NOTES

On the Construction of Certain Graphs

Denote by $G(n)$ a graph of n vertices and by $G(n ; m)$ a graph of n vertices and m edges. $I(G)$ denotes the cardinal number of the largest independent set of vertices (i.e., the largest set $x_{i 1}, \ldots, x_{r 1}, r=I(G)$ of vertices of G no two of which are joined by an edge). $v(x)$, the valency of the vertex x, denotes the number of edges incident to $x, c_{1} \ldots$ will denote positive absolute constants.

1. Turán [8] proved that every $G\left(n ;\left[n^{2} / 4\right]+1\right)$ contains a triangle and that the only graph $G\left(n ;\left[n^{2} / 4\right]\right)$ which does not contain a triangle is defined as follows: Its vertices are $x_{1}, \ldots, x_{[n / 2]} ; y_{1}, \ldots, y_{[(n+1) / 2]}$, and its edges are $\left(x_{i}, y_{j}\right), 1 \leq i \leq[n / 2], 1 \leq j \leq[(n+1) / 2]$; in other words if $G\left(n ;\left[n^{2} / 4\right]\right)$ does not contain a triangle then

$$
I\left(G\left(n ;\left[\frac{n^{2}}{4}\right]\right)\right)=\left[\frac{n+1}{2}\right] .
$$

Andrásfai [1] has investigated the following question: Let $u<[(n+1) / 2]$. Determine the largest integer $f(n, u)$ for which there is a $G(n ; f(n, u))$ which contains no triangle and for which $I(G) \leq u$. Andrásfai determines $f(n, u)$ for $u \geq[2 n / 5]$. It is clear that $f(n, u) \leq u n / 2$ since the $v(x)$ vertices joined to x must be independent (for otherwise our graph would contain a triangle); hence $v(x) \leq u$ for all vertices of G thus G has at most un/2 edges. Andrásfai [1] in fact determines all graphs for which

$$
\begin{equation*}
f(n, u)=u n / 2 \tag{1}
\end{equation*}
$$

for $u \geq[2 n / 5]$ and gives some examples of graphs satisfying (1) for $u>n / 3$.

In the present note, I will construct graphs for which (1) holds and

$$
\begin{equation*}
u=I(G)=n^{1-c+o(1)}, \quad c=\frac{5 \log 2-3 \log 3}{2 \log 2} \tag{2}
\end{equation*}
$$

Denote by $g(n)$ the largest integer so that every graph of n vertices which contains no triangle satisfies $I(G(n)) \geq g(n)$. A very special case of the well-known theorem of Ramsay [7] implies $g(n) \rightarrow \infty$ as $n \rightarrow \infty$. Szekeres and I [2] proved that $g(n) \geq \sqrt{2 n}+O(1)$ and I showed first by a direct construction that $g(n)<n^{1-c_{1}}$ [3] and later by a "probabilistic" method that $g(n)<x_{2} n^{1 / 2} \log n$. I cannot at present decide whether $g(n)<c_{3} n^{1 / 2}$ is true, in fact perhaps $g(n)=\sqrt{2 n}+O(1)$. It would be of interest to construct all graphs satisfying (1) - this may be difficult or impossible - or at least to decide if (1) is possible if $u=n_{1 / 2+\varepsilon}$ I cannot even show that $f(n, u)=(1+o(1)) u n / 2$ can hold if $u=n_{1 / 2+\varepsilon}$. The construction given here does not seem to help to settle this problem. The construction given in [3] only yields $f(n, u)=(1+o(1)) u n / 2$ and not (1) for $u>n^{1-c_{1}}$.

I conjectured and Kleitman [6] proved the following result: Denote by $\left\{A_{i}\right\} 1 \leq i \leq 2^{n}$ the 2^{n} sequences of 0 's and 1's of length n. Put $A_{i}=\left(\varepsilon_{1}^{(i)}, \ldots, \varepsilon_{n}^{(i)}\right),\left(\varepsilon_{n}^{(i)}=0\right.$ or 1$)$. Define

$$
d\left(A_{i}, A_{j}\right)=\sum_{r=1}^{n}\left|\varepsilon_{r}^{(i)}-\varepsilon_{r}^{(j)}\right|
$$

Let $A_{i_{1}}, \ldots, A_{i_{g}}$ be a family of sequences satisfying

$$
d\left(A_{i_{u}}, A_{i_{v}}\right) \leq 2 k, \quad k<n / 2, \quad 1 \leq u<v \leq s
$$

Then

$$
\begin{equation*}
\max s=\sum_{l=0}^{k}\binom{n}{l} \tag{3}
\end{equation*}
$$

We have equality in (3) if the A 's are the sequences having at most k l's.

Using Kleitman's theorem we now construct our graphs as follows: Put $n=3 k+1$. The vertices of our graph will be the sequences $\left\{A_{i}\right\}, 1 \leq i \leq 2^{n} ; A_{i}$ and A_{j} are joined if and only if

$$
d\left(A_{i}, A_{j}\right) \geq 2 k+1
$$

Our graph has $2^{3 k+1}$ vertices and $2^{3 k} \sum_{i=0}^{k}\binom{3 k+1}{i}$ edges. It is easy to see that our graph contains no triangle. To see this, observe that if it would contain a triangle we could assume without loss of generality that one of its vertices has all its coordinates 0 , i.e., is $(0, \ldots, 0)$. The other two vertices must be sequences containing at least $2 k+1$ ones and hence they must coincide in at least $k+1$ places, or their distance is $\leq 2 k$; thus they are not joined. In other words our graph contains no triangle. The valency of each vertex of our graph clearly equals

$$
\sum_{i=0}^{k}\binom{3 k+1}{i}
$$

On the other hand if $A_{i_{1}}, \ldots, A_{i_{s}}$ is an independent set of vertices we must evidently have $d\left(A_{i_{u}}, A_{i_{v}}\right) \leq 2 k$ (for if not then by definition $A_{i_{u}}$ and $A_{i_{v}}$ are joined and the set was not independent). But then by the theorem of Kleitman

$$
\max s=\sum_{i=0}^{k}\binom{3 k+1}{i}=V\left(X_{i}\right), \quad 1 \leq i \leq 2^{3 k+1}
$$

In other words, $I(G)=V\left(x_{i}\right), 1 \leq i \leq 2^{3 k+1}$, and thus (1) holds for our graph. A simple computation using Stirling's formula shows that (2) is also satisfied.

This construction could be generalized if the following generalization of Kleitman's result would hold: Let $t_{r} \geq 1,1 \leq r \leq n$, and denote by $\left\{B_{i}\right\}, 1 \leq i \leq \prod_{r=1}^{n}\left(t_{r}+1\right)$, the sequences of the form $\left(\delta_{1}, \ldots, \delta_{n}\right)$, $0 \leq \delta_{r} \leq t_{r}$. Let $B_{i}=\left(\delta_{1}^{(i)}, \ldots, \delta_{n}^{(i)}\right), B_{j}=\left(\delta_{1}^{(j)}, \ldots, \delta_{n}^{(j)}\right)$, define $d\left(B_{i}, B_{j}\right)=\sum_{r=1}^{n}\left|\delta_{1}^{(r)}-\delta_{j}^{(r)}\right|$. Let $k<\frac{1}{2} \sum_{r=1}^{n} t_{r}$ and let $B_{i_{1}}, \ldots, B_{i_{s}}$ be a family of sequences satisfying

$$
d\left(B_{i_{u}}, \quad B_{i_{v}}\right) \leq 2 k, \quad 1 \leq u<v \leq s
$$

Then s is maximal if the $B_{i_{u}}$ are the sequences satisfying $\sum_{r=1}^{n} \delta_{r} \leq k$. But even if this would be true we could not improve (2) by this method. ${ }^{1}$

[^0]2. A graph is called k-chromatic if its vertices can be split into k classes so that no two vertices of the same class are joined, but such a splitting is not possible into fewer than k classes. Tutte and Zykov were the first to show that for every integer k there is a k-chromatic graph which contains no triangle. Rado and I [5] showed that for every infinite cardinal m there is a graph of m vertices which contains no triangle and which has chromatic number m.

A very simple and intuitive proof of this result could be given if the following conjecture of Czipszer and myself would hold: Is it true that the unit sphere of an m-dimensional Hilbert space is not the union of fewer than m subsets of diameter less than $2-\varepsilon$. The unit sphere of the m-dimensional Hilbert space is the set of all transfinite sequences of real numbers $\left\{x_{a}\right\}$ where α runs through an index set of power m and $\Sigma_{\alpha} x_{\alpha}{ }^{2} \leq 1$ (all but denumerably many of the x_{a} 's are 0). As far as I know this conjecture has not even been settled for $m=\aleph_{1}$.

If the answer to our conjecture is affirmative our graph can be constructed as follows: The vertices of our graph are the sequences $\left\{x_{\alpha}\right\}$, $\Sigma_{\alpha} x_{\alpha}^{2} \leq 1$, where all the x_{α} are rational and only a finite number of them are different from 0 . Clearly our graph has m vertices and the points of the m-dimensional unit sphere defined by these vertices are dense in the unit sphere. Two vertices are joined if their distance (in the m dimensional Hilbert space) is greater than $\sqrt{3}$. Clearly this graph contains no triangle and the diameter of any independent set is $\leq \sqrt{3}$. Thus if the answer to our conjecture is affirmative, the vertices of our graph cannot be split into the union of fewer than m independent sets, i.e., our graph is m-chromatic.

References

1. B. Andrasfai, Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar. 15 (1964), 413-438.
2. P. Erdös and G. Szekeres, A Combinatorial Problem in Geometry, Compositio Math. 2 (1935), 463-470.
3. P. Erdős, Remarks on a Theorem of Ramsay, Bull. Res. Council Israel Sect. F7 (1957), 21-24.
4. P. Erdős, Graph Theory and Probability, II. Canad. J. Math. 13 (1961), 346-352.
5. P. Erdös and R. Rado, A Construction of Graphs without Triangles Having Pre-assigned Order and Chromatic Number, J. London Math. Soc. 35 (1960), 445-448.
6. D. J. Klettman, Families of Non-disjoint Subsets, Journal of Combinatorial Theory 1, (1966) 153-155.
7. F. P. Ramsay, Collected papers, pp. 82-111; see also reference 2.
8. P. Turan, On the Theory of Graphs, Colloq. Math. 3 (1954), 19-30.
P. ERDös,

Panjab University
Chandigarh, India

[^0]: ${ }^{1}$ Kleitman showed that this generalization is false, but perhaps it holds if all the t_{r} 's are equal.

