CONVERGENCE OF APPROXIMATING RATIONAL FUNCTIONS OF PRESCRIBED TYPE

J.L. Walsh (Cambridge, USA)

Let E be a closed bounded set whose complement is connected, and regular in the sense that it possesses a Green's function G(z) with pole at infinity. Let E_c denote generically the locus $G(z) = \log G$, $(\pi > 0)$. Let the function f(z) be analytic on E, meromorphic with precisely poles interior to E_r , $1 < \rho \le \infty$. Let the rational functions

 $T_{n,v}(z)$ of respective types (n, v), namely of form

$$\mathcal{T}_{R,Y}(z) = \frac{\alpha_0 z^n + \alpha_1 z^{n-1} + \dots + \alpha_n}{\beta_0 z^n + \beta_1 z^{n-1} + \dots + \beta_y}, \quad \sum |\beta_y| \neq 0,$$

satisfy

with the Tchebycheff (uniform) norm. Then for n sufficiently large the function $\mathcal{T}_{n_v}(z)$ has precisely v finite poles, which approach $(\tau \to \infty)$ respectively the v poles of f(z)interior to E_{ρ} . If D denotes the interior of E_{ρ} with the v poles of f(z) deleted, the sequence $\mathcal{T}_{n_v}(z)$ converges to f(z) throughout D, uniformly on compact sets. If the

 $\mathcal{T}_{\mu\nu}(z)$ are rational functions of the given types of best approximation to f(z) on \mathcal{E} , and if ρ is the largest number such that f(z) is meromorphic with precisely ν poles interior to \mathcal{E}_{ρ} , then (1) holds with the equality sign.

ON SOME APPLICATIONS OF PROBABILITY METHODS TO FUNCTION THEORY

P. Erdös (Budapest, Hongary)

A sequence of integers $m_1 < m_2 < \cdots$ is said to satisfy gap condition \mathcal{A} if there is a sequence $k_1 - l_1 \rightarrow \infty$ so that

- 74 -

$$(m_{i} - m_{i})^{1/(l_{i} - l_{i})} \rightarrow 1.$$

Every sequence having Hadamard gaps clearly satisfies /I/ but /I/ does not imply $m_{e}^{M} \rightarrow f$.

In this note we will point out the common probabilistic source of several theorem involving condition \mathcal{A} e.g.

I. Let $m_1 < m_2 < \cdots$ satisfy condition \mathcal{A} , then there is a power series $\sum_{i}^{m} \alpha_k z^{m_k}$ converging uniformly but not absolutely in /z/41.

II. Let $m_1 < m_2 < \cdots$ satisfy condition \mathcal{A} , then there is a power series $\sum_{i}^{n} \alpha_k z^{m_k}$, $|\alpha_k| \rightarrow 0$, which diverges for every z satisfying |z| = 1.

Several other examples will be cited. It seems possible that our gap condition \mathcal{A} is best possible in all these cases, but this has never been proved.

TRUNCATION ERROR ESTIMATES FOR STIELTJES FRACTIONS

By Peter Henrici and Pia Pfluger. (Schweiz) Let C be a Stieltjes continued fraction (not necessarily convergent)

$$C(z) = \frac{a_1}{z} + \frac{a_2}{1} + \frac{a_3}{z} + \frac{a_4}{1} + \cdots$$

 $(n_n > 0, n = 1, 2, ...; | \arg z | 4 \pi$) with the approximants

$$w_0 = 0, w_1 = \frac{a_1}{z}, w_2 = \frac{a_1}{z + a_2}, \dots$$

For each n = 1, 2, ..., we denote by y_n the circular arc from w_{n-1} to w_n , passing through w_{n+1} , and by Ω_n the compact set bounded by y_n and by that portion of y_{n-1} which lies between w_{n-1} and w_n . Theorem 1: For each n = 1, 2, ... $(a) \Omega_n$ is convex, $(b) \Omega_{n+1} \subset \Omega_n$, (c) if $o < |\arg s| < 3$ he interior of Ω_n is not empty, and every of its points

value of a terminating Stieltjes fraction whose first a proximults are w_1, w_2, \ldots, w_n . (d) If C(z) is converint, its value is contained in each Ω_n , and the diameter -75 =

11/