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ON A PROBLEM OF GRAPH THEORY

by
P . ERDŐS , A. RÉNYII and V . T. SÓS 2

§ 0. Introduction

Let G„ be a non-directed graph having n vertices, without parallel edges and
slings . Let the vertices of Gn be denoted by F 1 , . . ., Pn . Let v(P j) denote the valency
of the point P i and put
(0 . 1)

	

V(G,) = max v(Pj) .
1ninn

Let E(G.) denote the number of edges of Gn . Let Hd (n, k) denote the set of all
graphs Gn for which V(G n) = k and the diameter D (Gn) of which is --d,
(k=1, 2, . . ., n-1 ; d=2, 3, . . ., n-1) .

In the present paper we shall investigate the quantity

(0.2)

	

F, (n, k) = min E(Gn) .
G„ E Ha(n, k)

Thus we want to determine the minimal number N such that there exists a graph
having n vertices, N edges and diameter --d and the maximum of the valencies
of the vertices of the graph is equal to k .

To help the understanding of the problem let us consider
the following interpretation . Let be given in a country n airports ;
suppose we want to plan a network of direct flights between these
airports so that the maximal number of airports to which a
given airport can be connected by a direct flight should be equal
to k (i .e . the maximum of the capacities of the airports is pres-
cribed), further it should be possible to fly from every airport
to any other by changing the plane at most d-1 times ; what is
the minimal number of flights by which such a plan can be
realized? For instance, if n = 7, k = 3, d= 2 we have F2 (7, 3) = 9
and the extremal graph is shown by Fig. 1 .

The problem of determining Fd (n, k) has been proposed and discussed recently
by two of the authors (see [1]) . In § 1 we give a short summary of the results of the
paper [1], while in § 2 and 3 we give some new results which go beyond those of
[1] . Incidentally we solve a long-standing problem about the maximal number
of edges of a graph not containing a cycle of length 4 .

In § 4 we mention some unsolved problems .
Let us mention that our problem can be formulated also in terms of 0 -1

matrices as follows : Let M=(ail) be a symmetrical n by n zero-one matrix such
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thats ii =l, max

	

El].=k+1 and all elements of Md are ~- 1 . We want to
1~i=n j=1

determine

Clearly

(0.3)
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Md (n, k) = min
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Md (n, k) = 2 Fd (n, k) + n .

This formulation shows the connection of our problem with non-linear programming .
We give for the case d=2 a third formulation of our problem which displays

its connection with the theory of block designs .
Let be given a sequence A,, A 2 , . . ., A n of subsets of the elements 1, 2, . . ., n

such that ifj E A L then i E A j . Let us suppose that denoting by JAI the cardinal number
of the set A, we have max A j I= k . Let us suppose that for any i (I -_ i -_ n) and

1-~j~n
any j i such thatjJ A L there is a set A,, which contains both i andj (this is equivalent
by our supposition of symmetry to the statement that the sets Ai and Aj are not
disjoint) . The problem is to determine

(0.4)

	

min

	

~Ai~ = 2F2 (n, k) .
=1

§ 1. Some Basic Inequalities, and some Asymptotic Results

It is easy to see that if there exists a graph G n with V(G.)=k and diameter
d, then

(1 . 1)

	

n - I+k
k-2

(1 . 1) can be proved as follows : if V(GJ=k the number of points which can be
reached from a given point, say, P 1 by an edge is --k ; the number of points which
can be reached from P l by a path of length 2 is k(k-1) and finally the number
of points which can be reached by a path of length d is -k(k-1)d-1 . Thus if the
graph has diameter --d we have

(k-1)d -1

(n-1)-k(1+(k-1)+(k-1)2+ . . .+(k-1)d-1).

This proves (1 . 1). If both n and k are odd, then Gn must contain at least one
point of valency --k-1 (because the number of points of odd valency cannot be
odd) ; thus in this case we get

d
(1.2)

	

n--1+(k-1) (k _k l) _2
I .

Note that for the graph shown by Fig . 1, equality stands in (1 . 2) . For the graph
shown on Fig . 2 (the so-called Petersen-graph) equality stands in (1 . 1) with n =10,
k=3, d=2 .
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As regards F,,(n, k) we obtain easily the lower
bound

(1 .3)

	

Fd(n, k) -- n(n-1)(k-2)
2((k- 1)`i - 1)

(1 . 3) can be proved as follows : every edge is itself a
path of length 1 ; it can be contained in at most
2(k-1) paths of length 2, but in this way each
path of length 2 is counted twice, thus the num-
ber of paths of length 2 cannot exceed E(G„) (k - 1) .
In general each edge can be contained in at most
3(k- 1) 2 paths of length 3, but in this way each
path of length 3 is counted three times, thus the
number of paths of length 3 cannot exceed
E(G„) (k-1) 2 , etc. As in case G„ has diameter

d the number of paths of length d has to be at least ( 2 , we obtain

(1 .4)

	

E(G„)(1+(k-1)+ . . . +(k- 1)d-1)

	

lJ
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Fig. 2

which implies (1 . 3) . Note that one has equality in (1 . 4) for the Petersen graph shown
on Fig . 2 ., further for n=5, k=2, d=2 because a cycle of length 5 has 5 vertices,

each of which has valency 2, it has diameter 2 and the number of its edges is 5= 2 . 2 .
It is clear from the above proof that one can have equality in (1 . 4) only for a

regular graph of order k, i . e . if E(Gn ) = 2 and if any two points are joined by

one and only one path of length -- d.
The first condition implies that if equality stands in (1 . 4) then there is equality

in (1 . 1) too . For the case d=2 this means that a necessary condition of equality
in (1 . 4) is n =k2 + 1. It has been shown by A . J. HOFFMAN and R. R. SINGLETON [41
that a regular graph of order k, having k2 + 1 points and diameter 2 exists only
for k = 2, 3, 7 and perhaps for k = 57 . Thus for d = 2 except for these values of
k one has strict inequality in (1 . 3) . However it has been shown in [1] that there
exists an infinite sequence of pairs (k,, n) such that k, -> -, n,

	

and

(1 . 5)

	

lim F2 (n,:, k,) k; - 1
,-- n,(n,- 1)

	

2 '

This is a consequence of the following

THEOREM 1 . If P is any prime power, there exists a graph G„ of order n = P 2 + P + 1
for which V(G„) = P + 1, which has diameter 2 and for which E(G„) _ 2 (012 + n) .
The graph G„ has also the property that it does not contain any cycle of length 4 .

To make this paper self-contained we reproduce the proof of Theorem 1 given
in [1] .
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PROOF OF THEOREM 1 . Let GF(P) be the Galois field with P elements . Let
us represent the points of the finite plane geometry .PG(P, 2) by triples (a, b, c)
where a, b, c are elements of GF(P), not all three equal to 0, and (~a, ),b, ~c) with
E GF(P), z 0 represents the same point as (a, b, c) . The number of different

points of PG(P, 2) is P2 +P-{-1 . A straight line in PG(P, 2) is the set of all points
(x, y, z) which satisfy the equation ax + by + cz = 0 ; we denote this line by [a, b, c] .
The point (a, b, c) and the line [a, b, c] are clearly conjugate elements with respect
to the conic x 2 --y2 á-z2 =0. As well known there are P+ 1 points on each line,
any two different lines have exactly one point in common and through any two
given points there is exactly one straight line. Now we define the mapping T which
maps the point A = (a, b, c) into the line a = [a, b, c] and conversely. We write
TA =a, Ta=A . This mapping has evidently the properties : if the point B lies on
the line a = TA then the point A lies on the line (3 = TB ; if C is the point of inter-
section of the lines TA and TB then TC is identical with the line passing through
the points A and B ; A = (a, b, c) is on TA if and only if a2 + b2 + c2 = 0, i .e . if A
lies on the conic x2 +y2 +z 2 =0. Now let us define a graph G„ (n=P2 +P+1)
as follows : the vertices of Gn are the points of PG(P, 2) ; the vertices A= (a, b, c)
and A'= (a', b', c') are joined in Gn by an edge if and only if A' is lying on TA (and
thus A is lying on TA') . Clearly a vertex A in Gn has the valency P or P+ 1 according
to whether A is on the conic x2 +y2 +z2 = 0 or not . V Thus

and

2
(n' 12 -n)

z
P(P2+P+1) -- F(GJ

E(GJ- 1 (P+1)(P2+P+1) , 2
(n 3,1 2 +n) .

Finally the diameter of G,, is equal to 2. As a matter of fact any two points
A and B can be joined by the path ACB where C is the point of intersection of the
lines TA and TB. Besides this A and B can be joined by a single edge if A lies on TB .
But the point C such that the edges AC and BC both belong to Gn is in any case
unique ; thus Gn does not contain any cycle of length 4 .

Thus our Theorem is proved .
We deduce from Theorem 1 the following corollaries .

COROLLARY 1 . Put nk = k2 - k + 1 ; then

(1 .7) fim inf
F2 (nk , k) k - 1

k-- nk(nk - 1)

	

2

" If P is prime, there are P+1 points on the conic and thus

)z

	

1
E(G„) =

	

+

	

~2
11112 if

2

	

n~nn .

Studio Scientiarum Mathe?naticarum Hungarica 1 (1966)



PROOF OF COROLLARY 1 . By (1 . 3)

(i . 8)

	

F2 (n, k)k , 1
n(n-1) - 2

further if k = P + 1, nk = P2 + P + 1, by Theorem 1

(1 .9)

	

F2 (P2 -I p+1, P+1)~ 1 (P+1)(P2+P+1) ;

thus in this case
F2 (nk , k) k

	

1

	

1(1 . 10)	 nk (nk -1)

	

2 I+- ,

this proves our assertion .
Theorem 1 enables us also to solve - at least asymptotically - a problem

which was raised by one of us 27 years ago (see [2]) .Y
Let C„ denote the class of graphs having n vertices and containing no cycle

of order 4. Put

(1 . 11)

	

µ(n) = max E(G„) .
G„ E C„

The problem is to determine the value of µ(n) . From Theorem 1 we deduce the
following

COROLLARY 2 . We have
1(1. 12)

	

lim µ n =
n-- n312

	

2

PROOF OF COROLLARY 2 . It follows clearly from Theorem 1 that if P is a
prime power, then putting n = P 2 + P + 1

(1 .13)

	

µ (n) - 2 (n3/2 - n) .

It is possible that for these n the graph of Theorem 1 is extremal but we can-
not prove this. Clearly µ(n) is an increasing function of n, and thus it follows that
for any n we have

(1 .14)

	

u(n)

	

Z [P2+P+1)312-(P2+P-{-1)]
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where P is the largest prime power such that p2 + P + 1-_n .
n--n 1 one can choose a prime p so that

n(1 .15)

	

vn - log n

	

p

	

} n -1

Now evidently for

After having written this paper we have been informed by W . G . BROWN that independ-
ently of us he has proved (1 .12), in the same way as we did. His paper will be published in the Bul-
letin of the Canadian Mathematical Society .
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which implies for n~n i

n 1-lo
2
gn) p 2 +p + 1 ~- n .

Thus we have for any n -ni

(1 .16)

	

µ(n) - 2 n3/2
(1- l0g3 n )

and thus

(1 .17)

	

liminf µ(n)

	

1
n-- n3 2

	

2

On the other hand it is easy to see (this follows also from the results of 1. REIMAN

in [3]) that

(1 . 18)

	

lim sup µ(n)

	

1
J?-- n3 1 2

	

2

As a matter of fact, let Gn be a graph containing no cycle of order 4 . Let P 1 , P2 , . . ., P„
be the vertices of Gn and let us denote their valencies by v l , u 2 , . . ., vn . Now clearly one

can select from the set Ei of vertices joined by an edge to P i (2` pairs, and no

pair (Pj , Ph) can be contained in both Ei and E, with l i because otherwise P; Pj PI P,,
would be a cycle contained in G,, . Thus we must have

(1 .14)
Now we have

(1 .20)
and thus

(1 .21)

n
As clearly fv j = 2E(G„), we have

(1.22)

which implies

(1 .23)
Thus

(1 .24)

Z

n

li(n)
n 3 1 2 - 2

„ (v1

	

í
2
n) .

2n

4E2 (G n ) - 2nE(G „) = n3

n 3/2
E(Gn) -	

2

	

1

which implies (1 . 18) . Thus Corollary 2 is proved .
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1

	

n
4n + 4'

1

	

1
+

1
4n
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Let us note that weaker results have been obtained previously by E. KLEIN

(see [2]) and 1 . REIMANN [3], who proved lim inf
µ(n)	

1 	REIMANN's extremal
n-- n

	

2 j 2,
graph does not contain triangles either ; it is possible that among such graphs it is
optimal .

Note that for the pairs (n j , kj) for which according to Corollary I one has

(1 .25)

	

lim
F2 (npkj)k; - I

;_,_ nj (n j -1)

	

2

one has kj -Vnj . It was shown in [1] that there exists another sequence of pairs
(k,, n j ) such that

(1 .26)

	

Jim Fz(n', k'-)kj = 1
j_,_ nj (nj -1)

a
but for this sequence of pairs one has lim ~~' _ + ~ .nj

It remains an open question what is the value of the function g(c) defined by

(1.27)

	

g(c) = liminf F2 (n, k) k
k2,n, n(n- 1)
n-~

for I < c +- ; we know only that g(c) is nondecreasing, z -~g(c) and lim g(c) ; 1 .

§ 2. Some Exact Results for d=2 .

In this § we deal with the exact value of F, (n, k) for 2 k n - 1 . Evidently,

Fz, (n, n -1) =n -1, because the graph Gn in which one vertex is joined by an edge
with all others, has diameter 2, further V (G .) = n - I and E(G,,) = n -1 . It has
been shown in [1] that Fz (n, n - 2) = 2n - 4 (a graph G„ with V (G .) = n - 2 and
E(G„)=2n-4 and having the diameter 2 is shown by Fig. 3 ; another graph with
the same properties is shown by Fig . 4), further that FZ (n, n - 3) = FZ (n, n - 4) _
= 2n - 5 . (The corresponding extremal graphs are shown by Figs . 5 and 6.)

221

Fig. 4

Studia Sci~iarum A]athen .aticarum Hungarica 1 (1966)



222

We shall prove now

THEOREM 2. We have for n --13

(2.1)

	

F2(n, k) = 2n-4 for 2n-23

	

k n-5 .

Fig . 6
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Fig . 5

PROOF OF THEOREM 2 . The extremal graph G„ with

V(G„)=k=n-1,

	

15<1- n 3 21

and E(G„) = 2n - 4 and having diameter 2 is exhibited by Fig. 7 .

V(G„)=n-1, E(G,)=2n-4, 5,1~ n3

	

n - 13.

Studia Scien.tiarum Maáhematicarum Hungarica 1 (1966)
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Note that all vertices of G„ except P,, P2 and P 3 have the valency 2, further
v(P,)=n-1, v(P2)=n-1, v(P3)=21-2 and by supposition 21-2-n-1 . Thus
V(Gn)=n-1 . Clearly G„ has diameter 2 and the number of edges of Gn is

E(G„) = 2(n-/)+21
2
-2+2(n-3)

= 2n-4 .

We prove that for any Gn with n ~ 13, V(G„) =n - l 5

	

n + 213 	and diameter

2 one has E(Gn) -- 2n - 4 .
n

As E(Gn) = 75,v(Pi) we may suppose that G„ contains at least one point
2j=1

of degree 3 . If Gn would contain no point of degree --2, then let us choose a point
of degree 3 ; let this point be P, . Let the points connected by an edge with P, be
denoted by P2, P 3 and P4 . As every point can be reached from P, by a path of
length --2, we must have v (P2 ) +v (P3 ) + v (P4) -n -1 .

Now if there would be a point among the points Ps , . . ., Pn which would be
connected with more than one of the points P2, P3 , P4 we would have v(P2)+
+v(P3)+v(P4) Win ; as all other points have degree ~3 it would follow

n

ON A PROBLEM OF GRAPH THEORY 223

v(P i ) n+3(n-3) = 4n-9
=1

and thus E(Gn)>2n-5 i.e . E(G n)~2n-4, which was to be proved . Thus we may
suppose that all points P i (5 -- i -- n) are connected with one and only one of P2i P3
and P4 ; similarly we can suppose that P2i P3 and P4 are not connected with each
other because this would again imply v(P2) +v(P3) + v(P4) --n and thus E(Gn)1-

2n - 4 . If there is at least one among the P, with 5 -- i - n which has degree > 3,
it again follows that E(G„)--2n-4 . If however all have degree 3, let us suppose

that V (P2) =min (v (P2), V(PA v(P4 )) which implies V(P2) n3I . Let Ps be

connected with P2 . Then v(NS 3 and let the three points connected with P, be
P2,P ;, and P, ; clearly i>5 and j>i>5 . But then v(P2)+v(Pj)+v(Pj)--n-1
and thus

2(n-1)6 = v (P) + v (P,)

	

3
that is n 10 .

As we supposed n 13, this case is settled .
The case when there is a point P, of valency 1 is easily settled, because if this

point is P,, and P, is connected with P2 only, then P2 has to be connected with
the remaining n-2 points too, and thus would have valency n-1 . Thus the only
case which remains to be settled is when min v (P i) = 2 . Suppose v (P,) = 2 and

1-inn
let P, be connected with P2 and P 3 . Then all remaining points have to be connected
either with P 2 or with P3 or with both .

Let C, denote the class of points P i with i 4 connected only with P 2 , and
c, the number of elements of C, ; let C 2 be the class of points P i with i --4 connected
only with P3 and c 2 the number of elements of C 2 ; finally let C 3 be the class of points
connected with both P2 and P 3 , and c 3 the number of elements of C 3 . Clearly

Studies Scientiarum Mathematicarum Hunyarica 1 (1966
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c, + c2 + c3 = n - 3 . As the valency of P 3 cannot exceed n - I and P3 is connected
with every point in G„ except itself and the points in C,, we have cl --I-2 3 .
Similarly c 2 ~-- 1-2-3 .

The number of edges in G„ the existence of which is already established is
clearly c l + c2 -P 2c 3 + 2 = n + c 3 -1 . Let us call these the edges of the first kind,
and the remaining edges those of the second kind . As the graph has diameter 2,
every point of C, has to be connected by a path of length - 2 with every point of C 2 .
Such a path can not contain an edge of the first kind. Thus the graph G' consisting
of the edges of the second kind has to be connected . Now three cases are possible.
Either G' contains besides the points of C, and C 2 at least one further point from
the class C3 ; in this case it contains at least c, + c 2 + 1 points and thus there are
at least c 1 +c2 edges of the second kind, and thus the total number of edges is
E(G„) --n + c 3 -1 + cl + c2 = 2n - 4 . Or P2 and P3 are connected by an edge ;
in this case we get again E(G„)-_2n-4 . Or P2 and P3 are not connected and G'
consists only of the points of C, and C 2 . In this case the connected graph G' is
either a tree or not . If it is not a tree, it contains at least cl + c2 edges and thus we
obtain again E(G„) --2n -4 . If G' is a tree, it must have at least two end-points . We
may suppose that C, contains an endpoint of G' . Let x be the total number of end-
points of G' in C 1 . Then the sum of valencies (in G') of the points of C, is at least
x + 2 (c, - x). As G„ has diameter 2 and P2 and P3 are not directly connected, any
endpoint of G' in C, has to be connected by a path of length 2 to P 3 , it follows that
for every endpoint P of G' in C, the single edge starting from P ends in C 2 . Let
y denote the number of points in C 2 which are connected with an endpoint of G'
in C, . If Q is such a point, clearly Q has to be connected with every other point
of C 2 , because otherwise there would not exist a path of length 2 from P to
these points . Now clearly no point of C 2 can be an endpoint of G', because it must
be connected to at least one point in C, and also to Q. Thus the sum of valencies
in G' of the points of C 2 ist at least 2(c2-Y)+Y(c2-1)+x. It follows that the
number of edges of the second kind is at least

2 (x+2(c,-x)+2(c2-Y)+Y(c2-1)+x) = cl+c2+Y( e22 31
' cl +c2 ,

because, as we have shown, c 2 --3

.

Thus we have shown that E(G„) 2n -4 and the proof of Theorem 2 is complete .
Note that the restriction n =13 in Theorem 2 is necessary, because for n < 13

there is no value of k between
2n2-2

3 and n - 5 .

As regards the value of F2 (n, k) for k <
2n

3 - -
2
we can show that for n' 15

-k-6

	

for
3n-3 k < 2n-2

5

	

3

(2.2)

	

F2 (n,k

	

-4k-10 for 5n- 3 k 3n-3
5

4n - 2k-13 for n +I1 _ k ` 5n9 3

Studio Scientiarum Mathematicarum Hunyarica 1 (1966)
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We give in what follows the extremal graphs for these 3 cases . That these are really
extremal can be proved in a way similar to the proof of Theorem 2, therefore we
leave the details to the reader .

The graph has four points of high degree ; let us denote them by A, B, C, D
and four groups of points .

There is a group denoted by AB, the points of which are joined to A and to B .
The group contains 2k-n points. In the group BCD (connected with B, C and D)
there are n -k -1 points. In the group AC (whose points are connected with A and C)

there are
n-k-32

	

points ; finally in the group AD (the points of which are con-

--
nected with A and D) there are n - k - 3 - n k 3 2

	

points. Further the graph

contains the edges AB, AC, AD . The points A and B have the degree k . The whole
graph has 3n - k - 6 edges .

THE EXTREMAL GRAPH FOR
5n9 3 k < 3n5 3

There are 5 points of high order, A, B, C, D, E.
The group AB has 2k-n points,

The group BCD has n-Ic-1
2 	points .

The group BCE has n - k -1
_[n-k- 12

	

points .
The group AC has 2k-n points .
The group ADE has 2n - 3k - 4 points .

Further the edges AB, AC, AD, AE, DE belong to the graph . The points A, B
and C have the valency n-k ; the total number of edges is 5n-4k-10 .

THE EXTREMAL GRAPH FOR
n2 1 k< 5n9 3

There are 6 points of high order, A, B, C, D, E, F.
The group AB contains 2k-n points .

The group BCE contains n-k - 1 2

	

points .

The group BDF contains n -k - 1 - n-k-1 2

	

points .

The group ADC contains n-k-5
2

	

points .

The group AEF contain ; n - k - 5 -
n-k-5

	 2 	points .
The graph contains further the edges AB, AC, AD, AE, AF. The graph has 4n- 2k-13
edges .

15
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For k < n +II we cannot determin ; Fz (n, k) c xactly. However, we can get

a fairly good upper bound by constructing graphs of diameter 2 by the following

principles. We divide all but (
2
r) of the points of a graph G„ into r groups of

approximately the same size . We connect the points of each pair of groups withh
one of the remaining points, and connect as many of these point3 with each other

ae

z ze 2

P

Fig. 8

as needed. For instan ve if r = 4, n=41+6, we put lpoints in each of 4 groups, connect
each of the 6 pairs of groups with one of the remaining 6 points, and connect eachh
of these points with that point which is connected with the other two groups . The,
graph obtained is shown by Fig . 8. It follows that

(2.3)

	

F2 (41+6, 21+1)--121+3 .

§ 3. Some Remits for d 3.
We prove first

THEOREM 3 . We have for every n, every k -. n -1 and d - 3

3

2
(3.1)

	

Fd (n, k)

	

kn
	 I 1-

(3 . 3)

PROOF OF THEOREM 3 . Let us put

Clearly we may suppose 6 < 1, because otherwise (3 . 1) is trivially fulfilled . We have,
evidently

4
k d/ 3
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We may suppose n > k d 1 , because any graph G„ with diameter - d is connected
and thus has at least n -1 edges ; thus F3 (n, k) n -1 and if n --Ic a- i the inequality

(3 . 1) is trivial. Thus we have to prove (3 . 1) only for kd-1 < n < 64 i .e . for (64n) I
Id <

<k<n1 Id - i
Let G„ be a graph having n vertices, diameter d and such that V(G„)=k.

Let us denote by X l , . . ., X S those vertices of G„ the valency of which is < kd4n
6

let Yi , . . ., Y„_ s be the remaining vertices of G,, . We have clearly

(3 .4)

Thus if

we have

(3 .5)

1E(G„) = 2
1-1

Thus we have to consider only the case

~~ - S

(X i)-I- ~ v(Yj )I >?kd	_ l~n •

s=n 1-

	

2

z
E(G„)

. n
kd_1

-
(3 .6)

	

s ::- n 1 - b(1
2

b)

We distinguish two cases . Either every X , (1 -- i -- s) is connected with at least

~1 - 2 ] ~_ r of the vertices Y,, or not. In the first case we haved
z

(3 .7)

	

E(G„) -- s 1- 2 kd	 1 - ( 1 -b) kd _, .

Thus we may suppose that there is an X , - say X i - which is connected with less

than I 1 - Z~ kd 1 Y,-s . We shall show that this case is impossible . By supposition

we can reach, starting from X l , every vertex of G by a path of length -- d . Let us
consider first those paths starting from X l , the next vertex of which is an Y; .

As Yj can be chosen in < 1 - Z ~ , ways, and all vertices of G„ have valency

.k, the number of such pathes is at most

(3 .8)

	

I1-2)kd
	i (1-+-(k-1)-+- (k-1)z + . . . +(k-1)d-i)Z~n.

* We may also suppose that k-64 .

15*
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Let us count now the pathes of length d starting from X 1 , on which the point
next to X I , is an X i . The number of such pathes is clearly at most

(3.9)

	

kd% (1+ k4n5
(1+(k - 1) + . . . +(k-1)d-2)) < 3

It follows from (3 . 8) and (3 . 9) that the total number of vertices which can be reached

from X i by a path of length -d, can not exceed n 1-6 which is --n-2 if n 12
6

	 ,

and this is true if n - l k 64; thus we arrived to a contradiction and this proves
our theorem .

2
To show that the order of magnitude k2 of the lower estimate of F3 (n, k)

is best possible, consider the following graph G„ : Take a complete graph G r having
r vertices, and connect each vertex of Gr with r -1 new points. Thus we obtain
a graph G„ with r (r -1) -} r = r 2 = n vertices . Clearly one has k = V(G„) = 2r - 2,

z
D(G„)=3 and E(G„)=2 r(r-1) . Thus E(G„)-k2	 .

In this example k=2(~n -1) ; by slightly modifying this example we obtain that

z
F3 (n, k) <

k2
(c + 1)2

1
+

if k - en where 0 < c < 1 .

To show that F3 (n, k) is of order of magnitude nfor k - ~ )l n where

0 < A- :: 1 we have to apply a more involved construction . Let us consider a graph
G„ which has the vertices Pgi ; where l g-- 1, 1--i s, l-j-s and the vertices

Qghi where 1--g<h--l and 1-i--s ; thus n=1s2 +(2)s . Suppose that the edges

of G„ are as follows :
a) Pgi; and Phil are both connected with Qghi for 1--g < h --<I, i, j =1, 2, . . ., s .
b) Qg hi, is connected with Qg hiz for 1 - it -S, 1 i2 S, it 7z i2, 1 --g < h --1 ;

C) Qg , h , i and Qa2h2 i are connected for 1 g, < h

	

l and 1 ~ g2 < h2- 1,
i=1,2, . . .,s .

Clearly

2,
E(G")

-2 ~') s2+ (1)
(SI + ~

2

	

22

	

2

further v(Pgij)=s-1 and

l
/

	

2

	

1v(Qghi) = s fi l -1

	

2
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Z

F,Ils +~1)S,S+l+(1+])/(181)(1-2)
21<2[jS2+IjISI+ 2

s .2

	

-

	

2

By other words by choosing for Z an arbitrary fixed natural number and for s tending
to + -, we obtain an infinite sequence of pairs n, k such that

a
k - l'l and F3 (n, k)

	

4 k2 /(1-1) .

Thus for arbitrary small a, :~-0 there exists an infinity of pairs n, k such that k - ;L~n and

5F3 (n, k) <

	

n
24a4 * k2 .

Let us study now the behaviour of F3 (n, k) for large values of k . Clearly

F3 (n, k) = n -1 if k -
2

because the graph Gn shown on Fig. 9 has diameter 3

V(Gj = k and Gn is a tree, thus it has n -1 edges ; this result is best possible because
a connected graph Gn cannot have less than n-1 edges .

Fig . 9

We prove now the following
3

THEOREM 4. If
s

	+ l +s- 1 -- k s + s - 2 where s =1, 2, 3, . .

	

2 then

F3 (n, k)=n+(Z

PROOF OF THEOREM 4 . The e ase s= 1 has been settled above . Let us consider

first the case s=2 . Suppose Gn wou'd be a tree of diameter 3 and V(G.)=k - 2 ,
and let Pi be an endpoint of Gn (such a point exists as every tree has at least two
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endpoints). Let P 2 denote the single point connected with P i by an edge, and let
P3, . . ., P, be all the other points connected with P z ; as V(G„)=k we have l--k+1 .
The remaining n -k-1 --k-1 --l-2 points have to be connected with one of the
points P 3 , . . ., P, because otherwise it would be impossible to reach them from
Pi by a path of length --3. But they can not be all connected with the same point
P; (3 j -- l) because this point would have valency lc. Let P, and P, be two
points (Z < r < s n) such that P, is connected with Pi, a nd P, with P; (3 - i -j 1) .
Then the (unique) path from P, to P, has length 4 ; this contradiction shows that

F3 (n, k) n for k, 2 .

On the other hand Fig . 10 shows a graph G„ with V(G„) =k where 3 + I --k 2
which has diameter 3 and contains exactly one cycle (a triangle) and thus E(G.) =77 .

This completes the proof of the fact that F3 (n, k) = n for 3 + 1 k 2 .
Note that for n=2k+1 there is another extremal graph G2k+1 of diameter 3,

for which V(G2h+1)=1c and E(G,k+,)=2k+1, shown by Fig . 11 .

Fig. 10

Now we pass to the case s 3 .

E(G,) - 2 (1+k+2(n-1-1» = n- 1 +2 -1 .

Studia Seientiárum Mathematicarum Hungarica 1 (1966)

VCG 2k+1 )=k, E032k + i)=2k+i, D (G2k+j )=3

Fig . II

3

Let G be a graph with V(G„)=k 1s+,+s-l-k_ s +s-2 ;s< 2

and D(G„)=3 . Let X l , . . ., X, be the endpoints of G,, . As the remaining n-1 points
all have valency --2, and at least one among them has valency k, we have
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Now if E(G„) --n + ( 2 ) - 1, we have nothing to prove ; if however E(G.) n +

+(2)-1 we get

l :~-k-s(s- 1) -s-1
thus 1--2. Let Y1 , . . ., Y„ denote those vertices of G„ which are connected with
at least one X, (1 --j l) .

Clearly Yi and Y, are connected by an edge (1--i <j--v) because otherwise
there would not exist a path of length 3 connecting the X h -s . Thus it is sufficient
to consider the case v--s, because every connected graph G„ containing a complete

s+ 1-graph has at least n -1 + Z) edges. Let us suppose therefore that v-- s.

We prove first that v mss . Let the endpoint X, be connected to Y 1 . Let Z1 , . . . Z r
denote all the points connected with Y, which are not endpoints of G n . As every
point of G„ can be reached from X, by a path of length -- 3, if Y, is connected

and therefore, in view of s

r

with p endpoints then we have f v(Z,,)'n-p-1 thus
h=1

E(G„) I (n-p- l+p+t-+1+2(n-l-r-1))=
3n2 3 - r21

thus in case E(G,,) < n + ( Z ) -1 we get

l--n-r-s(s-1) .

As however each Y, has valency k, it can be connected to at most k of the X ,-s,
and Y, only to k-r X L s ; thus

(v-1)k+k-ran-r-s(s-1)

2 , we obtain v ::- s -1 i .e . v --s . Thus we have c my

to consider the case v=s . Now if v = s there exist in G„ at least s points which
are not connected to any of the Y,-s because these have valencies --k and thus
the total number of points connected with them is --s(k-(s-1)) :n-s. Let W
be such a point .

Now clearly W has to be connected with each X h by a path of length 3 and
therefore with each Y; by a path of length 2. Let U1 , . . ., Ut be the points connected
with W, then each Y, is connected with some U. Thus it follows

E(Gj 2 (21+s(s-1)+2s+2t+2(n-I-s-t-1)) _

=
11-2l

I +s+t+n-I-s-t-1 =n+ (2)-1 .

Thus F3 (n, k) n + ( 2)
l

. On the other hand consider the graph Gn of the follow-

ing structure : let us take a complete graph G 5+ , having s + 1 points, and connect
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each of these points except one with k - s endpoints, and the last with n - s (k - s) -
-(s+l) points . (Clearly O--n-s(k-s)-(s +1)--k-s) .

Thus we obtain a graph G„ with V(G„) = k, D (Gj = 3 and E(G.) = n + ( s) -1-
This completes the proof of Theorem 4 .

Let us consider now F4(n, k) . Clearly
F4 (n, k)=n-1 if k-fn-1 .

This can be seen as follows . Fig . 12 exhibits a tree of diameter 4 showing that
F4 (k2 + 1 , k) = k2

Clearly if (k -1)2 + 1-- n < k2+1' we obtain a graph G„ exhibiting F4 (n, k) _
=n -1 by omitting from the graph on Fig. 12 k2 + 1 - n endpoints . We shall.

prove now
Pk+3

	

THEOREM 5 .

1
4

F4 (k2 +2,k)-k2 +1+2 5

	

(k=2,3, . . .) .
P2k

	

P2kai
PROOF OF THEOREM 5 . Let Gkz+2 be an ext-

P2k+2 remal graph i.e. one which has k2 + 2 points,
diameter 4, satisfies the condition V(Gk2+2)=k and
has F4 (k2 + 2, k) edges .

Pzk-l

	

Let X I , . . ., X, n be the points of Gk z +2 having
valency --2, and let G,*n be the subgraph of Gk2+2
spanned by these points. We assert that each point

X 'has the valency ~2 in G,*„ too. Suppose that
~° Pk2 k+a

	

X I is an endpoint of GI*,,, and that X 2 is the only
Pk2-k+,,

	

point of Gm to which X I is connected . Clearly X I
Pkz

	

is connected with at least one endpoint YI of
G k z+2 because it has valency 22 in C'-k2+2, thus it
is connected with some point of Gk2+2 different
from X Z and this point cannot be in G n*, and

thus is an endpoint of G k 2 +2 . Every point of Gk 2 +2 can be reached by supposition
from YI by a path of length 4. However the number of points which can be
reached from YI by such a path is clearly

-2k-1+(k-1)2 =k2
which is a contradiction . Thus in G,*n each point has valency --2 . As the diameter
of G,*n is --4, it follows from (1 . 1) that G,*„ contains at least one point of valency
4		 4	

fm -1 ; thus the number of edges of G,*n exceeds (m -1) + i (~m -1) . Each point
in G,*„ can be connected with at most k-2 endpoints of Gk 2 +2 thus Ic e +2-m+

2
+m(k-2)=m(k-1) and therefore m-

k
k-+12 ,k+1 ; thus

4		1 "-
E(Gk2+z) k2+1+ 12 (Vm-1) --k2 +1+ 2 ~k .

Thus Theorem 5 is proved .

pk .2

Fig. 12
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Note that the statement of Theorem 5 is trivial for k --16, because it states
only what we know already that if D(Gk2+2) =4 then G,2+2 can not be a tree .

To get an upper estimate for F4(k2 +2, k) - k2 consider the following graph .
Take a graph Gk+s with V(Gk+s)=k, D(Gk+s)=2 and E(Gk+s)=2k+6 ; such
a graph exists according to Theorem 2 if k 8 (see Fig . 7 with l = 5) . This graph
has k + 2 points of valency 2 . Connect k out of these points with k - 2 new points
each and one with k - 3 new points. Thus we get a graph Gn with n = k 2 + 2 points,
such that V(G.) = k, D (Gn ) = 4 and E(G.) = k 2 + k + 3 . Thus

F4(k2 +2, k)--k2 +k+3 .

§ 4 . Some further Remarks and Unsolved Problems

First we formulate some general principles of construction which were implicitely
used above .

IfGn is a graph of diameter d, and such that V(G,,)=k, then if G,' is not regular,
we may construct from G„ a graph GN of order N= n + kn - E(G,,) with V (GN) = k
and diameter d+2, by connecting each vertex P i of G n which has valency v(P) <k
with k -v (P) new points . Thus
(4 . 1)

	

Fa+2(n+kn-2Fa(n, k), k)-kn-F,i (n, k) .

For instance we have shown that F2 (n, n - 5) = 2n - 4 . It follows immediately
from (4 . 1) that

F4 (n 2 -8n+8, n-5)-n2 -7n+4.

Notice that for each value of d, the extremal graphs Gn with V (G,,) = k, D(Gn) = d
and having a minimal number of edges, are trees if k is sufficiently large, k -- Ud (n) say .

We have implicitely shown that
(4.2)

	

UZ (n) = n -1

U3 (n)

	

2
(4.3)

further that for any fixed s ~--- 3 and

(4.6)
and

ON A PROBLEM OF GRAPH THEORY

(4 .4)

	

U4 (n) _ / n -1 .

It can be shown that

(4.5)

	

Us (n)

	

1 + ~2n - 3
2

n->-

U, (n) - ~n

233

(4.7)

	

U2s+ l. (n) -

	

2
The extremal tree of diameter 2s has a center, while the extremal tree of diameter

2s + 1 has a central edge .
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Notice that if k decreases by one below the critical value U,(77), i .e . to Ud (n)-1,
there is a considerable increase in the value of F,,(n, k) if d is even, but not if d is
odd. As a matter of fact

FZ (n, U2 (n) -1) - Fz, (n, U2, (n)) _ (2n - 4) - (n -1) = n - 3

F3 (2k+1, k) - F3 (2k+1, k+1) _ (2k+1) -2k= I
and

F3 (2k+2, k) - F3 (2k+2, k+1)= (2k+3)-(2k+1)= 2

further as proved by Theorem 5
1 4 -

F4 (k2 +2, k)-F4 (k2 + 1, k) - 2 l k .

The situation is similar for d>4 .
We call attention to the following problems, left open in this paper :

PROBLEM 1 . Is the graph of Theorem 1 extremal in the sense that among all
graphs with n vertices and not containing any cycle of length 4 does it have the
maximal number of edges? (We have proved only that it is asymptotically extremal .)

We can prove the following result, which is connected with Problem 1 .

THEOREM 6. If G„ is a graph in which any two points are connected by a path
of length 2 and which does not contain any cycle of length 4, then n=2k+ 1 and

G„ consists of k triangles which have one common
vertex (see Fig . 13) .

PROOF OF THEOREM 6. Let G„ be a graph
with the required properties. Let P, be a point of
G„ having maximal valency . If P I is connected with
all the remaining points of G„ then evidently these
have to be connected by pairs, and G„ is of the
type described in Theorem 6 . Thus we may suppose
that G„ contains at least one point P Z which is
not connected with PI . It is easy to see that in this
case V(PZ) = V(P I ) .

As a matter of fact there is a point P3 in G„
which is connected with both P I and P2 . As there
must be a path of length 2 between P I and P3

there is a point P4 which is connected with both P, and P 3 . As there has to be a path
of length 2 between P2 and P3 , there is a point PS connected with both P2 and P3 ,
which is clearly different from Pi, P2 , .P3 and P4 . Let Q 1 , Q2, . . ., Qk-2 be the
remaining points (besides P3 and P4) which are connected with Pi . Clearly P2
and PS are not among the Q,; we have k~4 because v(P3 ) - 4-and by supposition
P, has the maximal valency .

Now from each of the points Q, there is a path of length 2 to P 2 ; thus for each
Q, (i =1, 2, . . ., k -2) there exists a point R, which is connected with both Q, and P2 .
Clearly R, R; if i j because otherwise G„ would contain the cycle PIQ,R,Q j .
Further R, is different from P3 because if R, would be identical with P3 G„ would
contain the cycle PI Q,P3P4 . Finally R, is different from P s because otherwise G„

Fig . 13
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would contain the cycle PlQiP5P3 . Thus v(P,)--k and as k=V(G,) we obtain
v(PZ)=k=v(P,) . Thus any point of G„ which is not connected with P l has the va-
lency k = v (P,) . Repeating the same argument with P2 instead of P i it follows that
v (Q i) = k (i = l, 2, . . . , k - 2). As P 3 is not connected with Q I (because otherwise G„
would contain the cycle P1 Q 1 P3 P4 ) repeating the same argument for Q instead of
P l it follows that v(P3)=k . Thus the graph G;, is regular .

Now if V(P) =k (i=1,2, . . ., n) and G„ does not contain a cycle of length 4
and between any two points there is a path of length 2, then clearly if S i denotes
the set of points connected with P i then the sets S i and SI have exactly one point
in common, and for any two points P i and P; (j i) there is exactly one point P,,
such that S,, contains both P i and P,. Thus if we define the sets of points S i as lines
we obtain a finite plane geometry, with k=P-I-1 points on a line, and thus having
n = P Z -I- P + 1 points . But then in this geometry there would exist a one-to-one
mapping beween points and lines such that no line contains the point corresponding
to it, and such a mapping is known [5] to be impossible . This proves Theorem 6 .

PROBLEM 2. To determine the exact value of FZ (n, k) for k < 2 , or at least
the asymptotic value of FZ (n, [nc]) with 0 < c < 2 .

PROBLEM 3 . Is the lower estimate in Theorem 3 asymptotically best possible,
	 I

i .e . do there exist for each d --3 a sequence of graphs G„ (n ~) withV(G.) = k - cna - I
z

where c 0 is a constant, D (Gn) = d and E(Gn) -	nka- r c n ?
PROBLEM 4 . Determine asymptotically F4 (k 2 -I- 2, k) - k 2 .
Problems similar to those considered in this paper can be asked for directed

graphs . We hope to return to these problems in an other paper .

(Received February 1, 1966 .)
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