Studia Scientiarum Mathematicarum Hungarica 1 (1966) 431-435.

ON DIVISIBILITY PROPERTIES OF SEQUENCES OF INTEGERS

by

P. ERDŐS,¹ A. SÁRKÖZI² and E. SZEMERÉDI¹

Let $a_1 < a_2 < ...$ be an infinite sequence of integers of positive lower logarithmic density, in other words

(1)
$$\lim_{x=+\infty} \sup \frac{1}{\log x} \sum_{a_i < x} \frac{1}{a_i} > 0.$$

DAVENPORT and ERDŐS [1] proved that then there exists an infinite subsequence $a_{n_1} < a_{n_2} < \dots$ satisfying $a_{n_i}/a_{n_{i+1}}$. In this note we will give various sharpenings of this result. The sequence

In this note we will give various sharpenings of this result. The sequence $a_1 < a_2 < \dots$ will be denoted by A, an infinite subsequence $a_{n_1} < a_{n_2} < \dots$ satisfying $a_{n_i}/a_{n_{i+1}}$ will be called a chain, c_1, c_2, \dots will denote positive absolute constant.

THEOREM 1. Let the sequence A satisfy (1). Then it contains a chain satisfying for infinitely many y

$$\sum_{a_{n_i} < y} 1 > c_1 (\log \log y)^{\frac{1}{2}}$$

THEOREM 2. Let the sequence A satisfy

(2)

(3)
$$\lim_{x \to +\infty} \sup \frac{1}{\log \log x} \sum_{a_n < x} \frac{1}{a_n \log a_n} = c_2 > 0.$$

Then it contains a chain satisfying for infinitely many x

(4)
$$\sum_{a_{n_i} < x} 1 > c_3 \log \log x.$$

We will not give the details of the proof of Theorem 1 since the methods of Theorem 2 can be used and Theorem 2 seems more interesting to us, but we outline the proof of the fact that Theorem 1 is best possible. Let the sequence $m_1 < m_2 < ...$ tend to infinity sufficiently fast, our sequence A consists of the integers a for which (v(a) denotes the number of distrinct prime factors of a)

$$\log \log m_i - (\log \log m_i)^{\frac{1}{2}} < v(a) < \log \log m_i + (\log \log m_i)^{\frac{1}{2}}$$

holds for some i (i=1, 2, ...). It is easy to prove by the methods of [2] that our

¹ Mathematical Institute of the Hungarian Academy of Sciences, Budapest.

² Eötvös Loránd University, Budapest.

sequence satisfies (1) and if the m_i tend to infinity sufficiently fast a simple computation shows that we have for every chain

$$\sum_{a_{n_i} < x} 1 < 3 \, (\log \log x)^{\frac{1}{2}}$$

in other words Theorem 1 can not be improved.

It is easy to see that in Theorem 2 c_3 can not be greater than c_2 , but perhaps the following result holds: For every sequence A there is a chain satisfying

(5)
$$\lim_{y=+\infty} \sup \frac{1}{\log \log y} \sum_{a_{n_i} < y} 1 \ge \lim_{x=+\infty} \sup \frac{1}{\log \log x} \sum_{a_{n} < x} \frac{1}{a_n \log a_n}.$$

We have not been able to prove or disprove (5).

Before we prove Theorem 2 we show that in general (4) will not hold for all x. In fact we shall show that to every increasing function f(n) there is a sequence A of density 1 every chain of which satisfies

for infinitely many *i*. (6) of course implies that no lover bound can be given for the growth of $\sum_{a_{n_i} < y} 1$. We construct our sequence as follows: To each integer *m* we

make correspond an interval $I_m = (a_m, b_m)$ where a_m and b_m are sufficiently large, also $b_m < a_{m+1}$ in other words the intervals I_m are disjoint. An integer belongs to our sequence A if and only if it is not of the form

$$mu \quad a_m < mu < b_m \quad 1 \leq m < +\infty.$$

In other words our sequence A does not contain any multiple of m in the interval I_m , but contains all the other integers. It is easy to see that A has density 1 and that it satisfies (6), we leave the simple details of the proof to the reader.

Now we prove Theorem 2.

LEMMA 1. Let $b_1 < b_2 < ...$ be a sequence of integers satisfying

$$\sum_{i} \frac{1}{b_i \log b_i} > c_4$$

Then there are two b's b_i and b_j satisfying b_i/b_j and all prime factors of b_j/b_i are greater than b_i .

The lemma is almost identical with a theorem proved in [3], the condition that all prime factors of b_i/b_i are greater than b_i is not stipulated in [3].

Let k be so large that

(7)
$$\sum_{i=1}^{k} \frac{1}{b_i \log b_i} > c_4$$

and let x be sufficiently large. The number of integers $y \le \frac{x}{b_i}$ all whose prime factors are greater than b_i is by the sieve of Eratosthenes and a well known theorem of MERTENS (c is Euler's constant)

(8)
$$(1+o(1))\frac{x}{b_i}\prod_{p\leq b_i} \left(1-\frac{1}{p}\right) = (1+o(1))\frac{xe^{-c}}{b_i\log b_i}.$$

Studia Scientiarum Mathematicarum Hungarica 1 (1966)

Hence by (7) and (8) the number of integers not exceeding x of the form $b_i y$, where all prime factors of y are greater than b_i is greater than x. Hence there are two indices i and j i < j for which

$$b_i y_1 = b_j y_2.$$

where all prime factors of y_1 are greater than b_i and all prime factors of y_2 are greater than b_j . But then a simple argument shows that b_i/b_j and all prime factors of b_j/b_i are greater than b_i as stated.

Consider now a sequence A satisfying (3), we split it into disjoint subsequences $\{a_i^{(r)}\}=A^{(r)} \ 1 \le r < +\infty$ as follows: $a_1^{(1)}=a_1$. Assume that $a_1^{(1)}, a_2^{(1)}, ..., a_{k-1}^{(1)}$ has already been defined. $a_k^{(1)}$ is the smallest $a_l > a_{k-1}^{(1)}$ for which $\frac{a_l}{a_l^{(1)}} \ 1 \le i \le k-1$ is never an integer all whose prime factors are greater than $a_l^{(1)}$. Suppose that the sequences $A^{(1)}, ..., A^{(r-1)}$ have already been defined. Let B_r be the sequence which we obtain from A by omitting all the elements of $A^{(i)} \ (1 \le i \le r-1)$. We define $A^{(r)} = B_r^{(1)}$ as a subsequence of B_r in the same way we defined $A^{(1)}$ as a subsequence of A. Clearly $a_j^{(r)}/a_i^{(r)}$ can never be an integer all whose prime factors are greater than $a_i^{(r)}$.

(10)
$$\sum_{i=1}^{+\infty} \frac{1}{a_i^{(r)} \log a_i^{(r)}} \le c_4.$$

Further to each $a_j^{(r)}$ there is an $a_i^{(r-1)}$ so that $\frac{a_j^{(r)}}{a_i^{(r-1)}}$ is an integer all whose prime factors are greater than $a_i^{(r-1)}$ (for if not then by our construction $a_j^{(r)}$ would belong to $A^{(r-1)}$). Thus if say a_n does not belong to $\bigcup_{s=1}^r A^{(s)}$ there is a sequence $a_{i_1}, a_{i_2}, ..., \ldots, a_{i_r}, a_{i_{r+1}} = a_n$, where a_{i_j} is in $A^{(j)}$ $1 \le j \le r$ and all prime factors of the integer $\frac{a_{i_{j+1}}}{a_{i_j}}$ are greater than a_{i_j} . We will call such sequences divisibility sequences of length r+1 belonging to a_n .

Now we can complete the proof of Theorem 2. By (3) there is a sequence x_i tending to infinity sufficiently fast for which

(11)
$$\sum_{a_n < x_i} \frac{1}{a_n \log a_n} > \frac{1}{2} c_2 \log \log x_i$$

Put

(12)
$$\left[\frac{1}{4c_4}c_2\log\log x_i\right] = r_i$$

and define a subsequence $A^* = \{a_1^* < a_2^* < ...\}$ of A as follows: a_n belongs to A^* if and only if there is an i so that $a_n < x_i$ and $a_n \notin \bigcup_{j=1}^{r_i} A^{(j)}$ (clearly if such an i exists it must be unique, since if the x_i tend to infinity sufficiently fast $\bigcup_{j=1}^{r_{i+1}} A^{(j)}$ contains all the $a_n \leq x_i$). We will denote this unique *i* corresponding to a_n^* by $h(a_n^*)$. By (10), (11) and (12) we have for every *i*

(13)
$$\sum_{a_n^* < x_i} \frac{1}{a_n^* \log a_n^*} > \frac{1}{4} c_2 \log \log x_i.$$

From (13) we obtain by a simple argument that the sequence a_n^* satisfies (1) hence by the theorem of DAVENPORT and ERDŐS quoted in the introduction there is an infinite subsequence of $A^*\{a_{n_1}^*, a_{n_2}^*, ...\}$ satisfying $a_{n_j}^*/a_{n_{j+1}}^*$. Consider now a subsequence of the $a_{n_j}^*$ say $d_1 < d_2 < ...$ for which $h(d_{k+1}) \ge h(d_k) + 1$. By our construction (see (12)) d_k is not contained in

(14)
$$\bigcup_{j=1}^{r_{h(d_k)}} A^{(j)} \qquad \left(r_{h(d_k)} = \left[\frac{1}{4c_4} c_2 \log \log x_{h(d_k)} \right] \right)$$

hence as stated previously, there is a divisibility sequence of length $r_{h(d_k)} + 1$ belonging to d_k ; we denote by $e_1^{(k)} < e_2^{(k)} < \ldots < e_{r_h(d_k)}^{(k)} + 1 = d_k$ the members of this divisibility sequence (they all belong to our sequence A but not necessarily to A^*). If d_k tends to infinity sufficiently fast then by (12) and (14) $r_{h(d_{k+1})} > 2d_k$ therefore at least $\frac{1}{2}r_{h(d_{k+1})}$ of the $e_i^{(k+1)}$ are greater than d_k , let $e_{s_{k+1}}^{(k+1)}$ be the least $e_i^{(k+1)}$ which is greater than d_k . By what has been said

(15)
$$s_{k+1} \leq \frac{1}{2} r_{h(d_{k+1})}.$$

To complete our proof we now show that the infinite sequence

(16)
$$e_j^{(k)}, \quad 1 \leq k < +\infty, \quad s_k \leq j \leq r_{h(d_k)} + 1$$

forms a chain satisfying (4). First we show that the sequence (16) satisfies (4) with $c_3 > \frac{1}{10c_4} c_2$ and $x = x_{h(d_k)}$. Clearly by the definition of the $e_j^{(k)}$ and $x_{h(d_k)}$ (17) $e_j^{(k)} \leq d_k \leq x_{h(d_k)}$.

Hence by (12), (13), (15), (16) and (17) the number of the terms of the sequence (16) not exceeding $x_{h(d_{\nu})}$ is greater than

$$\frac{1}{2}r_{h(d_k)} > \frac{1}{2} \left[\frac{1}{4c_4} \log \log x_{h(d_k)} \right] > \frac{1}{10c_4} \log \log x_{h(d_k)}$$

as stated.

Thus to complete our proof we only have to show that the sequence (16) really forms a chain. In other words we have to show that for each $k e_{s_{k+1}}^{(k+1)}$ is a multiple of $e_{r_{h(d_k)+1}}^{(k)} = d_k$. To show this observe that

(18)
$$e_{r_{h(d_{k})+1}}^{(k+1)} = d_{k+1} = e_{s_{k+1}}^{(k+1)} \prod_{0 \le t \le r_{h(d_{k+1})} - s_{k+1}} \frac{e_{s_{k+1}+t+1}^{(k+1)}}{e_{s_{k+1}+t}^{(k+1)}}.$$

By our definition each prime factor of the integer

$$\frac{e^{(k+1)}_{s_{k+1}+t+1}}{e^{(k+1)}_{s_{k+1}+t}}$$

Studia Scientiarum Mathematicarum Hungarica 1 (1966)

is greater than $e_{s_{k+1}+t}^{(k+1)} > d_k$, hence if $d_k \nmid e_{s_{k+1}}^{(k+1)}$ we obtain from (18) that $d_k \nmid d_{k+1}$ which contradicts our assumption, hence the proof of Theorem 2 is completed. It would be easy to show that Theorem 2 holds with $c_3 > (1-\varepsilon)c_2e^{-\varepsilon}$ for every $\varepsilon > 0$

In [1] DAVENPORT and ERDŐS prove the following theorem: Let A satisfy (1), then there is a k so that

$$\lim_{x=+\infty}\sup\frac{1}{\log x}\sum_{a_k/a_i}\frac{1}{a_i}>0.$$

Perhaps the following stronger result holds:

(19)
$$\lim_{x=+\infty} \sup \frac{1}{\log x} \sum_{\substack{a_i < x \\ a_k \mid a_i}} \frac{a_k}{a_i} \ge \lim_{x=+\infty} \sup_{t=1}^{\frac{1}{2}} \frac{1}{\log x} \sum_{a_k \ge x} \frac{1}{a_k}.$$

It is easy to see that if (19) is true it is best possible.

(Received October 12, 1965)

REFERENCES

- [1] DAVENPORT, H. and ERDŐS, P.: On sequences of positive integers, Acta Arithmetica 2 (1937) 147-151, see also Indian J. of Math. 15 (1951) 19-29.
- [2] ERDŐS, P.: On the integers having exactly prime factors, *Annals of Math.* **49** (1948) 53–66. [3] ERDŐS, P.: Note on sequences of integers no one of which is divisible by any other, *London*
 - Math. Soc. J. 10 (1935) 126-128.