ON A PROBLEM OF GRAPH THEORY

by

P. ERDŌS ${ }^{1}, \mathrm{~A}$. RÉNYI ${ }^{2}$ and V. T. SÓS ${ }^{2}$

§ 0. Introduction

Let G_{n} be a non-directed graph having n vertices, without parallel edges and slings. Let the vertices of G_{n} be denoted by P_{1}, \ldots, P_{n}. Let $v\left(P_{i}\right)$ denote the valency of the point P_{i} and put

$$
\begin{equation*}
V\left(G_{n}\right)=\max _{1 \pm i=n} v\left(P_{i}\right) . \tag{0.1}
\end{equation*}
$$

Let $E\left(G_{n}\right)$ denote the number of edges of G_{n}. Let $\mathbf{H}_{4}(n, k)$ denote the set of all graphs G_{n} for which $V\left(G_{n}\right)=k$ and the diameter $D\left(G_{n}\right)$ of which is $\leqq d$, $(k=1,2, \ldots, n-1 ; d=2,3, \ldots, n-1)$.

In the present paper we shall investigate the quantity

$$
\begin{equation*}
F_{d}(n, k)=\min _{G_{n} \in \mathcal{H}_{d}(n, k)} E\left(G_{n}\right) . \tag{0.2}
\end{equation*}
$$

Thus we want to determine the minimal number N such that there exists a graph having n vertices, N edges and diameter $\cong d$ and the maximum of the valencies of the vertices of the graph is equal to k.

To help the understanding of the problem let us consider the following interpretation. Let be given in a country n airports; suppose we want to plan a network of direct flights between these airports so that the maximal number of airports to which a given airport can be connected by a direct flight should be equal to k (i.e. the maximum of the capacities of the airports is prescribed), further it should be possible to fly from every airport to any other by changing the plane at most $d-1$ times; what is the minimal number of flights by which such a plan can be realized? For instance, if $n=7, k=3, d=2$ we have $F_{2}(7,3)=9$

Fig. 1 and the extremal graph is shown by Fig. 1.

The problem of determining $F_{d}(n, k)$ has been proposed and discussed recently by two of the authors (see [1]). In § 1 we give a short summary of the results of the paper [1], while in $\$ 2$ and 3 we give some new results which go beyond those of [1]. Incidentally we solve a long-standing problem about the maximal number of edges of a graph not containing a cycle of length 4 .

In $\S 4$ we mention some unsolved problems.
Let us mention that our problem can be formulated also in terms of $0-1$ matrices as follows: Let $M=\left(\varepsilon_{i j}\right)$ be a symmetrical n by n zero-one matrix such

[^0]that $\varepsilon_{i i}=1, \max _{1 \approx i \leq n} \sum_{j=1}^{n} \varepsilon_{i j}=k+1$ and all elements of M^{d} are $\equiv 1$. We want to determine

Clearly

$$
M_{d}(n, k)=\min \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{i j} .
$$

$$
\begin{equation*}
M_{d}(n, k)=2 F_{d}(n, k)+n . \tag{0.3}
\end{equation*}
$$

This formulation shows the connection of our problem with non-linear programming.
We give for the case $d=2$ a third formulation of our problem which displays its connection with the theory of block designs.

Let be given a sequence $A_{1}, A_{2}, \ldots, A_{n}$ of subsets of the elements $1,2, \ldots, n$ such that if $j \in A_{i}$ then $i \in A_{j}$. Let us suppose that denoting by $|A|$ the cardinal number of the set A, we have $\max _{1=j \leqq n}\left|A_{j}\right|=k$. Let us suppose that for any $i(1 \leqq i \leqq n)$ and any $j \neq i$ such that $j \notin A_{j}$ there is a set A_{k} which contains both i and j (this is equivalent by our supposition of symmetry to the statement that the sets A_{i} and A_{j} are not disjoint). The problem is to determine

$$
\begin{equation*}
\min \sum_{i=1}^{n}\left|A_{1}\right|=2 F_{2}(n, k) . \tag{0.4}
\end{equation*}
$$

§ 1. Some Basic Inequalities, and some Asymptotic Results

It is easy to see that if there exists a graph G_{n} with $V\left(G_{n}\right)=k$ and diameter $\leqq d$, then

$$
\begin{equation*}
n \leqq 1+k \frac{(k-1)^{d}-1}{k-2} \tag{1.1}
\end{equation*}
$$

(1.1) can be proved as follows: if $V\left(G_{n}\right)=k$ the number of points which can be reached from a given point, say, P_{1} by an edge is $\leqq k$; the number of points which can be reached from P_{1} by a path of length 2 is $\geqq k(k-1)$ and finally the number of points which can be reached by a path of length d is $\leqq k(k-1)^{d-1}$. Thus if the graph has diameter $\leqq d$ we have

$$
(n-1) \leqq k\left(1+(k-1)+(k-1)^{2}+\ldots+(k-1)^{d-1}\right) .
$$

This proves (1.1). If both n and k are odd, then G_{n} must contain at least one point of valency $\leqq k-1$ (because the number of points of odd valency cannot be odd); thus in this case we get

$$
\begin{equation*}
n \leqq 1+(k-1) \frac{(k-1)^{d}-1}{k-2} . \tag{1.2}
\end{equation*}
$$

Note that for the graph shown by Fig. 1, equality stands in (1.2). For the graph shown on Fig. 2 (the so-called Petersen-graph) equality stands in (1.1) with $n=10$, $k=3, d=2$.

As regards $F_{d}(n, k)$ we obtain easily the lower bound

$$
\begin{equation*}
F_{a}(n, k) \geqq \frac{n(n-1)(k-2)}{2\left((k-1)^{4}-1\right)} . \tag{1.3}
\end{equation*}
$$

(1.3) can be proved as follows: every edge is itself a path of length 1 ; it can be contained in at most $2(k-1)$ paths of length 2 , but in this way each path of length 2 is counted twice, thus the number of paths of length 2 cannot exceed $E\left(G_{n}\right)(k-1)$. In general each edge can be contained in at most $3(k-1)^{2}$ paths of length 3 , but in this way each path of length 3 is counted three times, thus the number of paths of length 3 cannot exceed

Fig. 2 $E\left(G_{n}\right)(k-1)^{2}$, etc. As in case G_{n} has diameter $\equiv d$ the number of paths of length $\leqq d$ has to be at least $\binom{n}{2}$, we obtain

$$
\begin{equation*}
E\left(G_{n}\right)\left(1+(k-1)+\ldots+(k-1)^{d-1}\right) \geq\binom{ n}{2} . \tag{1.4}
\end{equation*}
$$

which implies (1.3). Note that one has equality in (1.4) for the Petersen graph shown on Fig. 2., further for $n=5, k=2, d=2$ because a cycle of length 5 has 5 vertices, each of which has valency 2 , it has diameter 2 and the number of its edges is $5=\frac{5 \cdot 4}{2 \cdot 2}$.

It is clear from the above proof that one can have equality in (1.4) only for a regular graph of order k, i. e. if $E\left(G_{n}\right)=\frac{n k}{2}$ and if any two points are joined by one and only one path of length $\geqq d$.

The first condition implies that if equality stands in (1.4) then there is equality in (1.1) too. For the case $d=2$ this means that a necessary condition of equality in (1. 4) is $n=k^{2}+1$. It has been shown by A. J. Hortman and R. R. Singleton [4] that a regular graph of order k, having $k^{2}+1$ points and diameter 2 exists only for $k=2,3,7$ and perhaps for $k=57$. Thus for $d=2$ except for these values of k one has strict inequality in $(1,3)$. However it has been shown in [1] that there exists an infinite sequence of pairs $\left(k_{j}, n_{j}\right)$ such that $k_{j} \rightarrow \infty, n_{j} \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{l \rightarrow-} \frac{F_{2}\left(n_{j}, k_{j}\right) k_{j}}{n_{j}\left(n_{j}-1\right)}=\frac{1}{2} . \tag{1.5}
\end{equation*}
$$

This is a consequence of the following
Theorem 1. If P is any prime power, there exists a graph G_{n} of order $n=P^{2}+P+1$ for which $V\left(G_{n}\right)=P+1$, which has diameter 2 and for which $E\left(G_{n}\right) \leqq \frac{1}{2}\left(n^{3 / 2}+n\right)$. The graph G_{n} has also the property that it does not contain any cycle of length 4 .

To make this paper self-contained we reproduce the proof of Theorem 1 given in [1].

Proof or Theorem 1. Let $G F(P)$ be the Galois field with P elements. Let us represent the points of the finite plane geometry $P G(P, 2)$ by triples (a, b, c) where a, b, c are elements of $G F(P)$, not all three equal to 0 , and $(\lambda a, \lambda b, \lambda c)$ with $\lambda \in G F(P), \lambda \neq 0$ represents the same point as (a, b, c). The number of different points of $P G(P, 2)$ is $P^{2}+P+1$. A straight line in $P G(P, 2)$ is the set of all points (x, y, z) which satisfy the equation $a x+b y+c z=0$; we denote this line by $[a, b, c]$. The point (a, b, c) and the line $[a, b, c]$ are clearly conjugate elements with respect to the conic $x^{2}+y^{2}+z^{2}=0$. As well known there are $P+1$ points on each line, any two different lines have exactly one point in common and through any two given points there is exactly one straight line. Now we define the mapping T which maps the point $A=(a, b, c)$ into the line $\alpha=[a, b, c]$ and conversely. We write $T A=\alpha, T \alpha=A$. This mapping has evidently the properties: if the point B lies on the line $\alpha=T A$ then the point A lies on the line $\beta=T B$; if C is the point of intersection of the lines $T A$ and $T B$ then $T C$ is identical with the line passing through the points A and $B ; A=(a, b, c)$ is on $T A$ if and only if $a^{2}+b^{2}+c^{2}=0$, i.e. if A lies on the conic $x^{2}+y^{2}+z^{2}=0$. Now let us define a graph $G_{n}\left(n=P^{2}+P+1\right)$ as follows: the vertices of G_{a} are the points of $\operatorname{PG}(P, 2)$; the vertices $A=(a, b, c)$ and $A^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are joined in G_{n} by an edge if and only if A^{\prime} is lying on $T A$ (and thus A is lying on $T A^{\prime}$). Clearly a vertex A in G_{n} has the valency P or $P+1$ according to whether A is on the conic $x^{2}+y^{2}+z^{2}=0$ or not* Thus

$$
\begin{equation*}
\frac{1}{2}\left(n^{3 / 2}-n\right) \leqq \frac{1}{2} P\left(P^{2}+P+1\right) \leqq E\left(G_{n}\right) \tag{1.6}
\end{equation*}
$$

and

$$
E\left(G_{n}\right) \leqq \frac{1}{2}(P+1)\left(P^{2}+P+1\right) \leqq \frac{1}{2}\left(n^{3 / 2}+n\right) .
$$

Finally the diameter of G_{n} is equal to 2 . As a matter of fact any two points A and B can be joined by the path $A C B$ where C is the point of intersection of the lines $T A$ and $T B$. Besides this A and B can be joined by a single edge if A lies on TB. But the point C such that the edges $A C$ and $B C$ both belong to G_{n} is in any case unique; thus G_{n} does not contain any cycle of length 4 .

Thus our Theorem is proved.
We deduce from Theorem 1 the following corollaries.
Corollary 1. Put $n_{k}=k^{2}-k+1$; then

$$
\begin{equation*}
\liminf _{k \rightarrow-} \frac{F_{2}\left(n_{k}, k\right) k}{n_{k}\left(n_{k}-1\right)}=\frac{1}{2} . \tag{1.7}
\end{equation*}
$$

* If P is prime, there are $P+1$ points on the conic and thus

$$
E\left(G_{n}\right)=\frac{P(P+1)^{2}}{2}>\frac{1}{2} n^{n / 2} \text { if } n \geqq n_{0} .
$$

Proof of Corollary 1. By (1.3)

$$
\begin{equation*}
\frac{F_{2}(n, k) k}{n(n-1)} \geq \frac{1}{2} \tag{1.8}
\end{equation*}
$$

further if $k=P+1, n_{k}=P^{2}+P+1$, by Theorem 1

$$
\begin{equation*}
F_{2}\left(P^{2}+P+1, P+1\right) \leqq \frac{1}{2}(P+1)\left(P^{2}+P+1\right) \tag{1.9}
\end{equation*}
$$

thus in this case

$$
\begin{equation*}
\frac{F_{2}\left(n_{k}, k\right) k}{n_{k}\left(n_{k}-1\right)} \leqq \frac{1}{2}\left(1+\frac{1}{P}\right) \tag{1.10}
\end{equation*}
$$

this proves our assertion.
Theorem 1 enables us also to solve - at least asymptotically - a problem which was raised by one of us 27 years ago (see [2]).*

Let C_{n} denote the class of graphs having n vertices and containing no cycle of order 4. Put

$$
\begin{equation*}
\mu(n)=\max _{G_{n} \in \mathbf{C}_{n}} E\left(G_{n}\right) . \tag{1.11}
\end{equation*}
$$

The problem is to determine the value of $\mu(n)$. From Theorem 1 we deduce the following

Corollary 2. We have

$$
\begin{equation*}
\lim _{n \rightarrow-} \frac{\mu(n)}{n^{3 / 2}}=\frac{1}{2} \tag{1.12}
\end{equation*}
$$

Proof of Corollary 2. It follows clearly from Theorem 1 that if P is a prime power, then putting $n=P^{2}+P+1$

$$
\begin{equation*}
\mu(n) \geqq \frac{1}{2}\left(n^{3 / 2}-n\right) \tag{1.13}
\end{equation*}
$$

It is possible that for these n the graph of Theorem 1 is extremal but we cannot prove this. Clearly $\mu(n)$ is an increasing function of n, and thus it follows that for any n we have

$$
\begin{equation*}
\left.\mu(n) \equiv \frac{1}{2}\left[P^{2}+P+1\right)^{3 / 2}-\left(P^{2}+P+1\right)\right] \tag{1.14}
\end{equation*}
$$

where P is the largest prime power such that $P^{2}+P+1 \leqq n$. Now evidently for $n \geqq n_{1}$ one can choose a prime p so that

$$
\begin{equation*}
\sqrt{n}-\frac{\sqrt{n}}{\log n} \cong p \leqq \sqrt{n}-1 \tag{1.15}
\end{equation*}
$$

[^1]which implies for $n \geqq n_{1}$
$$
n\left(1-\frac{2}{\log n}\right) \leqq p^{2}+p+1 \leqq n
$$

Thus we have for any $n \geq n_{3}$

$$
\begin{equation*}
\mu(n) \geqq \frac{1}{2} n^{3 / 2}\left(1-\frac{3}{\log n}\right) \tag{1.16}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\liminf _{n \rightarrow-} \frac{\mu(n)}{n^{3 / 2}} \geqq \frac{1}{2} \tag{1.17}
\end{equation*}
$$

On the other hand it is easy to see (this follows also from the results of L. Reiman in [3]) that

$$
\begin{equation*}
\limsup _{n \rightarrow-} \frac{\mu(n)}{n^{3 / 2}} \leq \frac{1}{2} \tag{1.18}
\end{equation*}
$$

As a matter of fact, let G_{n} be a graph containing no cycle of order 4 . Let $P_{1}, P_{2}, \ldots, P_{n}$ be the vertices of G_{n} and let us denote their valencies by $v_{1}, v_{2}, \ldots, v_{n}$. Now clearly one can select from the set E_{i} of vertices joined by an edge to $P_{i}\binom{v_{i}}{2}$ pairs, and no pair $\left(P_{j}, P_{h}\right)$ can be contained in both E_{i} and E_{l} with $l \neq i$ because otherwise $P_{l} P_{j} P_{l} P_{k}$ would be a cycle contained in G_{n}. Thus we must have

$$
\begin{equation*}
\sum_{i=1}^{n}\binom{v_{t}}{2} \leq\binom{ n}{2} \tag{1.19}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} v_{i}\right)^{2} \cong n \sum_{i=1}^{n} v_{i}^{2} \tag{1.20}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left(\sum_{i=1}^{n} v_{i}\right)^{2}-n\left(\sum_{i=1}^{n} v_{i}\right) \leqq 2 n \sum_{i=1}^{n}\binom{v_{i}}{2} \leqq 2 n\binom{n}{2} \leqq n^{3} . \tag{1.21}
\end{equation*}
$$

As clearly $\sum_{i=1}^{n} v_{i}=2 E\left(G_{n}\right)$, we have

$$
\begin{equation*}
4 E^{2}\left(G_{n}\right)-2 n E\left(G_{n}\right) \leq n^{3} \tag{1.22}
\end{equation*}
$$

which implies

$$
\begin{equation*}
E\left(G_{n}\right) \leq \frac{n^{3 / 2}}{2} \sqrt{1+\frac{1}{4 n}}+\frac{n}{4} . \tag{1.23}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\mu(n)}{n^{3 / 2}} \equiv \frac{1}{2} \sqrt{1+\frac{1}{4 n}}+\frac{1}{4 \sqrt{n}} \tag{1.24}
\end{equation*}
$$

which implies (1.18). Thus Corollary 2 is proved.

Let us note that weaker results have been obtained previously by E. Kluin (see [2]) and I. Reimann [3], who proved $\liminf _{n \rightarrow-} \frac{\mu(n)}{n^{3 / 2}} \geqq \frac{1}{2 \sqrt{2}}$. Reimann's extremal graph does not contain triangles either; it is possible that among such graphs it is optimal.

Note that for the pairs $\left(n_{j}, k_{j}\right)$ for which according to Corollary 1 one has

$$
\begin{equation*}
\lim _{j \rightarrow 0} \frac{F_{2}\left(n_{j}, k_{j}\right) k_{j}}{n_{j}\left(n_{j}-1\right)}=\frac{1}{2} \tag{1.25}
\end{equation*}
$$

one has $k_{j} \sim \sqrt{n_{j}}$. It was shown in [1] that there exists another sequence of pairs $\left(k_{j}, n_{j}\right)$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{F_{2}\left(n_{j}, k_{j}\right) k_{j}}{n_{j}\left(n_{j}-1\right)}=1 \tag{1.26}
\end{equation*}
$$

but for this sequence of pairs one has $\lim _{\longrightarrow-\frac{k_{j}^{2}}{n_{j}}}=+\infty$.
It remains an open question what is the value of the function $g(c)$ defined by

$$
\begin{equation*}
g(c)=\liminf _{\substack{k^{2}>n c \\ n \gg}} \frac{F_{2}(n, k) k}{n(n-1)} \tag{1.27}
\end{equation*}
$$

for $1<c<+\infty$; we know only that $g(c)$ is nondecreasing, $1 \leqq g(c)$ and $\lim _{c \rightarrow-} g(c) \geqq 1$.

§ 2. Some Exact Results for $\boldsymbol{d}=\mathbf{2}$.

In this \S we deal with the exact value of $F_{2}(n, k)$ for $\frac{n}{2} \equiv k \cong n-1$. Evidently, $F_{2}(n, n-1)=n-1$, because the graph G_{n} in which one vertex is joined by an edge with all others, has diameter 2 , further $V\left(G_{n}\right)=n-1$ and $E\left(G_{n}\right)=n-1$. It has been shown in [1] that $F_{2}(n, n-2)=2 n-4$ (a graph G_{n} with $V\left(G_{n}\right)=n-2$ and $E\left(G_{n}\right)=2 n-4$ and having the diameter 2 is shown by Fig. 3; another graph with the same properties is shown by Fig. 4), further that $F_{2}(n, n-3)=F_{2}(n, n-4)=$ $=2 n-5$. (The corresponding extremal graphs are shown by Figs. 5 and 6 .)

We shall prove now
Theorem 2. We have for $n \geqq 13$
(2, 1)

$$
F_{2}(n, k)=2 n-4 \text { for } \frac{2 n-2}{3} \leqq k \leqq n-5 .
$$

Fig. 5

Proof of Theorem 2. The extremal graph G_{n} with

$$
V\left(G_{n}\right)=k=n-l, \quad\left(5 \cong l \leqq \frac{n+2}{3}\right)
$$

and $E\left(G_{n}\right)=2 n-4$ and having diameter 2 is exhibited by Fig. 7.

$$
V\left(G_{n}\right)=n-l, \quad E\left(G_{n}\right)=2 n-4, \quad 5 \leqq l \leqq \frac{n+2}{3} ; \quad n \leqq 13 .
$$

Fig. 6

Fig. 7

Note that all vertices of G_{n} except P_{1}, P_{2} and P_{3} have the valency 2 , further $v\left(P_{1}\right)=n-l, v\left(P_{2}\right)=n-l, v\left(P_{3}\right)=2 l-2$ and by supposition $2 l-2 \equiv n-l$. Thus $V\left(G_{n}\right)=n-l$. Clearly G_{n} has diameter 2 and the number of edges of G_{n} is

$$
E\left(G_{n}\right)=\frac{2(n-l)+2 l-2+2(n-3)}{2}=2 n-4
$$

We prove that for any G_{n} with $n \geqq 13, V\left(G_{n}\right)=n-l\left(5 \leqq l \leqq \frac{n+2}{3}\right)$ and diameter 2 one has $E\left(G_{n}\right) \geqq 2 n-4$.

As $E\left(G_{n}\right)=\frac{1}{2} \sum_{i=1}^{n} v\left(P_{i}\right)$ we may suppose that G_{n} contains at least one point of degree $\leqq 3$. If G_{n} would contain no point of degree $\leqq 2$, then let us choose a point of degree 3 ; let this point be P_{1}. Let the points connected by an edge with P_{1} be denoted by P_{2}, P_{3} and P_{4}. As every point can be reached from P_{1} by a path of length $\leqq 2$, we must have $v\left(P_{2}\right)+v\left(P_{3}\right)+v\left(P_{4}\right) \geqslant n-1$.

Now if there would be a point among the points P_{3}, \ldots, P_{n}, which would be connected with more than one of the points P_{2}, P_{3}, P_{4} we would have $v\left(P_{2}\right)+$ $+v\left(P_{3}\right)+v\left(P_{4}\right) \geqq n ;$ as all other points have degree $\geqq 3$ it would follow

$$
\sum_{i=1}^{n} v\left(P_{i}\right)=n+3(n-3)=4 n-9
$$

and thus $E\left(G_{n}\right)>2 n-5$ i.e. $E\left(G_{n}\right) \equiv 2 n-4$, which was to be proved. Thus we may suppose that all points $P_{1}(5 \leq i \leqslant n)$ are connected with one and only one of P_{2}, P_{3} and P_{4}; similarly we can suppose that P_{2}, P_{3} and P_{4} are not connected with each other because this would again imply $v\left(P_{2}\right)+v\left(P_{3}\right)+v\left(P_{4}\right) \geq n$ and thus $E\left(G_{n}\right) \geqslant$ $\geq 2 n-4$. If there is at least one among the P_{i} with $5 \leqq i \leqq n$ which has degree >3, it again follows that $E\left(G_{n}\right) \geq 2 n-4$. If however all have degree 3 , let us suppose that $v\left(P_{2}\right)=\min \left(v\left(P_{2}\right), v\left(P_{3}\right), v\left(P_{4}\right)\right)$ which implies $v\left(P_{2}\right) \leq \frac{n-1}{3}$, Let P_{5} be connected with P_{2}. Then $v\left(P_{5}\right)=3$ and let the three points connected with P_{5} be P_{2}, P_{i} and P_{j}; clearly $i>5$ and $j>i>5$. But then $v\left(P_{2}\right)+v\left(P_{i}\right)+v\left(P_{j}\right) \geqq n-1$ and thus

$$
6=v\left(P_{\vartheta}\right)+v\left(P_{j}\right) \geqq \frac{2(n-1)}{3}
$$

that is $n \leqq 10$.
As we supposed $n \geq 13$, this case is settled.
The case when there is a point P_{l} of valency 1 is easily settled, because if this point is P_{1}, and P_{1} is connected with P_{2} only, then P_{2} has to be connected with the remaining $n-2$ points too, and thus would have valency $n-1$. Thus the only case which remains to be settled is when $\min v\left(P_{i}\right)=2$. Suppose $v\left(P_{i}\right)=2$ and let P_{1} be connected with P_{2} and P_{3}. Then all remaining points have to be connected either with P_{2} or with P_{3} or with both.

Let C_{1} denote the class of points P_{1} with $i \equiv 4$ connected only with P_{2}, and c_{1} the number of elements of C_{1}; let C_{2} be the class of points P_{1} with $i \geqslant 4$ connected only with P_{3} and c_{2} the number of elements of C_{2}; finally let C_{3} be the class of points connected with both P_{2} and P_{3}, and c_{3} the number of elements of C_{3}. Clearly
$c_{1}+c_{2}+c_{3}=n-3$. As the valency of P_{3} cannot exceed $n-1$ and P_{3} is connected with every point in G_{n} except itself and the points in \mathbf{C}_{1}, we have $c_{1} \geq I-2 \geq 3$. Similarly $c_{2} \geqq 1-2 \geq 3$.

The number of edges in G_{n} the existence of which is already established is clearly $c_{1}+c_{2}+2 c_{3}+2=n+c_{3}-1$. Let us call these the edges of the first kind, and the remaining edges those of the second kind. As the graph has diameter 2, every point of \mathbf{C}_{1} has to be connected by a path of length ≈ 2 with every point of \mathbf{C}_{2}. Such a path can not contain an edge of the first kind. Thus the graph G^{\prime} consisting of the edges of the second kind has to be connected. Now three cases are possible. Either G^{\prime} contains besides the points of C_{1} and C_{2} at least one further point from the class \mathbf{C}_{3}; in this case it contains at least $c_{1}+c_{2}+1$ points and thus there are at least $c_{1}+c_{2}$ edges of the second kind, and thus the total number of edges is $E\left(G_{n}\right) \geq n+c_{3}-1+c_{1}+c_{2}=2 n-4$. Or P_{2} and P_{3} are connected by an edge; in this case we get again $E\left(G_{n}\right) \geqq 2 n-4$. Or P_{2} and P_{3} are not connected and G^{\prime} consists only of the points of C_{1} and C_{2}. In this case the connected graph G^{\prime} is either a tree or not. If it is not a tree, it contains at least $c_{1}+c_{2}$ edges and thus we obtain again $E\left(G_{n}\right) \geqq 2 n-4$. If G^{\prime} is a tree, it must have at least two end-points. We may suppose that C_{1} contains an endpoint of G^{\prime}. Let x be the total number of endpoints of G^{\prime} in C_{1}. Then the sum of valencies (in G^{\prime}) of the points of C_{1} is at least $x+2\left(c_{1}-x\right)$. As G_{n} has diameter 2 and P_{2} and P_{3} are not directly connected, any endpoint of G^{\prime} in C_{1} has to be connected by a path of length 2 to P_{3}, it follows that for every endpoint P of G^{\prime} in \mathbf{C}_{1} the single edge starting from P ends in \mathbf{C}_{2}. Let y denote the number of points in C_{2} which are connected with an endpoint of G^{\prime} in C_{1}. If Q is such a point, clearly Q has to be connected with every other point of C_{2}, because otherwise there would not exist a path of length 2 from P to these points. Now clearly no point of \mathbf{C}_{2} can be an endpoint of G^{\prime}, because it must be connected to at least one point in C_{1} and also to Q. Thus the sum of valencies in G^{\prime} of the points of \mathbf{C}_{2} ist at least $2\left(c_{2}-y\right)+y\left(c_{2}-1\right)+x$. It follows that the number of edges of the second kind is at least

$$
\frac{1}{2}\left(x+2\left(c_{1}-x\right)+2\left(c_{2}-y\right)+y\left(c_{2}-1\right)+x\right)=c_{1}+c_{2}+y\left(\frac{c_{2}-3}{2}\right) \geqq c_{1}+c_{2}
$$

because, as we have shown, $c_{2} \geqq 3$.
Thus we have shown that $E\left(G_{n}\right) \geqq 2 n-4$ and the proof of Theorem 2 is complete.
Note that the restriction $n \triangleq 13$ in Theorem 2 is necessary, because for $n<13$ there is no value of k between $\frac{2 n-2}{3}$ and $n-5$.

As regards the value of $F_{2}(n, k)$ for $k<\frac{2 n-2}{3}$ we can show that for $n \geq 15$

$$
F_{2}(n, k)= \begin{cases}3 n-k-6 & \text { for } \quad \frac{3 n-3}{5} \leq k<\frac{2 n-2}{3} \tag{2.2}\\ 5 n-4 k-10 & \text { for } \frac{5 n-3}{9} \leqq k<\frac{3 n-3}{5} \\ 4 n-2 k-13 & \text { for } \frac{n+1}{2} \leq k<\frac{5 n-3}{9} .\end{cases}
$$

We give in what follows the extremal graphs for these 3 cases. That these are really extremal can be proved in a way similar to the proof of Theorem 2, therefore we leave the details to the reader.

The extremal graph for $\frac{3 n-3}{5} \cong k<\frac{2 n-2}{3}$.
The graph has four points of high degree; let us denote them by A, B, C, D and four groups of points.

There is a group denoted by $A B$, the points of which are joined to A and to B. The group contains $2 k-n$ points. In the group $B C D$ (connected with B, C and D) there are $n-k-1$ points. In the group $A C$ (whose points are connected with A and C) there are $\left[\frac{n-k-3}{2}\right]$ points; finally in the group $A D$ (the points of which are connected with A and D) there are $n-k-3-\left[\frac{n-k-3}{2}\right]$ points. Further the graph contains the edges $A B, A C, A D$. The points A and B have the degree k. The whole graph has $3 n-k-6$ edges.

THE EXTREMAL GRAPH FOR $\frac{5 n-3}{9} \equiv k<\frac{3 n-3}{5}$.
There are 5 points of high order, A, B, C, D, E.
The group $A B$ has $2 k-n$ points,
The group $B C D$ has $\left[\frac{n-k-1}{2}\right]$ points.
The group BCE has $n-k-1-\left[\frac{n-k-1}{2}\right]$ points.
The group $A C$ has $2 k-n$ points.
The group $A D E$ has $2 n-3 k-4$ points.
Further the edges $A B, A C, A D, A E, D E$ belong to the graph. The points A, B and C have the valency $n-k$; the total number of edges is $5 n-4 k-10$.

The extremal graph for $\frac{n+1}{2} \leqq k<\frac{5 n-3}{9}$.
There are 6 points of high order, A, B, C, D, E, F.
The group $A B$ contains $2 k-n$ points.
The group $B C E$ contains $\left[\frac{n-k-1}{2}\right]$ points.
The group $B D F$ contains $n-k-1-\left[\frac{n-k-1}{2}\right]$ points.
The group $A D C$ contains $\left[\frac{n-k-5}{2}\right]$ points.
The group AEF contains $n-k-5-\left[\frac{n-k-5}{2}\right]$ points.
The graph contains further the edges $A B, A C, A D, A E, A F$. The graph has $4 n-2 k-13$ edges.

For $k<\frac{n+1}{2}$ we cannot determin? $F_{2}(n, k)$ exactly. However, we can get a fairly good upper bound by constructing graphs of diameter 2 by the following principles. We divide all but $\binom{r}{2}$ of the points of a graph G_{n} into r groups of approximately the same size. We connect the points of each pair of groups with one of the remaining points, and connect as many of these point; with each other

Fig. 8
as needed. For instanze if $r=4, n=4 l+6$, we put l points in each of 4 groups, connect each of the 6 pairs of groups with one of the remaining 6 points, and connect each of these points with that point which is connected with the other two groups. The graph obtained is shown by Fig. 8. It follows that

$$
\begin{equation*}
F_{2}(4 l+6,2 l+1) \leqq 12 l+3 . \tag{2,3}
\end{equation*}
$$

§3. Some Results for $d \geqq 3$.

We prove first
Theorem 3. We have for every n, every $k \leqq n-1$ and $d \approx 3$

$$
\begin{equation*}
F_{d}(n, k) \cong \frac{n^{2}}{k^{d-1}}\left(1-4 \sqrt[3]{\frac{n}{k^{d}}}\right) \tag{3.1}
\end{equation*}
$$

Proof of Theorem 3. Let us put

$$
\begin{equation*}
\delta=4 \sqrt[3]{\frac{n}{k^{d}}} \tag{3.2}
\end{equation*}
$$

Clearly we may suppose $\delta<1$, because otherwise (3.1) is trivially fulfilled. We have evidently

$$
\begin{equation*}
\delta>\frac{4}{k^{d / 3}} . \tag{3,3}
\end{equation*}
$$

We may suppose $n>k^{d-1}$, because any graph G_{n} with diameter $\leqq d$ is connected and thus has at least $n-1$ edges; thus $F_{3}(n, k) \geqq n-1$ and if $n \equiv k^{d-1}$ the inequality (3.1) is trivial. Thus we have to prove $(3,1)$ only for $k^{t-1}<n<\frac{k^{d}}{64}$ i.e. for $(64 n)^{1 / d}<$ $<k<n^{1 / 4-1}$. .

Let G_{n} be a graph having n vertices, diameter d and such that $V\left(G_{n}\right)=k$. Let us denote by $X_{1}, \ldots, X_{,}$, those vertices of G_{n} the valency of which is $<\frac{4 n}{k^{d-1} \delta}$; let Y_{1}, \ldots, Y_{n-1}, be the remaining vertices of G_{n}. We have clearly

$$
\begin{equation*}
E\left(G_{n}\right)=\frac{1}{2}\left(\sum_{i=1}^{\pi} v\left(X_{i}\right)+\sum_{j=1}^{n-1} v\left(Y_{j}\right)\right)>\frac{2(n-s) n}{k^{d-1} \delta} . \tag{3,4}
\end{equation*}
$$

Thus if

$$
s \leqq n\left(1-\frac{\delta(1-\delta)}{2}\right)
$$

we have

$$
\begin{equation*}
E\left(G_{n}\right) \geq \frac{n^{2}}{k^{d-1}}(1-\delta) \tag{3,5}
\end{equation*}
$$

Thus we have to consider only the case

$$
\begin{equation*}
s>n\left(1-\frac{\delta(1-\delta)}{2}\right) \tag{3,6}
\end{equation*}
$$

We distinguish two cases. Either every $X_{i}(1 \leqq i \leqq s)$ is connected with at least $\left(1-\frac{\delta}{2}\right) \frac{n}{k^{d-1}}$ of the vertices Y_{j}, or not. In the first case we have

$$
\begin{equation*}
E\left(G_{n}\right) \geqq s\left(1-\frac{\delta}{2}\right) \frac{n}{k^{d-1}} \geqq(1-\delta) \frac{n^{2}}{k^{d-1}} . \tag{3.7}
\end{equation*}
$$

Thus we may suppose that there is an X_{i} - say X_{1} - which is connected with less than $\left(1-\frac{\delta}{2}\right) \frac{n}{k^{d-1}} Y_{\mathcal{F}}-s$. We shall show that this case is impossible. By supposition we can reach, starting from X_{1}, every vertex of G by a path of length $\leq d$. Let us consider first those paths starting from X_{1}, the next vertex of which is an $Y_{/}$. As Y_{j} can be chosen in $<\left(1-\frac{\delta}{2}\right) \frac{n}{k^{d-1}}$ ways, and all vertices of G_{n} have valency $\leq k$, the number of such pathes is at most

$$
\begin{equation*}
\left(1-\frac{\delta}{2}\right) \frac{n}{k^{d-1}}\left(1+(k-1)+(k-1)^{2}+\ldots+(k-1)^{d-1}\right) \leqq\left(1-\frac{\delta}{2}\right) n \tag{3,8}
\end{equation*}
$$

- We may also suppose that $k>64$,

Let us count now the pathes of length $\leqq d$ starting from X_{1}, on which the point next to X_{i}, is an X_{i}. The number of such pathes is clearly at most

$$
\begin{equation*}
\frac{4 n}{k^{d-1} \delta}\left(1+\frac{4 n}{k^{d-1} \delta}\left(1+(k-1)+\ldots+(k-1)^{d-2}\right)\right)<\frac{\delta n}{3} . \tag{3.9}
\end{equation*}
$$

It follows from (3.8) and (3.9) that the total number of vertices which can be reached from X_{1} by a path of length $\geqq d$, can not exceed $n\left(1-\frac{\delta}{6}\right)$ which is $\leqq n-2$ if $n \geqq \frac{12}{\delta}$, and this is true if $n-1 \geqq k \geqq 64$; thus we arrived to a contradiction and this proves our theorem.

To show that the order of magnitude $\frac{n^{2}}{k^{2}}$ of the lower estimate of $F_{3}(n, k)$ is best possible, consider the following graph G_{n} : Take a complete graph G_{r} having r vertices, and connect each vertex of G_{r} with $r-1$ new points. Thus we obtain a graph G_{n} with $r(r-1)+r=r^{2}=n$ vertices. Clearly one has $k=V\left(G_{n}\right)=2 r-2$, $D\left(G_{n}\right)=3$ and $E\left(G_{n}\right)=\frac{3}{2} r(r-1)$. Thus $E\left(G_{n}\right) \sim \frac{6 n^{2}}{k^{2}}$.

In this example $k=2(\sqrt{n}-1)$; by slightly modifying this example we obtain that

$$
F_{3}(n, k)<\frac{n^{2}}{k^{2}}(c+1)^{2}\left(\frac{1}{2}+\frac{1}{c}\right)
$$

if $k \sim c n$ where $0<c<1$.
To show that $F_{3}(n, k)$ is of order of magnitude $\frac{n^{2}}{k^{2}}$ for $k \sim \lambda \sqrt{n}$ where $0<\lambda<1$ we have to apply a more involved construction. Let us consider a graph G_{n} which has the vertices $P_{g i j}$ where $1 \leqq g \leqq l, 1 \leqq i \leqq s, 1 \leqq j \leqq s$ and the vertices $Q_{a h i}$ where $1 \leqq g<h \cong l$ and $1 \leqq i \leqq s$; thus $n=l s^{2}+\left(\frac{l}{2}\right) s$. Suppose that the edges of G_{n} are as follows:
a) $P_{g i j}$ and $P_{h i j}$ are both connected with $Q_{g h i}$ for $\mathrm{I} \leqq g<h \leqq 1, i, j=1,2, \ldots, s$.
b) $Q_{g \hbar i_{t}}$ is connected with $Q_{\text {ghtiz }}$ for $1 \leqq i_{1} \leqq s, 1 \leqq i_{2} \leqq s, i_{1} \neq i_{2}, 1 \leqq g<h \leqq l$;
c) $Q_{g_{1} h_{i} i}$ and $Q_{g g_{2} t}$ are connected for $1 \leqq g_{1}<h_{1} \leqq l$ and $1 \leqq g_{2}<h_{2} \leqq l_{\text {, }}$ $i=1,2, \ldots, s$.

Clearly

$$
E\left(G_{n}\right)=2\binom{l}{2} s^{2}+\binom{l}{2}\binom{s}{2}+\left(\binom{l}{2}\right) s
$$

further $v\left(P_{g i j}\right)=s-1$ and

$$
v\left(Q_{w n i}\right)=s+1-1+\binom{\binom{l}{2}}{2}-1
$$

and thus $V\left(G_{n}\right)=s+l+\binom{\binom{1}{2}}{2}-2$. Thus we obtain

$$
F_{3}\left(l s^{2}+\binom{l}{2} s, s+l+\frac{(l+1) l(l-1)(l-2)}{8}-2\right) \leqq 2\binom{l}{2} s^{2}+\binom{l}{2}\binom{s}{2}+\binom{\binom{l}{2}}{2} s .
$$

By other words by choosing for l an arbitrary fixed natural number and for 3 tending to $+\infty$, we obtain an infinite sequence of pairs n, k such that

$$
k \sim \frac{\sqrt{n}}{\sqrt{l}} \text { and } F_{3}(n, k) \cong \frac{5}{4} \frac{n^{2}}{k^{2}} l(l-1) .
$$

Thus for arbitrary small $\lambda>0$ there exists an infinity of pairs n, k such that $k \sim \lambda \sqrt{n}$ and

$$
F_{3}(n, k)<\frac{5}{4 \lambda^{4}} \cdot \frac{n^{2}}{k^{2}} .
$$

Let us study now the behaviour of $F_{5}(n, k)$ for large values of k. Clearly $F_{3}(n, k)=n-1$ if $k \geq \frac{n}{2}$ because the graph G_{n} shown on Fig. 9 has diameter 3 $V\left(G_{n}\right)=k$ and G_{m} is a tree, thus it has $n-1$ edges; this result is best possible because a connected graph G_{n} cannot have less than $n-1$ edges.

Fig. 9
We prove now the following
Theorem 4. If $\frac{n}{s+1}+s-1 \leqq k \leqq \frac{n}{s}+s-2$ where $s=1,2,3, \ldots,\left[\sqrt[3]{\frac{n}{2}}\right]$ then $F_{3}(n, k)=n+\binom{s}{2}-1$.

Proof of Theorem 4. The a ase $s=1$ has been settled above. Let us consider first the case $s=2$. Suppose G_{n} would be a tree of diameter 3 and $V\left(G_{n}\right)=k \leqq \frac{n}{2}$, and let P_{1} be an endpoint of G_{n} (such a point exists as every tree has at least two
endpoints). Let P_{2} denote the single point connected with P_{1} by an edge, and let P_{3}, \ldots, P_{l} be all the other points connected with P_{2}; as $V\left(G_{n}\right)=k$ we have $l \equiv k+1$. The remaining $n-k-1 \geqq k-1 \geqq l-2$ points have to be connected with one of the points P_{3}, \ldots, P_{I} because otherwise it would be impossible to reach them from P_{1} by a path of lingth $\leqq 3$. But they can not be all connected with the same point $P_{j}(3 \leqq j \leqq l)$ because this point would have valency $>k$. Let P_{r} and P_{s} be two points $(l-r<s \leqq n)$ such that P_{r} is connected with P_{i} and P_{n} with $P_{j}(3 \leqq i<j \leqq l)$, Then the (unique) path from P_{r} to P_{s} has length 4 ; this contradiction shows that $F_{3}(n, k) \geqq n$ for $k \leqq \frac{n}{2}$.

On the other hand Fig. 10 shows a graph G_{n} with $V\left(G_{n}\right)=k$ where $\frac{n}{3}+1 \leqq k \leqq \frac{n}{2}$ which has diameter 3 and contains exactly one cycle (a triangle) and thus $E\left(G_{n}\right)=n$. This completes the proof of the fact that $F_{3}(n, k)=n$ for $\frac{n}{3}+1 \leqq k \leqq \frac{n}{2}$.

Note that for $n=2 k+1$ there is another extremal graph $G_{2 k+1}$ of diameter 3 , for which $V\left(G_{2 k+1}\right)=k$ and $E\left(G_{2 k+1}\right)=2 k+1$, shown by Fig. 11 .

$D\left(G_{n}\right)=3, V\left(G_{n}\right)=k, E\left(G_{n}\right)=n, \frac{n}{3}+1 \equiv k<\frac{n}{2}$
Fig. 10

$$
V\left(G_{2 k+1}\right)=k, E\left(G_{2 k+1}\right)=2 k+1, D\left(G_{2 k+1}\right)=3
$$

Flg. 11

Now we pass to the case $s \geqslant 3$.
Let G_{n} be a graph with $V\left(G_{n}\right)=k\left(\frac{n}{s+1}+s-1 \leqq k \leqq \frac{n}{s}+s-2 ; s<\sqrt{\frac{n}{2}}\right)$ and $D\left(G_{n}\right)=3$. Let X_{1}, \ldots, X_{l} be the endpoints of G_{n}. As the remaining $n-l$ points all have valency ≥ 2, and at least one among them has valency k, we have

$$
E\left(G_{n}\right) \geqq \frac{1}{2}(l+k+2(n-l-1))=n-\frac{l}{2}+\frac{k}{2}-1 .
$$

Now if $E\left(G_{n}\right) \geqq n+\binom{s}{2}-1$, we have nothing to prove; if however $E\left(G_{n}\right)<n+$ $+\binom{s}{2}-1$ we get

$$
l>k-s(s-1) \geqq s-1
$$

thus $l \approx 2$. Let Y_{1}, \ldots, Y_{v} denote those vertices of G_{n} which are connected with at least one $X_{j}(1 \leqq j \leqq l)$.

Clearly Y_{i} and Y_{j} are connected by an edge ($1 \leq i<j \leqq v$) because otherwise there would not exist a path of length 3 connecting the $X_{k}-\mathrm{s}$. Thus it is sufficient to consider the case $v \leqq s$, because every connected graph G_{n}, containing a complete $s+1$-graph has at least $n-1+\binom{s}{2}$ edges. Let us suppose therefore that $v a s$.

We prove first that $v \geqq s$. Let the endpoint X_{1} be connected to Y_{1}. Let $Z_{1}, \ldots Z_{r}$ denote all the points connected with Y_{1} which are not endpoints of G_{n}. As every point of G_{n} can be reached from X_{1} by a path of length $\leqq 3$, if Y_{1} is connected with p endpoints then we have $\sum_{n=1}^{v} v\left(Z_{n}\right) \geqq n-p-1$ thus

$$
E\left(G_{n}\right) \geqq \frac{1}{2}(n-p-1+p+r+l+2(n-l-r-1))=\frac{3 n-3}{2}-\frac{r+l}{2}
$$

thus in case $E\left(G_{n}\right)<n+\binom{s}{2}-1$ we get

$$
l \geqq n-r-s(s-1) \text {. }
$$

As however each Y_{j} has valency $\approx i k$, it can be connected to at most k of the $X_{i}-s$, and Y_{1} only to $k-r X_{i}$-s; thus

$$
(v-1) k+k-r \geqq n-r-s(s-1)
$$

and therefore, in view of $s \leqq \sqrt[3]{\frac{n}{2}}$, we obtain $v>s-1$ i.e. $v \geqq s$. Thus we have cnly to consider the case $v=s$. Now if $v=s$ there exist in G_{n} at least s points which are not connected to any of the Y_{Γ}-s because these have valencies $\leqq k$ and thus the total number of points connected with them is $\leqq s(k-(s-1)) \equiv n-s$. Let W be such a point.

Now clearly W has to be connected with each X_{h} by a path of length 3 and therefore with each Y_{j} by a path of length 2. Let U_{1}, \ldots, U_{1}, be the points connected with W, then each Y_{j} is connected with some U_{z} Thus it follows

$$
\begin{aligned}
E\left(G_{n}\right) & \geqq \frac{1}{2}(2 l+s(s-1)+2 s+2 t+2(n-l-s-t-1))= \\
& =l+\binom{s}{2}+s+t+n-l-s-t-1=n+\binom{s}{2}-1 .
\end{aligned}
$$

Thus $F_{3}(n, k) \geqq n+\binom{s}{2}-1$. On the other hand consider the graph G_{n} of the following structure: let us take a complete graph G_{x+1} having $s+1$ points, and connect
each of these points except one with $k-s$ endpoints, and the last with $n-s(k-s)-$ $-(s+1)$ points. (Clearly $0 \leqslant n-s(k-s)-(s+1) \equiv k-s)$.

Thus we obtain a graph G_{n} with $V\left(G_{n}\right)=k, D\left(G_{n}\right)=3$ and $E\left(G_{n}\right)=n+\binom{s}{2}-1$. This completes the proof of Theorem 4.

Let us consider now $F_{4}(n, k)$. Clearly

$$
F_{4}(n, k)=n-1 \text { if } k \geqq \sqrt{n-1} .
$$

This can be seen as follows. Fig. 12 exhibits a tree of diameter 4 showing that $F_{4}\left(k^{2}+1, k\right)=k^{2}$

Clearly if $(k-1)^{2}+1<n<k^{2}+1$, we obtain a graph G_{n} exhibiting $F_{4}(n, k)=$ $=n-1$ by omttting from the graph on Fig. $12 k^{2}+1-n$ endpoints. We shall

Fig. 12 prove now

Theorem 5.

$$
F_{4}\left(k^{2}+2, k\right) \geqq k^{2}+1+\frac{1}{2} \sqrt[4]{k} \quad(k=2,3, \ldots) .
$$

Proof of Theorem 5. Let $G_{k^{2}+2}$ be an extremal graph i.e. one which has $k^{2}+2$ points, diameter 4 , satisfies the condition $V\left(G_{k^{2}+2}\right)=k$ and has $F_{4}\left(k^{2}+2, k\right)$ edges.

Let X_{1}, \ldots, X_{m} be the points of $G_{k^{2}+2}$ having valency $\geqq 2$, and let G_{m}^{*} be the subgraph of $G_{k^{2}+2}$ spanned by these points. We assert that each point X_{i} has the valency $\geqq 2$ in G_{m}^{*} too. Suppose that X_{1} is an endpoint of G_{m}^{*}, and that X_{2} is the only point of G_{m}^{*} to which X_{1} is connected. Clearly X_{1} is connected with at least one endpoint Y_{1} of $G_{k^{2}+2}$ because it has valency $\geqq 2$ in $G_{k^{2}+2}$, thus it is connected with some point of $G_{k^{2}+2}$ different from X_{2} and this point cannot be in G_{m}^{*} and thus is an endpoint of $G_{k^{2}+2}$. Every point of $G_{k^{2}+2}$ can be reached by supposition from Y_{1} by a path of length $\leqq 4$. However the number of points which can be reached from Y_{1} by such a path is clearly

$$
\leqq 2 k-1+(k-1)^{2}=k^{2}
$$

which is a contradiction. Thus in G_{m}^{*} each point has valency $\geqq 2$. As the diameter of G_{m}^{k} is $\leqq 4$, it follows from (1.1) that G_{m}^{k} contains at least one point of valency $\sqrt[4]{m-1}$; thus the number of edges of G_{m}^{*} exceeds $(m-1)+\frac{1}{2}(\sqrt[4]{m-1})$. Each point in G_{m}^{*} can be connected with at most $k-2$ endpoints of $G_{k^{2}+2}$ thus $k^{2}+2 \leqq m+$ $+m(k-2)=m(k-1)$ and therefore $m \geqq \frac{k^{2}+2}{k-1} \geqq k+1$; thus

$$
E\left(G_{k^{2}+2}\right) \geqq k^{2}+1+\frac{1}{2}(\sqrt[4]{m-1}) \geqq k^{2}+1+\frac{1}{2} \sqrt[4]{k} .
$$

Thus Theorem 5 is proved.

Note that the statement of Theorem 5 is trivial for $k \cong 16$, because it states only what we know already that if $D\left(G_{k^{2}+2}\right)=4$ then $G_{k^{2}+2}$ can not be a tree.

To get an upper estimate for $F_{4}\left(k^{2}+2, k\right)-k^{2}$ consider the following graph. Take a graph G_{k+5} with $V\left(G_{k+5}\right)=k, D\left(G_{k+5}\right)=2$ and $E\left(G_{k+5}\right)=2 k+6$; such a graph exists according to Theorem 2 if $k \geqq 8$ (see Fig. 7 with $l=5$). This graph has $k+2$ points of valency 2 . Connect k out of these points with $k-2$ new points each and one with $k-3$ new points. Thus we get a graph G_{n} with $n=k^{2}+2$ points, such that $V\left(G_{n}\right)=k, D\left(G_{n}\right)=4$ and $E\left(G_{n}\right)=k^{2}+k+3$. Thus

$$
F_{4}\left(k^{2}+2, k\right) \leqq k^{2}+k+3 .
$$

§ 4. Some further Remarks and Unsolved Problems

First we formulate some general principles of construction which were implicitely used above.

If G_{n} is a graph of diameter d, and such that $V\left(G_{n}\right)=k$, then if G_{n} is not regular, we may construct from G_{n} a graph G_{N} of order $N=n+k n-E\left(G_{n}\right)$ with $V\left(G_{N}\right)=k$ and diameter $d+2$, by connecting each vertex P_{i} of G_{n} which has valency $v\left(P_{i}\right)<k$ with $k-v\left(P_{i}\right)$ new points. Thus

$$
\begin{equation*}
F_{d+2}\left(n+k n-2 F_{d}(n, k), k\right) \leqq k n-F_{d}(n, k) . \tag{4,1}
\end{equation*}
$$

For instance we have shown that $F_{2}(n, n-5)=2 n-4$. It follows immediately from (4. 1) that

$$
F_{4}\left(n^{2}-8 n+8, n-5\right) \leqq n^{2}-7 n+4
$$

Notice that for each value of d, the extremal graphs G_{n} with $V\left(G_{n}\right)=k, D\left(G_{n}\right)=d$ and having a minimal number of edges, are trees if k is sufficiently large, $k \geqq U_{d}(n)$ say.

We have implicitely shown that

$$
\begin{equation*}
U_{2}(n)=n-1 \tag{4,2}
\end{equation*}
$$

$$
\begin{equation*}
U_{3}(n)=\frac{n}{2} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
U_{4}(n)=\sqrt{n-1} \tag{4,4}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
U_{5}(n)=\frac{1+\sqrt{2 n-3}}{2} \tag{4.5}
\end{equation*}
$$

further that for any fixed $s \geqq 3$ and $n \rightarrow \infty$

$$
\begin{equation*}
U_{2 s}(n) \sim \sqrt{n} \tag{4,6}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2 s+1}(n) \sim \sqrt{\frac{n}{2}} \tag{4.7}
\end{equation*}
$$

The extremal tree of diameter $2 s$ has a center, while the extremal tree of diameter $2 s+1$ has a central edge.

Notice that if k decreases by one below the critical value $U_{d}(n)$, ie. to $U_{d}(n)-1$, there is a considerable increase in the value of $F_{d}(n, k)$ if d is even, but not if d is odd. As a matter of fact

$$
\begin{gathered}
F_{2}\left(n, U_{2}(n)-1\right)-F_{2}\left(n, U_{2}(n)\right)=(2 n-4)-(n-1)=n-3 \\
F_{3}(2 k+1, k)-F_{3}(2 k+1, k+1)=(2 k+1)-2 k=1
\end{gathered}
$$

and

$$
F_{3}(2 k+2, k)-F_{3}(2 k+2, k+1)=(2 k+3)-(2 k+1)=2
$$

further as proved by Theorem 5

$$
F_{4}\left(k^{2}+2, k\right)-F_{4}\left(k^{2}+1, k\right) \geqslant \frac{1}{2} \sqrt{k}
$$

The situation is similar for $d>4$.
We call attention to the following problems, left open in this paper:
Problem 1. Is the graph of Theorem I extremal in the sense that among all graphs with n vertices and not containing any cycle of length 4 does it have the maximal number of edges? (We have proved only that it is asymptotically extremal.)

We can prove the following result, which is connected with Problem 1.
Thforem 6. If G_{n} is a graph in which any two points are connected by a path of length 2 and which does not contain any cycle of length 4 , then $n=2 k+1$ and G_{n} consists of k triangles which have one common

Fig. 13 vertex (see Fig. 13).

Proof of Theorim 6. Let G_{n} be a graph with the required properties. Let P_{1} be a point of G_{n} having maximal valency. If P_{1} is connected with all the remaining points of G_{s} then evidently these have to be connected by pairs, and G_{n} is of the type described in Theorem 6. Thus we may suppose that G_{n} contains at least one point P_{2} which is not connected with P_{1}. It is easy to see that in this case $V\left(P_{2}\right)=V\left(P_{1}\right)$.

As a matter of fact there is a point P_{3} in G_{n} which is connected with both P_{1} and P_{2}. As there must be a path of length 2 between P_{1} and P_{3} there is a point P_{4} which is connected with both P_{1} and P_{3}. As there has to be a path of length 2 between P_{2} and P_{3}, there is a point P_{5} connected with both P_{2} and P_{3}, which is clearly different from P_{1}, P_{2}, P_{3} and P_{4}. Let $Q_{1}, Q_{2}, \ldots, Q_{k-2}$ be the remaining points (besides P_{3} and P_{4}) which are connected with P_{1}. Clearly P_{2} and P_{5} are not among the Q_{i}; we have $k \geqq 4$ because $v\left(P_{3}\right) \geqq 4$ and by supposition P_{1} has the maximal valency.

Now from each of the points Q_{i} there is a path of Jength 2 to P_{2}; thus for each $Q_{i}(i=1,2, \ldots, k-2)$ there exists a point R_{i} which is connected with both Q_{i} and P_{2}. Clearly $R_{t} \neq R_{l}$ if $t \neq j$ because otherwise G_{n} would contain the cycle $P_{1} Q_{i} R_{i} Q_{j}$; Further R_{l} is different from P_{3} because if R_{i}, would be identical with $P_{3} G_{n}$ would contain the cycle $P_{1} Q_{i} P_{3} P_{4}$. Finally R_{6} is different from P_{5} because otherwise G_{n}
would contain the cycle $P_{1} Q_{i} P_{5} P_{3}$. Thus $v\left(P_{2}\right) \geqq k$ and as $k=V\left(G_{n}\right)$ we obtain $v\left(P_{2}\right)=k=v\left(P_{1}\right)$. Thus any point of G_{n} which is not connected with P_{1} has the valency $k=v\left(P_{1}\right)$. Repeating the same argument with P_{2} instead of P_{1} it follows that $v\left(Q_{i}\right)=k(i=1,2, \ldots, k-2)$. As P_{3} is not connected with Q_{1} (because otherwise G_{n} would contain the cycle $P_{1} Q_{1} P_{3} P_{4}$) repeating the same argument for Q instead of P_{1} it follows that $v\left(P_{3}\right)=k$. Thus the graph G_{n} is regular.

Now if $V\left(P_{i}\right)=k(i=1,2, \ldots, n)$ and G_{n} does not contain a cycle of length 4 and between any two points there is a path of length 2 , then clearly if S_{i} denotes the set of points connected with P_{i} then the sets S_{i} and S_{j} have exactly one point in common, and for any two points P_{i} and $P_{j}(j \neq i)$ there is exactly one point P_{h} such that S_{h} contains both P_{i} and $P_{f:}$. Thus if we define the sets of points S_{i} as lines we obtain a finite plane geometry, with $k=P+1$ points on a line, and thus having $n=P^{2}+P+1$ points. But then in this geometry there would exist a one-to-one mapping beween points and lines such that no line contains the point corresponding to it, and such a mapping is known [5] to be impossible. This proves Theorem 6 .

Problem 2. To determine the exact value of $F_{2}(n, k)$ for $k<\frac{n}{2}$, or at least the asymptotic value of $F_{2}(n,[n c])$ with $0<c<\frac{1}{2}$.

Problem 3. Is the lower estimate in Theorem 3 asymptotically best possible, i.e. do there exist for each $d \geqq 3$ a sequence of graphs $G_{n}(n \rightarrow \infty)$ with $V\left(G_{n}\right)=k \sim c n^{\frac{1}{\alpha-1}}$ where $c>0$ is a constant, $D\left(G_{n}\right)=d$ and $E\left(G_{n}\right) \sim \frac{n^{2}}{k^{d-1}} \sim \frac{n}{c^{d-1}}$?

Problem 4. Determine asymptotically $F_{4}\left(k^{2}+2, k\right)-k^{2}$.
Problems similar to those considered in this paper can be asked for directed graphs. We hope to return to these problems in an other paper.
(Received February 1, 1966.)

REFERENCES

(1) Erdös, P.-Renyy, A.: On a problem in the theory of graphs (in Hungarian, with English and Russian summaries), Publ. Math. Inst. Hung, Acad. Sci. 7/A (1962) 623-641.
[2] Erdós, P.: On sequences of integers no one of which divides the product of two others and on some related problems, Mitteilungen des Forschungsinstitutes für Math. und Mechanik, Tomsk, 2 (1938) $74-82$.
[3] Reman, I: Uber ein Problem von K. Zarankiewicz, Acta Math. Acad. Sei. Hung. 9 (1958) 269-278.
14] Hoffman, A. J.-Singueton, R. R.: On Moore graphs with diameter 2 and 3, IBM Journal of Research and Development 4 (1960) 497-504.
[5] Bafr, R.; Polarities in finite projective planes, Bulletin of the American Math. Soc. 52 (1946) 77-93.

[^0]: 2 Mathematical Institute of the Hungarian Academy of Sciences.
 ${ }^{2}$ Eötvös L. University, Budapest.

[^1]: * After having written this paper we have been informed by W. G. Brown that independently of us he has proved (1.12), in the same way as we did. His paper will be published in the Bulletin of the Canadian Mathematical Society.

