A LIMIT THEOREM IN GRAPH THEORY

by

P. FRDŐS and M. SIMONOVITS¹

In this paper G(n; l) will denote a graph of n vertices and l edges, K_n will denote the complete graph of p vertices $G\left(p; \binom{p}{2}\right)$ and $K_r(p_1, ..., p_r)$ will denote the rchromatic graph with p_i vertices of the *i*-th colour, in which every two vertices of different colour are adjacent. $\pi(G)$ will denote the number of vertices of G and v(G) denotes the number of edges of G. $\overline{G}(n; l)$ denotes the complementary graph of G(n; l) i. e. $\overline{G}(n; l)$ is the $G(n; \binom{n}{2} - l)$ which has the same vertices as G(n; l)and in which two vertices are joined with an edge if and only if they aren't joined

in G(n; l). $\overline{K}(p_1, ..., p_r)$ thus denotes the union of the disjoint graphs K_{p_i} (i = 1, 2, ..., r). In 1940 TURÁN [8] posed and solved the following question. Determine the smallest integer m(n, p) so that every G(n; m(n, p)) contains a K_p . TURÁN in fact showed that the only G(n; m(n, p)-1) which contains no K_p is

 $K_{p-1}(m_1, ..., m_{p-1})$ where $\sum_{i=1}^{p-1} m_i = n$ and the m_i are all as nearly equal as possible.

A simple computation shows that

(1)
$$\lim_{n \to \infty} \frac{m(n, p)}{\binom{n}{2}} = 1 - \frac{1}{p-1} \qquad (p > 1).$$

Recently several more extremal problems in graph theory have been investigated and in this paper we continue some of these investigations [4]. First of all we prove the following general

THEOREM 1. Let G_1, \ldots, G_l be l given graphs and denote by $f(n; G_1, \ldots, G_l)$ the smallest integer so that every $G(n; f(n; G_1, ..., G_l))$ contains one of the graphs G_1, \ldots, G_l as subgraphs. We have

$$\lim_{n \to \infty} \frac{f(n; G_1, ..., G_l)}{\binom{n}{2}} = 1 - \frac{1}{r}$$

where $r \ge 1$ is an integer which depends on the graphs $G_i(1 \le i \le l)$.

Theorem 1 easily follows from the following known result [3]:

¹ Eötvös L. University, Department of Mathematics Budapest.

4*

For every p > 1, r > 1, $\varepsilon > 0$ and $n > n_0(p, r, \varepsilon)$

(2)
$$\binom{n}{2} \left(1 - \frac{1}{r-1} + o(1)\right) < f(n; K_r(p, ..., p)) < \binom{n}{2} \left(1 - \frac{1}{r-1} + \varepsilon\right).$$

Denote by $\varkappa(G)$ the chromatic number of G and put

(3)
$$\min_{1 \le i \le l} \varkappa(G_i) = r+1.$$

Without loss of generality assume that $\varkappa(G_1) = r + 1$.

Turán's graph $K_r(m_1, ..., m_r)$ where $\sum_{i=1}^r m_i = n$ and the m_i are as nearly equal as possible is clearly *r*-chromatic thus by (3) can not contain any of the G_i , $1 \le i \le l$. A simple computation shows

(4)
$$v(K_r(m_1, ..., m_r)) = {n \choose 2} \left(1 - \frac{1}{r} + o(1)\right).$$

Put $\pi(G_1) = t$ and let $\varepsilon > 0$ be arbitrary and let $n > n_0(t, r+1, \varepsilon)$. Then by (2) every $G\left(n; \binom{n}{2}\left(1 - \frac{1}{r} + \varepsilon\right)\right)$ contains a $K_{r+1}(t, ..., t)$ which by $\pi(G_1) = t$ clearly contains G_1 . This together with (4) completes the proof of Theorem 1.

An unpublished result of P. Erdős states that

(5)
$$f(n; K_r(p, ..., p)) = \binom{n}{2} \left(1 - \frac{1}{r-1}\right) + O(n^{2-c})$$

where c depends only on p and r. (5) easily implies that

$$f(n; G_1, ..., G_l) < {n \choose 2} \left(1 - \frac{1}{r}\right) + O(n^{2-c})$$

where $r + 1 = \min \varkappa(G_i)$ and c depends only on the graphs $G_1, ..., G_l$. Now we prove

THEOREM 1'. Let k be an integer and $H_1, ..., H_m$ with $v(H_j) \leq k$ given graphs. Denote by $h(n; H_1, ..., H_m; k)$ the smallest integer for which there is a graph $G(n; h(n; H_1, ..., H_m; k))$ every subgraph of which spanned by any k vertices of our graph $G(n; h(n; H_1, ..., H_m; k))$ contains one of the graphs $H_1, ..., H_m$. Then

where $t \ge 1$ is an integer, or $t = \infty$.

Theorem 1' could also be deduced easily from (2), but we show, that it follows from theorem *I*. In fact we shall show, that the two theorems are equivalent.

a) First we show that if there are given graphs $L_1, ..., L_\mu$ with $\pi(L_i) \leq k$, then there exist graphs $M_1, ..., M_\nu$ so, that a graph G of k vertices contains at least one of $L_1, ..., L_\mu$ if and only if \overline{G} contains none of $M_1, ..., M_\nu$.

From this of course follows that a graph G of k vertices contains none of L_1, \ldots, L_{μ} if and only if \overline{G} contains at least one of M_1, \ldots, M_{ν} which shows the symmetricity between L_1, \ldots, L_{μ} and M_1, \ldots, M_{ν} .

To prove our statement we define the graphs M_j : Let M_j be those graphs, for which $\pi(M_j) = k$ and \overline{M}_j contains none of $L_1, ..., L_\mu$. A very important property of the set of graphs $M_1, ..., M_\nu$ is that if $H \supset M_j$ and $\pi(H) = k$ then H occurs among $M_1, ..., M_\nu$ because $\overline{M}_j \subset \overline{H}$, further \overline{M}_j contains none of $L_1, ..., L_\mu$, and so \overline{H} does not contain any of $L_1, ..., L_\mu$.

Now, if $G \supset L_i$, then \overline{G} does not occur among $M_1, ..., M_v$ so \overline{G} does not contain any of $M_1, ..., M_{\mu}$. On the other hand, if G does not contain any of $L_1, ..., L_{\mu}$, then \overline{G} occurs among $M_1, ..., M_{\mu}$, and this proves the second half of our statement.

If we have a graph F, which has $f(n, L_1, ..., L_{\mu}) - 1$ edges and does not contain any of the graphs $L_1, ..., L_{\mu}$ then each subgraph spanned by its k vertices contains none of $L_1, ..., L_{\mu}$, so each subgraph of \overline{F} spanned by its k vertices contain at least one of those $M_1, ..., M_{\nu}$ which we have defined in a), moreover \overline{F} has the minimal number of edges among the graphs, each subgraph of which spanned by its k vertices contain at least one of $M_1, ..., M_{\nu}$:

$$v(\overline{F}) = h(n; M_1, ..., M_v) = \binom{n}{2} - f(n; L_1, ..., L_\mu) + 1.$$

So we can investigate a problem of the second type instead of a problem of the first type.

b) On the other hand, if there are given $M_1, ..., M_v$, with $\pi(M_j) \leq k$, we know, that there exist $L_1, ..., L_{\mu}$ so, that a graph G of k vertices contains at least one of $M_1, ..., M_v$ if and only if \overline{G} contains none of $L_1, ..., L_{\mu}$, or (what is equivalent with this) a graph G of k vertices contains none of $M_1, ..., M_v$ if and only if \overline{G} contains a none of $M_1, ..., M_v$ if and only if \overline{G} contains a some of $L_1, ..., L_{\mu}$, or (what is equivalent with this) a graph G of k vertices contains none of $M_1, ..., M_v$ if and only if \overline{G} contains at least one of $L_1, ..., L_{\mu}$. Now, if H is a graph, which has $h(n; M_1, ..., M_v)$ edges, and each of its subgraph, spanned by its k vertices contains at least one of $M_1, ..., M_v$, then each subgraph of \overline{H} spanned by its k vertices contains none of $L_1, ..., L_{\mu}$, moreover has the maximal number of edges among the graphs each subgraph of which spanned by its k vertices contain none of $L_1, ..., L_{\mu}$:

$$v(\overline{H}) = f(n; L_1, ..., L_{\mu}) - 1 = \binom{n}{2} - h(n; M_1, ..., M_{\nu}).$$

This proves in particular Theorem 1'.

Now we return to the study of our function $f(n; G_1, ..., G_l)$. The proof of Theorem 1 shows that the order of magnitude of $f(n; G_1, ..., G_l)$ depends only on min $\varkappa(G_i)$. Nevertheless we show that the graphs G_i of higher chromatic number and in fact the structure of all the G_i , $(1 \le i \le l)$ also have an influence on $f(n; G_1, ..., G_l)$. To see this let G_1 be the graph consisting of a quadrilateral and a fifth vertex which is joined to all four vertices of the quadrilateral. It is known that [4] for $n > n_0$

(6)
$$f(n; G_1) = \left[\frac{n^2}{4}\right] + \left[\frac{n}{4}\right] + \left[\frac{n+1}{4}\right] + 1.$$

But on the other hand it is easy to show that for $n > n_0$

(7)
$$f(n; G_1, K_4) = \left[\frac{n^2}{4}\right] + \left[\frac{n+1}{4}\right] + 1.$$

Both (6) and (7) are easy to prove by induction and can be left to the reader.

Observe that $f(n; G_1) > f(n; G_1, K_4)$, G_1 is three-chromatic and K_4 is fourchromatic.

In every case we know the structure of the "extremal graphs" i. e. those

(8)
$$G(n; f(n; G_1, ..., G_l) - 1)$$

which do not contain any of the graphs G_i $(1 \le i \le l)$ these graphs are Turán graphs $K_{p-1}(m_1, ..., m_{p-1})$ for some p to which perhaps $o(n^2)$ further edges are added. Perhaps this is true in the general case, or at least the extremal graphs (8) contain a very large Turán graph (with say *cn* vertices). At present we are unable to attack this conjecture. The simplest case where we do not know anything about the structure of the extreme graph is the case of $K_3(2, 2, 2)$. It is known [4] that

$$\frac{n^2}{4} + c_2 n^{3/2} < f(n; K_3(2, 2, 2)) < \frac{n^2}{4} + c_1 n^{3/2}$$

but we don't know whether the extreme graphs contain a "large" Turán graph

Let $\binom{u}{2} \leq l < \binom{u+1}{2}$, $u \geq 2$. We now prove ([4])

THEOREM 2. Let n be sufficiently large. Then

(9)
$$f(n; G(k; l)) \leq f\left(n; G\left(u; \begin{pmatrix} u \\ 2 \end{pmatrix}\right)\right) = m(n, u).$$

Equality only if either G(k; l) contains a K_u or if u = 3 and G(k; l) is a pentagon.

First we prove the following

LEMMA 1. Let $l < \binom{u+1}{2}$. Then either $\varkappa(G(k; l)) < u$ or G(k; l) has an edge e so that $\varkappa(G(k; l) - e) < u$. G - e is the graph from which the edge e has been omitted.*

We use induction with respect to u. It is easy to see that the Lemma holds for u=3. Assume that it holds for u-1 and we prove it for u. If G has a vertex x of valency $\ge u$, let G^* be the graph which we obtain from G by omitting x and all edges incident to x. G^* has fewer than $\binom{u}{2}$ edges. Hence by the induction hypothesis there is an edge e so that $\varkappa(G^*-e) \le u-2$, or $\varkappa(G-e) \le u-1$.

We can therefore assume that all vertices of G have valency exactly u-1, (since the vertices of valency < u-1 could simply be omitted.) Since G has at most $\binom{u+1}{2}-1$ edges, we obtain that it has at most u+2 vertices and for these graphs our Lemma can be proved by simple inspection.

* Our original proof was more complicated. This simple proof we owe to V. T. Sós.

Now we can prove Theorem 2.1) First assume u > 3. It is known [5] that for every r and $n > n_0(r)$ every G(n; m(n, u)) contains a $K_u(r, ..., r)$ and an extra edge joining two vertices of the first r-tuple, and by our Lemma it is easy to see that for $r \ge k$ our G(k; l) is a subgraph of this graph.

2) If u = 3, $m(G) < \binom{4}{2} = 6$ and G contains no triangle then $\varkappa(G) \le 3$ and $\varkappa(G) = 3$

if and only if G is a pentagon and it is known [4] that in this case

(10)
$$f(n;G) = \left[\frac{n^2}{4}\right] + 1 = m(n,3).$$

3) Lastly, the case when u=3 and G contains a triangle was discussed in [4].

The equality in (9) if u > 3 holds if and only if G contains a K_u . This can be obtained by a simple discussion, which we leave to the reader.

Finally we investigate h(n; G; k) for some special graphs G. Let G be the graph which consists of l disjoint edges and assume k > 2l. We outline the proof of the following

THEOREM 3. Let $n > n_0(k, l)$. Then

$$h(n; G_l; k) = \binom{n}{2} - m(n, k - 2l + 2) + 1$$

and the only graph $G(n; h(n; G_l; k))$ for which every subgraph spanned by k of its vertices contains a G_l is \overline{K}_{k-2l+1} $(m_1, ..., m_{k-2l+1})$ where $\sum_{i=1}^{k-2l+1} m_i = n$ and the m_i are all as nearly equal, as possible.

First of all it is easy to see that the subgraph spanned by any k vertices of $\overline{K}_{k-2l+1}(m_1, ..., m_{k-2l+1})$ contains a G_l . We leave the simple verification to the reader. This shows

$$h(n; G_l; k) \leq {n \choose 2} - m(n, k - 2l + 2) + 1.$$

To complete the proof of Theorem 3 we now have to show the opposite inequality in other words we have to show that if $G\left(n; \binom{n}{2} - m(n, k - 2l + 2)\right)$ is any graph then there are k vertices $x_1, ..., x_k$ so that the subgraph of $G\left(n; \binom{n}{2} - m(n, k - 2l + 2)\right)$ spanned by these k vertices does not contain a G_l and further that the only $G\left(n; \binom{n}{2} - m(n, k - 2l + 2) + 1\right)$ which does not have this property is $\overline{K}_{k-2l+1}(m_1, ..., m_{k-2l+1})$. These statements will follow immediately from the following

LEMMA 2. There is a constant $c_r > 0$, independent of n, so, that every G(n; m(n, r+1)), or a G(n; m(n, r+1)-1), which is not a $K_r(m_1, ..., m_r)$ (where $\Sigma m_i = n$ and m_i are all as nearly equal as possible) contains a K_r and c_rn other vertices, each of which is joined to every vertex of an K_r .

REMARKS. TURÁN'S theorem implies that every G(n; m(n, r+1)) contains a K_{r+1} and it is known [2], [4] that every such graph contains a K_{r+2} from which one edge is perhaps missing i. e. it contains a K_r and two vertices each of which is joined to every vertex of our K_r . Our Lemma is sharpening of this result.

We supress the proof of our Lemma since it is very similar to the case when r=2 which is known [6].

Let now *n* be sufficiently large and G(n; e) be any graph, for which

$$e \leq v(\overline{K}_{k-2l+1}(m_1, ..., m_{k-2l+1})) = \binom{n}{2} - m(n, k-2l+2) + 1$$

and which is not a $\overline{K}_{k-2l+1}(m_1, ..., m_{k-2l+1})$ (where $\Sigma m_i = n$; and m_i are all nearly equal, as possible).

By our lemma, the complementary graph of our G(n, e) contains a K_{k-2l+1} and 2l-1 vertices, each of which is joined to every vertex of our K_{k-2l+1} , i. e. there are k vertices, which span in our G(n; e) a subgraph, which consist of k-2l+1isolated, vertices and a graph of 2l-1 vertices and hence it can not contain l independent edges. This completes the proof of Theorem 3.

It is easy to see that if k = 2l the extreme graphs are no longer TURÁN's graphs, it is easy to see that in this case

(11)
$$h(n; G_l; 2l) = \binom{n}{2} - (l-1)n$$

To see this observe that if one vertex of G_l is not joined to 2l-1 vertices these 2*l* vertices can not contain independent edges. This proves

$$h(n; G_l; 2l) \ge \binom{n}{2} - (l-1)n.$$

On the other hand, the following example shows, that

$$h(n; G_l; 2l) \le \binom{n}{2} - (l-1)n$$

Let the vertices of G_l^* be the *n*-th roots of unity, two such vertices are joined if their distance — on the circle |z| = 1 — is greater, then $(l-1)\frac{2\pi}{n}$.

In this case, if the vertices of our graph are $P_1, ..., P_n$ and $A_1, ..., A_k$ are k vertices of them enumerated, as they are on the circle, then A_i and A_{i+l} , (i=1,2,...,l) will be connected, so there will be l independent edges in the subgraph, spanned by $A_1, ..., A_k$.

We do not investigate the question of the unicity of the extremal graphs.

Denote by $G_l^{(3)}$ the graph consisting of *l* independent triangles. We outline the proof of the following

THEOREM 4. Let $n > n_0(l)$. Then

$$h(n; G_1^{(3)}; 3l+2) = \binom{n}{2} - m(n, 3) + 1 = \binom{\left\lceil \frac{n}{2} \right\rceil}{2} + \binom{\left\lceil \frac{n+1}{2} \right\rceil}{2}$$

and the only extreme graph is $\overline{K}_2\left(\left\lceil \frac{n}{2} \right\rceil; \left\lceil \frac{n+1}{2} \right\rceil\right)$.

On the other hand, if l > 1

(12)
$$\binom{n}{2} - C_l n^{3/2} < h(n; G_l^{(3)}; 3l+1) < \binom{n}{2} - n^{1+\varepsilon_l} \quad (\varepsilon_l > 0).$$

The structure of the extreme graph (or graphs) is unknown. It is easy to see that $h(n; G_l^{(3)}; 4) = \binom{n-1}{2}$ and K_{n-1} is the only extreme graph.

First of all it is easy to see that every subgraph spanned by 3l+2 vertices of $\overline{K}_2\left(\left[\frac{n}{2}\right], \left[\frac{n+1}{2}\right]\right)$ contains a $G_l^{(3)}$.

Let G be any graph for which

$$\pi(G) = n, \quad \nu(G) \ge \left\lfloor \frac{n^2}{4} \right\rfloor$$

and if $v(G) = \left[\frac{n^2}{4}\right]$ then G is not $K_2\left(\left[\frac{n}{2}\right], \left[\frac{n+1}{2}\right]\right)$. If $n > n_0(\tilde{l})$ then it is known [5] that G contains a subgraph of 3l+2 vertices $x_1, x_2, x_3; y_1, \dots, y_{3l-1}$ where all the edges

$$(x_1, x_2); (x_i, y_i) \quad 1 \le i \le 3 \quad 1 \le j \le 3l-1$$

are in G. Clearly these 3l+2 vertices span a subgraph of \overline{G} which does not contain $G_{l}^{(3)}$. This completes the proof of the first half of Theorem 4.

To prove the second half we observe that it is known that every $G(n; [c_i n^{3/2}])$ contains a $K_2(2, 3l-1)$ hence the subgraph of $\overline{G}(n; [c_l n^{3/2}])$ spanned by the vertices of our $K_2(2, 3l-1)$ clearly contains no $G_l^{(3)}$ this proves the left side inequality of (12).

Now we outline the proof of the right hand side of (12). First of all it is known [7] that there exists a graph $G(n; n^{1+\epsilon_l})$ which contains no circuit having $\leq 3l+1$ edges. Thus our proof will be complete if we can show that if l > 1 and G(3l+1; p)is any graph of 3l+1 vertices which contains no circuit then $\overline{G}(3l+1;p)$ contains l independent triangles. This can be shown easily by induction with respect to l and can be left to the reader. Thus the proof of Theorem 4 is complete.

(Received October 19, 1964.)

REFERENCES

- [1] BROOKS, R. L.: On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197.
- [2] DIRAC, G.: Extensions of Turán's theorem on graphs, Acta Hung. Acad. Sci. 14 (1963) 417-422, see also [4].
- [3] ERDŐS, P. and STONE, A. H.: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
- [4] See e. g. ERDős, P.: Extremal problems in graph theory, Proc. Symposium, Theory of Graphs and its applications Smolenice (1963), 29-36.
- [5] ERDős, P.: On the structure of linear graphs, Israel J. of Math. 1 (1963), 156-160. In this paper the theorem is proved in detail only for r=2.
- [6] ERDős, P.: On the theorem of Rademacher-Turán, Illinois J. of. Math. 6 (1962) No. 1. March.
- [7] ERDŐS, P.: Graph theory and probability, Canad. J. Math. 11 (1959) 34-38.
 [8] TURÁN, P.: Mat. és Fiz. Lapok 48 (1941) 436-452 (in Hungarian), see also "On the theory of graphs" Coll. Math. 3 (1954) 19-30.