorem. It is easy to see that if n does not have property P then it is included in a unique maximal interval of consecutive integers no one of which is relatively prime to the others. Denote these intervals of consecutive integers by $I_{1}, I_{2} \cdots$ where I_{1} are the integers $2184,2185 \cdots 2200$. Let I_{r} be the last such interval which contains integers $\leqq x .|I|$ denotes the length of the interval I. To prove our Theorem it suffices to show

$$
\begin{equation*}
\sum_{j=1}^{r}\left|I_{j}\right|<x\left(1-c_{2}\right) \tag{18}
\end{equation*}
$$

Clearly none of the intervals I_{j} contain any primes. To prove (18) it will suffice to show that for some $c_{3}<c_{1}$

$$
\begin{equation*}
\Sigma_{3}\left|I_{j}\right|<\left(c_{1}-c_{3}\right) x \tag{19}
\end{equation*}
$$

where c_{1} is the constant occuring in Lemma 1 and in Σ_{3} the summation is extended over those $I_{j}, 1 \leqq j \leqq r$ which are in the intervals (p_{j}, p_{j+1}) satisfying (17).

Let T be sufficiently large and consider in the intervals (17) those integers all whose prime factors are at least T. It easily follows from Lemma 1 and the Sieve of Eratorthenes that the number of these integers not exceeding x is at least

$$
\begin{equation*}
(1+o(1)) c_{1} x \prod_{p<T}(1-1 / p)>c_{4} x / \log T \tag{20}
\end{equation*}
$$

Further these integers can clearly not be contained in intervals I_{j} with $\left|I_{j}\right| \leqq T$ for otherwise they would be relatively prime to all the other integers in I_{j}. Thus to complete the proof of our Theorem we only have to show by (20) that for sufficiently large T

$$
\begin{equation*}
\Sigma_{4}\left|I_{j}\right|<\frac{1}{2} c_{4} x / \log T \tag{21}
\end{equation*}
$$

where in Σ_{4} the summation is extended over the I_{j} in Σ_{3} for which $\left|I_{j}\right|>T$. The I_{j} in Σ_{4} satisfy

$$
\begin{equation*}
T<\left|I_{j}\right|<(1-\varepsilon) \log x . \tag{22}
\end{equation*}
$$

Write

$$
\begin{equation*}
\Sigma_{4}\left|I_{j}\right|=\sum_{r} \quad \Sigma_{4}^{(r)}\left|I_{j}\right| \tag{23}
\end{equation*}
$$

where in $\Sigma_{4}^{(r)}$ we have $(r=0,1 \cdots)$

$$
\begin{equation*}
2^{r} T<\left|I_{j}\right| \leqq 2^{r+1} T \tag{24}
\end{equation*}
$$

if $2^{r+1} T>(1-\varepsilon) \log x$, then the upper bound in (24) should be replaced by $(1-\varepsilon) \log x$. Now we show that for sufficiently large T and every r

$$
\begin{equation*}
\Sigma_{4}^{(r)}\left|I_{j}\right|<2 x /\left(2^{r} T\right)^{\frac{1}{2}} . \tag{25}
\end{equation*}
$$

From (25) and (23) (21) easily follows for sufficiently large T. Thus to prove our Theorem we only have to show (25). The integers in the I_{j} of $\sum_{4}^{(r)}$ can not be relatively prime to $N_{2^{r+1} \cdot T}$ (N_{k} is the product of the primes not exceeding k) therefore if I_{j} is in an interval

$$
\left(u N_{2^{r+1} \cdot T},(u+1) N_{2^{r+1} \cdot T}\right)
$$

I_{j} must lie in an interval $\left(a_{i}+u N_{2^{r+1} \cdot T}, a_{i+1}+u N_{2^{r+1} . T}\right)$ where

$$
1=a_{1}<\cdots<a_{\phi}\left(N_{\left.2^{r+1}, T\right)}=N_{2^{r+1}, T}-1\right.
$$

are the integers relatively prime to $N_{2^{r+1}, T}$. Since $2^{r+1} T \leqq(1-\varepsilon) \log x$, it follows from the prime number theorem that $N_{2^{r+1, T}}=o(x)$, hence we easily obtain from Lemma 2 for sufficiently large T

$$
\sum_{4}^{(r)}\left|I_{j}\right|<\left(\left[\frac{x}{N_{2^{r+1} \cdot T}}\right]+1\right) N_{2^{r+1 . T}} /\left(2^{r} T\right)^{1 / 2}<2 x /\left(2^{r} T\right)^{1 / 2},
$$

thus (25) and hence our Theorem is proved. Unfortunately I can not handle the $\left|I_{j}\right|>\log x$ and thus can not prove that the density of the integers having property P exists.

Corollary. There are infinitely many composite integers satisfying (16).
By $\alpha_{p}>0$ there are infinitely many composite integers having property P, and if there would be only a finite number of integers with property (1) then for sufficiently large i in the set of integers $p_{i}<t<p_{i+1}$ no one would be relatively prime to the other, thus only a finite number of composite integers would have property P. This contradiction proves the corollary.

Let us say that the primes have property P_{0}, the composite integers satisfying (16) have property P_{1}. By induction with respect to k we define: An integer n has property P_{k} if it does not have property P_{j} for any $j<k$, but both intervals $(n, n+u(n))$ and $(n-u(n), n)$ contains an integer having one of the properties
$P_{j}, 0 \leqq j<k$. It is easy to see that for every $k \geqq 0$ the integers having property P_{k} have property P too, and conversely every integer having property P has property P_{k} for some $k \geqq 0$.

It is easy to show by induction with respect to k that the integers having property P_{k} have density 0 , hence from $\alpha_{p}>0$ we obtain that for every k there are infinitely many integers having property P_{k}.

References

1. A. Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soc. 47 (1941), 328-331: Sivasankaranarayana Pillai, On m consecutive integers III, Proc. Indian Acad. Sci. Sect. A, 12 (1940), 6-12.
2. P. Erdös, Problems and results on diophantine approximation, Compositio Math., 16 (1964), 52-65, see p. 52-53.
3. P. Erdös and A. Rényi, A probabilistic approach to problems of diophantine approximation, Illinois J. Math., 1 (1957), 303-315, see p. 314.
4. P. Erdös, The difference of consecutive primes, Duke Math J., 6 (1940), 438-441.
5. P. Erdös, Amer. Math. Monthly, 60 (1953), 423.
6. G. Hoheisel, Primzahlprobleme in der Analysis, Sitzungsber., Berlin (1930), 580-588.
7. C. Hooley, On the difference of crnsecutive numbers prime to n, Acta Arith., 8 (1962-63), 343-347.
8. P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Budapest 1953.

Technion-Israel. Institute of Technology. Haifa

