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Let n = n p=` . A well known theorem of Hardy and Ramanujan states :
i=1

v (n) = (1 + o (1) ) log log n holds for all n if we neglect a sequence of density 0

[5] . Define for 2<_j<v(n)

j-1
n p=i=p 2(n) .
i-1

I had often occasion to use the fact that rj(n) is "usually" 0(1) C2] . Put

max rj(n) = P(n) .
2~j='= v( n )

In the present note we shall prove the following

THEOREM 1 . For almost all integers n

(1)

	

P(n) = ( 1 +o(1)) log,, n/log o n .

The phrase "almost all integers" means that (1) holds for all n if we

neglect a sequence of integers of density 0, logk n denotes the k-fold iterated

logarithm .

We will also outline the proof of the following further results :

THEOREM 2 . There is a continuous strictly increasing function ¢(c), áp(0) = 0,

<p ( - ) = 1, so that for almost all integers n

- I -- E, i , (p(c) .loge n

In other words there are ((p (c) + o(1)) loge n values of j for which r; (n) <_ c.

THEOREM 3 . The density of integers for which

min rj(n) <c/log2 n
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is 0(c) where cá(0) = 0, 0( - ) = 1 and 0(c) is continuous and strictly increasing .

Put P'=Pi+j . In a previous paper [3] I proved then the density of integers

n for which

(2)

	

min r,;<l+c/logz n

equals 1 - exp( - c) (exp z = ez ), also the density of integers n for which

(3)

	

max 72; > c logs n
I`7-yin)-1

is 1 - exp( - 1/c) . I further proved L4] that for almost all n

(4)

	

-q;=(1+0(1)) log, nlogan .

It would be easy to deduce from Theorem 2 and from the result of de Bruijn

Ell that for almost all n

v(nl-1

	

f
(5)

	

r>(n) _ (1+o(1)) log z n~o ~o (c) .

	

< -,

Now we prove Theorem 1. To prove our Theorem we have to show that

for every e > 0 the density of integers for which

(6)

	

P(n) > ( 1 + e) logs n/log, n

is 0 and the density of integers for which

(7)

	

P(n) < (1 - e) log, n/log, n

is also 0. First we prove (6) . Because of the slow growth of log s n/log, n it

clearly will suffice to show that the number of integers n<x for which

(8)

	

P(n) > 1 + 2 109 3 x/log, x

is o(x) .

First of all we observe that the number of integers n__<x which are divisible

by a square k' > c is less than

(9) Y ~x1 2x
k=> C kZ

< c I,z

Hence by (9) we obtain by a simple argument that (8) will follow if we show

that for every e>0 for all but o(x) integers n<-x we have for every 2Sj<_v(n)
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(10) 11 pi < exp ( 1 + (1093X/1094X) log p; )

Put T= (1+ -8, -) 1093 x/log, x . (10) will easily follow from

LEMMA 1 . Let k>ko(e) be sufficiently large. Then the number of integers

nSx which for some l>0 have more than T prime factors p satisfying

(11)

	

2k'<p<2

is o(A

Assume that the Lemma has already been proved . Let n be an integer

which has for every l>0 not more than T distinct prime factors satisfying (11) .

For these integers we clearly have for every 2<j<_v(n)

11 p= <
fi ( p,110)T= p

>
n+lik-l,T <exP ((1+ e ) log pi logax/log,x)4

for k > k„ (e) , hence (10) is proved .

Thus to prove (10) we only have to prove Lemma 1 . By the well known

theorem of Mertens Z 1/p = log togy+c+0(1/logy ) we have (in á12"'<P<
ply2k1" )

(12)

	

1 /p < c l log k.

The number of integers n <_x which for a given l have more than T

distinct prime factors satisfying (11) is by (12) clearly less than

x(Elj ,p) T/T! <x(c, log k)T/T! <

x ( ec,logk 1 T <

	

x
T

	

l

	

(log, x)iTe/'o

for x>xo(e) . Since 2 k`<x we have at most log, x choices for l, thus the number

of integers n<_x which for some l have more than T distinct prime factors

satisfying (11) is by (13) less than x/ (logz W l" = o(x), which proves Lemma 1

and hence (10), (8) and (6) are proved .

By the same method we can prove that for every e > 0 and > 0 there is

an 1= Ae, 0 so that the density of integers n for which

(13)

r;(n)>(1+E)log3pi/log,p>

holds for more than Z values of j is less than v .
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The proof can be easily deduced from the fact that for every k the series

(A( p)=[(1+6)10g3p/log,p7)

(14)

	

~1 ( (

	

1/q)~`P'IA(p)! )
N Y

	

P l / k<9<y

converges. The proof of 114) is similar to that of (13) .

To complete the proof of Theorem 1 we now prove (7) . Instead of (7)

we will prove that for all but o(x) integers n <x

(15)

	

P(n) > (1 - e) logs x/log, x.

Let r run through the integers of the interval 2 log j x, log : x) and denote

by Ir the interval

expe l + log, x )r)
exp (l

	

log, x
)r+1 )

To prove (15) it will suffice to prove the following

LEMMA 2 . For all but o(x) integers n=x every n has at least

[ ( 1- 2 )logs x/ log, x ] = T,

distinct prime factors in some I r .

(15) immediately follows from Lemma 2 . Let n have at least T, distinct

prime factors in Ir and let pi the greatest p/n in Ir . Then clearly for sufficiently

large x

npi > pjT, - 1)(1 - inog, X)>P(,1-8)nog3 Xnog.=

which proves (15) .

Thus to prove (15) (and hence to complete the proof of Theorem 1) we

only have to prove Lemma 2. First we need three further Lemmas . Denote

by ai = 1, the integers which are the product of T, distinct prime

factors of Ir . We have

LEMMA 3 . Put (log (1 + 1/log ., x) ) T'/TI ! = F, x) . We then have

(16)

	

z1/a;" _ (1 +0(1))F(x) .

By the theorem of Mertens we have
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(17)

	

Yi 1/p=109(1+1/109 4 x)+0(-1-) •
Piulr

	

1092 x

Denote by b" ) , j = 1, . . . the integers composed of s distinct primes in 1,

(for s = T, the b() are the a;") . Clearly

where the dash indicates that the summation is extended over the p in 1, for

which p k b;" . Clearly by (17) we have

(19)

	

~'

	

=log(1+1/log.,x)+ o(1/log, x) .

Lemma 3 follows from (18) and (19) by a simple computation .

LEMMA 4 . Denote by A,(x) the number of integers which are divisible by at
least one a;" . We have

Clearly by Lemma 3

(20)

	

Ar (x)GEI

	

<xE-1; =(1+o(1))xF(x) .
g L

	

i ai

Denote on the other hand by Bi(x) the number of integers nG_x which are

multiples of a;r ' but of no other aj" . Clearly by (17)

Further clearly

(22)

	

Ar (x) ?ZB; (x) .

From (21), (22) and Lemma 3 we have

(23)

	

Ar(x)>(1+o(1))xE a1 ) =( l+o(DVF(x)
3

(20) and (23) proves Lemma 4.

Denote by Ar,,, 2 (x) (rl r2 ) the number of integers n :!~x which are divisible

by at least one a;''' and at least one a`•'2'

LEMMA 5 .

	 1 = 1 5, 1 ~, 1
b;"'

	

s+1 i bi'

	

p

A,(x) _ (1+o(1))xF(x) .

Bi(x)>[ x' 1
P,nlr[

	

, ] _ (1+0(1)) rpa',

	

ai
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A,,,,, (x) _ (l+o(1))xF(x)' .

The proof of Lemma 5 is the same as Lemma 4, (we use (a;"', a'`) = 1

and a, 'a'-r " = o(x)) and can be left to the reader .

Now we are ready to prove Lemma 2 . Denote by f(n) the number of is
for which n is divisible by an a;" . We have to show that for all but o(x)

integers n<x, f(n) >0 . In fact we shall prove more. We shall show that for

all but o (x) integers n _< x (put 2 (log log x) . F(x) = 0 (x) >

f(n) _ (1 + 0(1)) 2 (log log x) . F(x) _ (1 +0(1))0(x)(24)

(24) implies by a simple computation that for almost all n, f(n) ~ . We

prove (24) by Turán's method C6] .

We evidently have

(25)

(26)

(27)

x

	

x

	

x
(f (n) -0(x))z = ~; f(n)~-2 0(x) ~~f (n)+x0'(x) .

n=1

	

n=1

	

r=1

Now clearly by Lemma 4 and the definition of O (x)

x
~ f (n) _ ~A,(x) _ (1 +o(1))x0(x)+
n-l

Thus from (25), (26) and (27)

r

Further by a simple argument we have from Lemma 5

x
Y,f'(n)=2

	

A,,,,, (x) + Y,A, (x) _ (1+o(1))x(% (x) .
n=1 rl<rp

	

r

x
(28)

	

(f (n) - 0(x)) 2 = o(x(0(x))
n=1

(28) immediately implies (24) (using Tchebicheff's inequality) . This completes

the proof of Lemma 2 and Theorem 1 .

By somewhat more trouble we could prove the following sharpening of

Lemma 2 : Let Cl, . . . , CS , s = o(x) be classes of integers . Assume that if a

and b belong to different classes then (a, b) = 1 . Denote by g;(x) the number

of integers n.<_x which are divisible by at least one integer of C ; and assume

that
s

lim 1 2:gr(x) _ ~ .
x=m x {=1
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Then all but o (x) integers n <xx have a divisor from at least one C„ 1 <_ i S s .

The proof is more difficult than that of Lemma 2, and I have to use Brun's

method. The difficulty is that the analog of Lemma 5 breaks down .

We only outline the proof of Theorem 2.

LEMMA 6 . There is a continuous strictly increasing function (p(c), (~(0) = 0,
(p(- ) = 1 so that to every e > 0 there is a jo for which for every fixed j > jo the

density of integers n with r ; (n) >c differs from (f (c) by e .

The proof of Lemma 6 can easily be deduced from the results of N. G. de

Bruijn [1] and is not difficult.

Theorem 2 follows from Lemma 6 by the methods of probabilistic number

theory but the proof is not quite simple, we have first to show that if j' - j is

large then the values of rj(n) and 1-;-(n) are nearly independent and then Turán's

method E61 can be applied without much difficulty .

Theorem 3 can be proved similarly as (3) but the proof is more complicated .

By using the results of de Bruijn one could sharpen Theorem 1 and one

could perhaps obtain an asymptotic expansion for P(n) valid for almost all

integers, but I have not even determined the second term of this hypothetical

asymptotic expansion .
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