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1 . It is well known that the general continuous solution of Cauchy's functional
equation

( I )

	

f(x +Y) = f(x) +f(y)
is (see e . g . [3] or [1])
(2)

	

f(x) =c_x,

with an arbitrary constant c . As DARBOUX has proved ([4]), this (with nonnegative
c's) is also the most general solution of (1) which is nonnegative for positive -Ys
(it is even enough to suppose the nonnegativity for small positive x's) . But without
any regularity-suppositions (2) isn't anymore the most general solution of (I) .
this can be shown and at the same time the most general solution of (1) can be
constructed with the Hamel-basis of real numbers ([7]) .

In all these results (I) was supposed valid for all real x, y and then also (2) is
verified for all real x's moreover, the Hamel-basis also gives a representation of
all real numbers. - But for many applications (see e . g . [l]), (1) can be supposed
valid only for nonnegaiire x, y . It is easy to show that (2) (with nonnegative x) remains
the most general continuous solution of (I) also with this restriction and with non-
negative x, c also the most general solution nonnegative for (small) positive variables .
- But how to construct in this case the most general solution of (1) for nonnegatii - e
x, y? Are there Hamel-bases of the nonnegatit -e numbers?

In this little note we answer the second question in the negative and construct
nevertheless the general solution asked for in the first one .

2. We first recall the above-mentioned results of Cauchy, Darboux and Hamel
with short proofs : (1) implies by induction

(3) f(x1+x, + . . . +xn) =Í(xl)+f(x,) + . . . +f(xn)

and with XI =x2 = . . . X"= .v

(4)

	

f(nx)=nf(x) .

If now x

	

t (in = 0, n > 0) then by (4)
n

nf(x) = f(nx) = f(mt) = n?f(t) i . e . .ln tj =
in , (1)
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Ul
(5)

	

f(rt)=rf(t)

_for positive rational r's . For x=o (1) gives

(6)

	

f(o)=0,

so that (5) remains valid for all normegatire rational r's . If (1) was supposed for
negative x's too, then from (1) with y =-x

{7)

	

f(- r) -=- -f(x)

follows and (5) becomes valid for all negative rational is too . - In particular for
t- 1 we have from (5) . by denoting f( I )=c,

(8)

	

f(r) -cr .

for all nonnegative rational or for all rational r's . respectively .
If f is supposed to be continuous, then from (8)

(2)

	

f(x)=c.v

follows also for all nonnegative or crll real x's, respectively. But iris follol,s also
from the nornregatirity of(srrrall) positive x's .

In fact. then for (small) y > 0

Px+y) = f(x)-i-f(0 =Px)
i . e . f is monotonic (increasing) and now for irrational, x we take two sequences
and {R„} tending to x monotonically from below or from above, respectively . Then
r„ -x R„ and by (8) and by the monotony of J

cr.,, f(r„) - f(x) -- .f(R„) -- cR„ .

But for n- , both {r„ ; and )'R,,') tend to x, so cr„ -(,x, ( , R,--(-x andfix). being
between the two has to be ex too, so that (2) is proved (f( .v) = c x is nonnegative
for positive x's if c-0) .

Now, if no r•egrrlar•ity-srrppo,citions are made at all . but (1) is supposed valid fór
all real _s - , y, then we make use of the Hamei-bases of real numbers . Hamei ([7])
has proved that there exist subsets B (the „Hamei-bases") of the set of real numbers the
elements of which are rationally independent (i . e . r,b, +-r z b, -!- . . . +r,,,b,,, = 0 only
if r, -- r, _ . . . =r •,,,=0, here b ; (B and the r r 's are rational numbers ;

	

1 . 2 . . . .
m, nr being an arbitrary positive integer) and so that all real numbers can be

represented in a unique wa .v as linear combinations of the basis-elements with
rational coefficients :

(9)

	

-V - r, b,+r,bz+ . . .+r„b„

	

(bi EB.r, rational) .

So the general solution of (I ) can be constructed by choosing the values of f in an
arbitrary )ray on B and then .for any real x with the repre entaion (9) by definingf by

f(x) = r , f(b, ) + r-.f(b2) + . . . + r„ f(b„ )-
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In fact . ( 10) satisfies (1), as one can see by substitution and on the other hand . from
(3), (5) (which were consequences of (1), derived without any regularity-suppositions
and from (4)

f(x ) a= 10- , h, -i-rzb z ~ . .

	

r„b„) = r j(b, )+r,.f(b,)+ . . . r,,f(bj

i . e. (10) follows, q . e . d .

3 . This last proof shows that we could construct the general solution of the
equation (1) valid for nonnegative x, y, if there would exist a "Hamei-basis B' of
the nonnegative numbers" the elements of which were nonnnegative real numbers
and any non-negative real number could be represented in a unique way as linear
combinations of the basis-elements with non-negative rational coefficients. We show
that this is not possible .

In fact, if there would exist such a basis B', then its elements would have to be
rcuiowdly independent as defined above (i . e. with r; rational and not only positive
rational numbers) for if e . g .

r,b, ~r,b, + . . . -41.iA-r'k+1bk+r - . . .- r•,,,b,,, =0

could hold with positive rational r r "s and with one r j different from 0, then the
representation of the nonnegative number

.v - r, h r + r,h, ' . . . -? 1 'khk

would not be unique . -- But for two basis elements b, , h, there exist positive
numbers it big enough so that

y = 11b, -h,> 0 .
If y had a representation

y = r,b,--rzb,+r3ó3+ • • . +r„b„

	

(rt>0 rational bj ~B')

then the bags elements would not be rationally independent as we would have

rtb, - h = 1, b, + 1•,b, + r-b 3 =, . . . + r„h,, ,

i . e . (1•, -rt)b, ,1 ()• z + 1)b, +r 3b3 -!- . . . -i-r„b„ -- 0, r, ~- I

	

0. Thus we have proved

the followinc=

Theorem l . There don't e .vist Harnel-bases of the set of nonnregatiee numbers,
i. e. there does not e.vist an y set B' whose elements are nonnne-wire and an 1 , rton-
negatire number is representtable cn .s a linear combination of a finite number of elements
of B' with nonne,~Fatire rationed coefficients in ti unique wcij , .

The question of existence of such a Hamel-basis of the nonnegative numbers
vwas raised by ,I . Z . Yao (verbally) .

4. Theorem I shows that the general solution . of (1) for nonnegative x . y cannot
be constructed in analogy to Hamel's construction ([7]) of the general solution of
(1) for all real v . y . We will show, however, that this can be done in consequence
of Hamel's theorem . In fact, we shall prove that every solution Of(l)fill- nonnegative
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x, y can he extended to a solution of (1) .fór all real x, y . This can be done by defining

(7)

	

ft-x) =-f(x)

for -x 0. We have to prove that the so extended f(x) satisfies (1),for all real x, y
if the original . f(x) (x-0) satisfies (1) . for all nonnegatire x, y .

We distinguish 6 cases :
1 . x-0, y-0 : there is nothing to be proved .
2. x-0, Y <O, x -1 y---O . Then by (7) and by the validity of (1) for nonnegative

variables :

thus
f(x +Y) = f(x) +f(Y).

3. x<0. y-0, x+y--O : proof analogous to 2 .
4 . .v0, y-0, x- -Y -:0 . Again by (7) and by (1) being valid for nonnegative

variables :

f(Y) =-.f(-v) =-f(-(x+y)+x) = - (f(-(x+ Y))+f(x)) = .f(x+Y)-.f( .x)
thus

f(x +Y) = f(x) +f(y),
in this case too .

5. x<0, y-0, x+y , 0 : proof analogous to 4. And finally

6. x~0, y<O :

.f(x+y) =-.f - x-y) =-f((-x)+(-y)) =-(f(-x)-f-f(-Y)) -

= .f(x) +f(y) a . e. d .

On the other hand every solution of (1) for all real x, y co ipso satisfies (I) also
for all nonnegative x, y .

So we have proved the following

Theorem 2. Every solution of Cauchy's . functional equation

(I)

	

f(x+y) =f(x)+.f(y)
,for nonnegatire x, y can be extended by the definition

(7)

	

f(- x) =-.f(x)

to a solution o f ( I ) for all real x, y .
So every solution of (I )for nonnegatire x, y can be given by taking an arbitrary

solution f(x) of the,fiunctional equation (1) considered,for all real x, y, and by restrict-
ing it to nonnegatire x's .

Everywhere in this note the word "nonnegatire" can be replaced by "positive"
only then in 4 also
(6)

	

f(0)=0
has to be considered as a definition .

f(x) =f((x+Y) +( -Y)) - Ax +y)+f( - Y) = .f'(x+Y)-f(y),
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The content of this little note falls also under the heading "functional equations
on restricted domains" (see e . g . [8], [5] . [9], [2] . [l0], [6]) . which is a newer field
of research in the theory of functional equations .
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