ON DIVISIBILITY PROPERTIES OF SEQUENCES OF INTEGERS

by
P. ERDŐS, ${ }^{1}$ A. SÁRKÖZI ${ }^{2}$ and E. SZEMERÉDI ${ }^{1}$

Let $a_{1}<a_{2}<\ldots$ be an infinite sequence of integers of positive lower logarithmic density, in other words

$$
\begin{equation*}
\lim _{x=+\infty} \sup \frac{1}{\log x} \sum_{a_{i}<x} \frac{1}{a_{i}}>0 . \tag{1}
\end{equation*}
$$

Davenport and Erdős [1] proved that then there exists an infinite subsequence $a_{n_{1}}<a_{n_{2}}<\ldots$ satisfying $a_{n_{i}} / a_{n_{i+1}}$.

In this note we will give various sharpenings of this result. The sequence $a_{1}<a_{2}<\ldots$ will be denoted by A, an infinite subsequence $a_{n_{1}}<a_{n_{2}}<\ldots$ satisfying $a_{n_{i}} / a_{n_{i+1}}$ will be called a chain, c_{1}, c_{2}, \ldots will denote positive absolute constant.

Theorem 1. Let the sequence A satisfy (1). Then it contains a chain satisfying for infinitely many y

$$
\begin{equation*}
\sum_{a_{n_{i}}<y} 1>c_{1}(\log \log y)^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

Theorem 2. Let the sequence A satisfy

$$
\begin{equation*}
\lim _{x=+\infty} \sup \frac{1}{\log \log x} \sum_{a_{n}<x} \frac{1}{a_{n} \log a_{n}}=c_{2}>0 \tag{3}
\end{equation*}
$$

Then it contains a chain satisfying for infinitely many x

$$
\begin{equation*}
\sum_{a_{n_{i}}<x} 1>c_{3} \log \log x \tag{4}
\end{equation*}
$$

We will not give the details of the proof of Theorem 1 since the methods of Theorem 2 can be used and Theorem 2 seems more interesting to us, but we outline the proof of the fact that Theorem 1 is best possible. Let the sequence $m_{1}<m_{2}<\ldots$ tend to infinity sufficiently fast, our sequence A consists of the integers a for which ($v(a)$ denotes the number of distrinct prime factors of a)

$$
\log \log m_{i}-\left(\log \log m_{i}\right)^{\frac{1}{2}}<v(a)<\log \log m_{i}+\left(\log \log m_{i}\right)^{\frac{1}{2}}
$$

holds for some $i(i=1,2, \ldots)$. It is easy to prove by the methods of [2] that our

[^0]sequence satisfies (1) and if the m_{i} tend to infinity sufficiently fast a simple computation shows that we have for every chain
$$
\sum_{a_{n_{i}}<x} 1<3(\log \log x)^{\frac{1}{2}}
$$
in other words Theorem 1 can not be improved.
It is easy to see that in Theorem $2 c_{3}$ can not be greater than c_{2}, but perhaps the following result holds: For every sequence A there is a chain satisfying
\[

$$
\begin{equation*}
\lim _{y=+\infty} \sup \frac{1}{\log \log y} \sum_{a_{n_{i}}<y} 1 \geqq \lim _{x=+\infty} \sup \frac{1}{\log \log x} \sum_{a_{n}<x} \frac{1}{a_{i n} \log a_{i}} . \tag{5}
\end{equation*}
$$

\]

We have not been able to prove or disprove (5).
Before we prove Theorem 2 we show that in general (4) will not hold for all x. In fact we shall show that to every increasing function $f(n)$ there is a sequence A of density 1 every chain of which satisfies

$$
\begin{equation*}
a_{n_{i}}>f(i) \tag{6}
\end{equation*}
$$

for infinitely many i. (6) of course implies that no lover bound can be given for the growth of $\sum_{a_{n_{i}}<y} 1$. We construct our sequence as follows: To each integer m we make correspond an interval $I_{m}=\left(a_{m}, b_{m}\right)$ where a_{m} and b_{m} are sufficiently large, also $b_{m}<a_{m+1}$ in other words the intervals $I_{m i}$ are disjoint. An integer belongs to our sequence A if and only if it is not of the form

$$
m u \quad a_{m}<m u<b_{m} \quad 1 \leqq m<+\infty .
$$

In other words our sequence A does not contain any multiple of m in the interval I_{m}, but contains all the other integers. It is easy to see that A has density 1 and that it satisfies (6), we leave the simple details of the proof to the reader.

Now we prove Theorem 2.
Lemma 1. Let $b_{1}<b_{2}<\ldots$ be a sequence of integers satisfying

$$
\sum_{i} \frac{1}{b_{i} \log b_{i}}>c_{4}
$$

Then there are two $b_{\text {'s }} b_{i}$ and b_{j} satisfying b_{i} / b_{j} and all prime factors of b_{j} / b_{i} are greater than b_{i}.

The lemma is almost identical with a theorem proved in [3], the condition that all prime factors of b_{j} / b_{i} are greater than b_{i} is not stipulated in [3].

Let k be so large that

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{b_{i} \log b_{i}}>c_{4} \tag{7}
\end{equation*}
$$

and let x be sufficiently large. The number of integers $y \leqq \frac{x}{b_{i}}$ all whose prime factors are greater than b_{i} is by the sieve of Eratosthenes and a well known theorem of Mertens (c is Euler's constant)

$$
\begin{equation*}
(1+o(1)) \frac{x}{b_{i}} \prod_{p \leqq b_{i}}\left(1-\frac{1}{p}\right)=(1+o(1)) \frac{x e^{-c}}{b_{i} \log b_{i}} \tag{8}
\end{equation*}
$$

Hence by (7) and (8) the number of integers not exceeding x of the form $b_{i} y$, where all prime factors of y are greater than b_{i} is greater than x. Hence there are two indices i and $j i<j$ for which

$$
\begin{equation*}
b_{i} y_{1}=b_{j} y_{2}, \tag{9}
\end{equation*}
$$

where all prime factors of y_{1} are greater than b_{i} and all prime factors of y_{2} are greater than b_{j}. But then a simple argument shows that b_{i} / b_{j} and all prime factors of b_{j} / b_{i} are greater than b_{i} as stated.

Consider now a sequence A satisfying (3), we split it into disjoint subsequences $\left\{a_{i}^{(r)}\right\}=A^{(r)} 1 \leqq r<+\infty$ as follows: $a_{1}^{(1)}=a_{1}$. Assume that $a_{1}^{(1)}, a_{2}^{(1)}, \ldots, a_{k-1}^{(1)}$ has already been defined. $a_{k}^{(1)}$ is the smallest $a_{l}>a_{k-1}^{(1)}$ for which $\frac{a_{l}}{a_{i}^{(1)}} 1 \leqq i \leqq k-1$ is never an integer all whose prime factors are greater than $a_{i}^{(1)}$. Suppose that the sequences $A^{(1)}, \ldots, A^{(r-1)}$ have already been defined. Let B_{r} be the sequence which we obtain from A by omitting all the elements of $A^{(i)}(1 \leqq i \leqq r-1)$. We define $A^{(r)}=B_{r}^{(1)}$ as a subsequence of B_{r} in the same way we defined $A^{(1)}$ as a subsequence of A. Clearly $a_{j}^{(r)} / a_{i}^{(r)}$ can never be an integer all whose prime factors are greater than $a_{i}^{(r)}$, hence by Lemma 1 we have for every r

$$
\begin{equation*}
\sum_{i=1}^{+\infty} \frac{1}{a_{i}^{(r)} \log a_{i}^{(r)}} \leqq c_{4} \tag{10}
\end{equation*}
$$

Further to each $a_{j}^{(r)}$ there is an $a_{i}^{(r-1)}$ so that $\frac{a_{j}^{(r)}}{a_{i}^{(r-1)}}$ is an integer all whose prime factors are greater than $a_{i}^{(r-1)}$ (for if not then by our construction $a_{j}^{(r)}$ would belong to $A^{(r-1)}$). Thus if say a_{n} does not belong to $\bigcup_{s=1}^{r} A^{(s)}$ there is a sequence $a_{i_{1}}, a_{t_{2}}, \ldots$, $\ldots, a_{i_{r}}, a_{i_{r+1}}=a_{n}$, where $a_{i_{j}}$ is in $A^{(j)} 1 \leqq j \leqq r$ and all prime factors of the integer $\frac{a_{i j+1}}{a_{i j}}$ are greater than $a_{i j}$. We will call such sequences divisibility sequences of length $r+1$ belonging to a_{n}.

Now we can complete the proof of Theorem 2. By (3) there is a sequence x_{i} tending to infinity sufficiently fast for which

$$
\begin{equation*}
\sum_{a_{n}<x_{i}} \frac{1}{a_{n} \log a_{n}}>\frac{1}{2} c_{2} \log \log x_{i} \tag{11}
\end{equation*}
$$

Put

$$
\begin{equation*}
\left[\frac{1}{4 c_{4}} c_{2} \log \log x_{i}\right]=r_{i} \tag{12}
\end{equation*}
$$

and define a subsequence $A^{*}=\left\{a_{1}^{*}<a_{2}^{*}<\ldots\right\}$ of A as follows: a_{n} belongs to A^{*} if and only if there is an i so that $a_{n}<x$: and $a_{n} \notin \bigcup_{j=1}^{r_{i}} A^{(j)}$ (clearly if such an i exists it must be unique, since if the x_{i} tend to infinity sufficiently fast $\bigcup_{j=1}^{r_{i+1}} A^{(j)}$ contains
all the $a_{n} \leqq x_{i}$). We will denote this unique i corresponding to a_{n}^{*} by $h\left(a_{n}^{*}\right)$. By (10), (11) and (12) we have for every i

$$
\begin{equation*}
\sum_{a_{n}<x_{i}} \frac{1}{a_{n}^{*} \log a_{n}^{*}}>\frac{1}{4} c_{2} \log \log x_{i} . \tag{13}
\end{equation*}
$$

From (13) we obtain by a simple argument that the sequence a_{n}^{*} satisfies (1) hence by the theorem of Davenport and Erdős quoted in the introduction there is an infinite subsequence of $A^{*}\left\{a_{n_{1}}^{*}, a_{n_{2}}^{*}, \ldots\right\}$ satisfying $a_{n_{j}}^{*} / a_{n_{j+1}}^{*}$. Consider now a subsequence of the $a_{n_{j}}^{*}$ say $d_{1}<d_{2}<\ldots$ for which $h\left(d_{k+1}\right) \geqq h\left(d_{k}\right)+1$. By our construction (see (12)) d_{k} is not contained in

$$
\begin{equation*}
\bigcup_{j=1}^{r_{h}\left(d_{k}\right)} A^{(j)} \quad\left(r_{h\left(d_{k}\right)}=\left[\frac{1}{4 c_{4}} c_{2} \log \log x_{h\left(d_{k}\right)}\right]\right) \tag{14}
\end{equation*}
$$

hence as stated previously, there is a divisibility sequence of length $r_{h\left(d_{k}\right)}+1$ belonging to d_{k}; we denote by $e_{1}^{(k)}<e_{2}^{(k)}<\ldots<e_{r_{h\left(d_{k}\right)+1}^{(k)}}^{(k)}=d_{k}$ the members of this divisibility sequence (they all belong to our sequence A but not necessarily to A^{*}). If d_{k} tends to infinity sufficiently fast then by (12) and (14) $r_{h\left(d_{k+1}\right)}>2 d_{k}$ therefore at least $\frac{1}{2} r_{h\left(d_{k+1}\right)}$ of the $e_{i}^{(k+1)}$ are greater than d_{k}, let $e_{s_{k+1}}^{(k+1)}$ be the least $e_{i}^{(k+1)}$ which is greater than d_{k}. By what has been said

$$
\begin{equation*}
s_{k+1} \leqq \frac{1}{2} r_{h\left(d_{k+1}\right)} . \tag{15}
\end{equation*}
$$

To complete our proof we now show that the infinite sequence

$$
\begin{equation*}
e_{j}^{(k)}, \quad 1 \leqq k<+\infty, \quad s_{k} \leqq j \leqq r_{h\left(d_{k}\right)}+1 \tag{16}
\end{equation*}
$$

forms a chain satisfying (4). First we show that the sequence (16) satisfies (4) with $c_{3}>\frac{1}{10 c_{4}} c_{2}$ and $x=x_{h\left(d_{k}\right)}$. Clearly by the definition of the $e_{j}^{(k)}$ and $x_{h\left(d_{k}\right)}$

$$
\begin{equation*}
e_{j}^{(k)} \leqq d_{k} \leqq x_{h\left(d_{k}\right)} . \tag{17}
\end{equation*}
$$

Hence by (12), (13), (15), (16) and (17) the number of the terms of the sequence (16) not exceeding $x_{h\left(d_{k}\right)}$ is greater than

$$
\frac{1}{2} r_{h\left(d_{k}\right)}>\frac{1}{2}\left[\frac{1}{4 c_{4}} \log \log x_{h\left(d_{k}\right)}\right]>\frac{1}{10 c_{4}} \log \log x_{h\left(d_{k}\right)}
$$

as stated.
Thus to complete our proof we only have to show that the sequence (16) really forms a chain. In other words we have to show that for each $k e_{s_{k+1}}^{(k+1)}$ is a multiple of $e_{r_{n}\left(d_{k}\right)+1}^{(k)}=d_{k}$. To show this observe that

$$
\begin{equation*}
e_{r_{h\left(d_{k}\right)}(k+1)}^{(k+1)}=d_{k+1}=e_{s_{k+1}}^{(k+1)} \prod_{0 \leqq t \leq r_{h\left(d_{k+1}\right)}-s_{k+1}} \frac{e_{s_{k+1}}^{(k+1)}}{e_{s_{k+1}+t+1}^{(k+1)}} \tag{18}
\end{equation*}
$$

By our definition each prime factor of the integer

$$
\frac{e_{s_{k+1+t+1}}^{(k+1}}{e_{s_{k+1}+t}^{(k+1)}}
$$

is greater than $e_{s_{k+1}+t}^{(k+1)}>d_{k}$, hence if $d_{k} \backslash e_{s_{k+1}}^{(k+1)}$ we obtain from (18) that $d_{k} \nmid d_{k+1}$ which contradicts our assumption, hence the proof of Theorem 2 is completed. It would be easy to show that Theorem 2 holds with $c_{3}>(1-\varepsilon) c_{2} e^{-c}$ for every $\varepsilon>0$

In [1] Davenport and Erdös prove the following theorem: Let A satisfy (1), then there is a k so that

$$
\lim _{x=+\infty} \sup \frac{1}{\log x} \sum_{a_{k} / a_{i}} \frac{1}{a_{i}}>0
$$

Perhaps the following stronger result holds:

$$
\begin{equation*}
\lim _{x=+\infty} \sup \frac{1}{\log x} \sum_{\substack{a_{i}<x \\ a_{k} / a_{i}}} \frac{a_{k}}{a_{i}} \geqq \lim _{x=+\infty} \sup _{\log x} \frac{1}{\log x} \sum_{a_{k} \leqq x} \frac{1}{a_{k}} . \tag{19}
\end{equation*}
$$

It is easy to see that if (19) is true it is best possible.
(Received October 12, 1965)

REFERENCES

[1] Davenport, H. and Erdős, P.: On sequences of positive integers, Acta Arithmetica 2 (1937) 147-151, see also Indian J. of Math. 15 (1951) 19-29.
[2] Erdös, P.: On the integers having exactly prime factors, Annals of Math. 49 (1948) 53-66.
[3] Erdös, P.: Note on sequences of integers no one of which is divisible by any other, London Math. Soc. J. 10 (1935) 126-128.

[^0]: ${ }^{1}$ Mathematical Institute of the Hungarian Academy of Sciences, Budapest.
 ${ }^{2}$ Eötvös Loránd University, Budapest.

