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Let it < oz < . . . be a sequence A of integers . Put A (rr) ~ 1 1
ai `x

The sequence is said to have positive lower density if

lira (A (x)/x) > 0,

positive itppei- lova-rithinic density if

l

	

i1
0

logx

	

ai
a i ,x

The definition of upper density and lower logarithmic density is
selfexplanatory .

liesicoviteli ([2]) Avas the first to construct a sequence of positive
upper density no term of which divides any other . Behrend ([L]) and
Erdös ([4]) on the other hand proved that in a sequence of positive lower
density there are infinitely many couples satisfying ai l aj , Behrend in
fact proved this if we only assume that the upper logarithmic density
is positive .

Davenport and Erdös ([3]) proved that if A has positive upper
logarithmic density there is an infinite subsequenec ai,j , 1 j < C) sati-
sfying aii I aij+l .

Put

lim
x=cn

ail aj
aj<x

It is reasonable to conjecture that if A

(1)

	

limf(x) = co .
x

has positive density theji

We have proved (1) and in fact obtained a fairly accurate deter-
mination of the speed with which f(x)lx has to tend to infinity, this
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strongly depends on the numerical value of the density of .1 . We will
prove (1) in a subsequent paper .

Throughout this paper c„ c 27 . . . will denote positive absolute eon-
stants, not necessarily the same at each occurence, log k x denotes the
lc-fold iterated logarithm . In the present paper we shall. prove the
following

THPAIL}um 1 . Assume that the sequence A has positive upper logarithncic
density and put

1

	

~ 1
(2)

		

lim	 }	 -- c~ .
log x ~~ ai

ai<x

Then there is a c 2 depending only on e, so that for infinitely many x

( 3 )

	

f (x) > xec20og2x) 1/210g3x

On the other hand there is a sequence A satisfying (2) so that for all x

( 4 )

	

.f (x) < xec3(10B2x) 1 /2 1093x .

First we prove ( :3) . Our principal tool will be the following purely
combinatorial

Tm,,,oin ;,m 2 . Let Y be a set of n elements and let B,, . . ., B z1 z > e 4 2n
(c 4 < 1) be subsets of Y . Then if n > n o (c4 ) one of the B's contains at least

e°,nl/ " 109n of the B's, where es depends only on c4 .
Before we prove Theorem 2 we show that apart from the value of

c; it is best possible . To see this let the B's be all subsets of Y having t
elements where 2nd-c ó n1/2 > t > 2n--c ón 112 . A simple computation shows
that for suitable C6 , z > c4 2n and every B contains fewer than ec7n1/21o '°

other B's .
To prove Theorem 2 we first note the well known fact that for suit-

able c„
(5)

where in ~:

	

1,j < 21z-c8n1/2 and in _, 27 j > In +c,n 112 Because of (5) we
can assume without loss of generality (replacing c 4 by 2c4 ) that JBI denotes
the number of elements of B

(li)

	

n-e,n 1/ <

	

< zn-l-c"n 12 .

Denote by -9 0 the family of these B's which have precisely j ele-
njents (j satisfies (6)) and denote by B(' ) , . . ., Bgo;) the sets of Y(') . Clearly

(7)

n

	

~"

n
<

e4 2'

9 ( ~ ) g(j) 2 2 n G 2 '



(8)

(9)
and
(10)

(12)

( 1"~)

(14)
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where in ~' the summation is extended over those j's for which g(J)
n

5 2 (j) . By (7) and (~) < -c -- we can assume without loss of generality
l/n

that either g (j) - 0 or g (j) > c, and that

S, g(i ) > e9V77 •

We obtain this by considering only the B's which have j elements where
g(j) > - e, .

Put

From. (8) we obtain by a simple argument that for a suitable
there is a sequence j, < j2 < . . . < js satisfying

g (jr) > ~ e ,~

s
- L 4J+

2 .

r-1, . . .,s

6n,9,1/21ogn'

	

C, = 1 ,

C1a

ir-i-, -jr > 01011 12 ,

	

r = 1,	e

From. (10) we obtain by a simple computation that

> C
. 1 1n' 11210gnr)"'

	

r=1

	

. . .,8 .

lNrc are going to show that c, can be chosen as zc,, . In fact we shall
show that if we consider only the set of Y(ir) , r = 1, . . ., s and denote
these sets by B 1 , . . ., Br1 then there is a B' which contains at least

B's . Assume that (12) is false for sufficiently large n, we will arrive at
a contradiction . Denote by Ifir) the subsets of 9' having jr elements which
contain at least Cesn1G21ogn of the sets B. By our assumption the families
100 and YOO are disjoint. Denote 1(jr) v 90 1'x) = VOr) . Put

II 1ir) I = h(jr),

	

I V1ir) I = m(jr)

by our assumption we have

T (jr) = h (jr)

	

I .~f1ir) > 11 (ir) -i-1-C4
( lr~

We will obtain our contradiction by showing that for a suitable r

~(jr) > 1%r)
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Now we estimate (f,(j, .) from below. First of all we evidently have

(fr))

	

o.m = 1 01I) i > -"C' 0 -
Now we show that for every r

(l8)

( 1 ')

(1 .G)

	

T(jr) > ( r_-o(l)~'c~(ir)

To prove (16) we use induction with respect to r . 1 (n)), (16) holds
for r _= 1 . Assume that it holds for r-1, we will deduce it for r. To show
this we will prove that if (16) holds for r-1 then

(17)

	

11 (M > (7 1+o(1))(jrt)

By (13), (17) implies (16) for r and thus we only have to prove (17) .
Consider now all the subsets of Y having j r elements which contain one
of the sets of 0 4-1) . We will estimate h (jr) from below by counting in
two ways the number of times a subset of Y having j,, elements can con-
tain a set of V ('r -1) . 1 1irst of all there are clean (,

	

?z jr-1Y

	

(

	

such
jr-ir-1

relations, since to each of the cp(j r_ 1 ) sets of Pfr -1) there are clearly
n jr-1 subsets of

	

having elements which contain it. On the other
(fir -ir-1)

	

C

	

~,r

hand the h (j r ) sets of P'r) each contain at most i"

	

sets of 1'(4-1) (since
1r-

j

they contain at most ('/r ) subsets having jr_ 1 elements). The other+- 1

n - - h, (jr ) subsets of P having jr elements contain fewer than cr,"
/2

ir
sets of V('r -1) . To see this observe that such a set can not contain a set
of L (' 7- 1 ) since otherwise it would belong to J(jr) and since it does not
belong to J (Jr ) it contains fewer than e" 5 ' 121o ~'z sets of 9 ( 'r ) . Thus we
evidently have

9 (~

	

) n ,ir-I

	

h'(~ )

	

11

	

~- n e C .n 1 / 2 lun,e
r-7 ( :r-~r-1)

	

r
( 7r-1)

	

(ir

1?rom (1S) we obtain by a simple eomputation using (11) and es

u-jr-1 ~r

	

1

	

n c n 1 / 2 1ot,,, ir

	

1
IL

	

(ir - )r-1( .~r) > (~r-1)

	

) (~r-7)

	

(i,~)e
5

	

(,7r--1)

i ~Z U, 1) Gr-i )-1 (ir')

	

(ir)e
c ,, . 1 /2 1og,a

1211



From (19) and the fact that (16) holds for -r -1 we have

Ie(J .,.) > (r--I

	

0(1 )) (~ 1 ),

which proves (17), and hence (16) holds for all r

	

s .

Ilut (16) implies that (14) holds for r = s . This contradiction proves
Theorem 2 .

By the same method we would prove the following
2'1

THEOREAt 3 . Let be a set of n elewents arid let R„	z , z ->c -- x,
VH

where x > 1, z ' 2" avd c is a sufficiently large ewistartt . Thert if it, > o o
o)w of the h' coritairts at least e"""I7z of the R's .

Theorem 3 clearly contains Theorem 2 . The proof of Theorem 3
is similar but somewhat more complicated then that of Theorem 2 . We
supress the proof of Theorem 3 .

The proof of (3) is now a simple task . In fact we shall prove the
following slightly stronger

Tml iorrn 1' . Let a, < . . . < al

	

N be a sequetaee of integers satisfying
t

1 > e,.,logN .

Ill (19) we use
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n - ,i,

	

ir

	

1

	

9L \1

	

)b

(,Ir--Jr-1) (jr-1)

	

(.)r-11

	

o.)

i=1

Then there is a cortstarzt e 1 3 depe)idirtg ortly ort c, 2 so lhat if
> -NO«,n, (', .,) the~t

~+ 1 1
(21)

	

u a,- > 2
., C ,,log X

a

where in (21) the suiiiviatiort is exte)ided over the a's, which Mare at least
ex1)(c13(log 2 N')V2 log 3 íV) divisors among the Ws .

It is easy to see that Theorem l' implies Theorem 1 . To see this ob-
serve: that if (2) holds then (26) holds for infinitely many N . But if (21)
holds a simple computation shows that to each N which satisfies (21)
there is an alt - lI (N) < -N' which tends to infinity with N and for
which the number of a, < M which have at least eXP(C 13 (log 2 N)112 1og3 N)
divisors among the a's is greater than '4c 12M. Thus 1I satisfies (3) and
hence Theorem l' implies (3) .

Thus we only have to prove Theorem 1' . Assume that Theorem 1'
is false. Then for arbitrarily large values of it there exists a sequence
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a, < . . . < a l N satisfying (20) which does not satisfy (21) . Then there
clearly exists a subsequence of the sequence a, < . . ., say h l <, . . . < b r < i\'
satisfying

(23)
s

r

(22)

	

, 1 > 2c121og N
bi

i=1

so that each b has fewer than exp (c13 (log e N) 1/2 1og3 N) divisors among the
b's. We now show that this conclusion leads to a contradiction .

.First we observe that by using

°°

	

2V~ 1
Gk2 = 6 <
k=1

2

we obtain that there is a t so that there is a subsequence b il < . . . < biS
of the b's each of which can be written in the form

bi r = t 2 gr,

	

1 < r <_ s

where the qr are squarefree integers and where

1
4

c 121ogN .

(23) immediately follows from the fact that every integer can be
written (uniquely) as the product of a square and a squarefree number .

d(n) (as usual) will denote the number of divisors of n. d+(n) denotes
the number of q's which divide n. By our assumption we have for all
r (r =1, . . .,s)

(24)

	

d+ (q,) < exp (0 13 (1092 N)'1"091 N) .

From (23) we have for N > Na
N

	

s

(25)

	

-N > 1 C 12NlogN .
y

	

r

	

O
m=1

	

r=1

	

r=

Denote by v(m) the number of distinct prime factors of m . Since
the q's are squarefree we have d+(n) c 2vá") .

Thus from (25) we obtain (the dash indicates that the summation
is extended over the n - N for which v(n) > log, X)

N

(26)

	

L
d+(m) > 1 CI2S109N-N21092i` >

1O
c12 N1ogíZ~ .

"n=1
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On the other hand we evidently have
.v

	

w
~, d(rn)

	

rnt l < 2 log N .
n1=1

	

m-1

Thus by (26) there is an m satisfying v(m) > log 2N for which

(27)

	

> 1 d(nt) >
20

e 12

The last equality of (27) follows from the fact that since the q's aree square-
free we can assume that m is squarefree .

Now we can apply Theorem 2 . The set Y is the set of prime divi-
sors of mt, v(m) = n . The 13's are the q's which divide m, c 12 /20 = e.1 .
We thus obtain by Theorem 2 that there is a q/m for which

( 4- (q) > exp (es (1092 w) 1i2 1o93 N)

which contradicts (24) if c 13 is sufficiently small .
This completes the proof of Theorem 1' and hence ( :3) is proved .

It is clear from the above proof that (21) would remain true with 1--~:
instead of 2 .

To complete the proof of Theorem 1 we now have to show (4) . (We
do not give the proof in full detail .) In fact we shall prove the following
stronger

THEoRmi 4 . There is an infinite sequence A of positive density for
which for all x

(L8)

	

f(x) < xexp(e14(1o92X) 1121og3x) .

Our principal tool for the proof of Theorem 4 will be the following
result from probabilistic number theory

Titi;.oni,, Ai 5 . Let it be sq-uarefree. Let n = flp(k ), pin) < . . . < peri) , be
k

the decomposition of n into primes . Then for every c 15 > 0 there is a k o
= k o(c 14,) so that the density of integers n which satisfy for all k o < k

	

v(n)

(29)

	

r,s(i092n) 1 / 2
< pk <

eek+c t s(1os2,a) 1 / 2

is positive .
Theorem 5 can be proved by the methods of probabilistic number

theory ([5], [6]) . We do not give here the proof of Theorem 5 .
Now we show that the sequence of integers which satisfy (29) for

all k > ko (c 15 ) also satisfy (28) and if this is accomplished Theorem 4
and therefore (4) is proved . Thus the proof of Theorem 1 will be complete .
Acta Arithmetica XL4

	

27
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Let at < . . . < a t < x be the sequence of integers satisfying (29) .
From (29) we obtain by a simple computation that for every r, 1 < r < d

(30)

	

log2ar-2014 (1092ar) X12 < v(ar ) < log2ar-P 2014( 1092ar) 112 .

Denote as before by d+(a r ) the number of a's dividing a,. . To prove
(28) it will suffice to show that for every r

(31)

	

d+(ar ) < exp(e14(log2X) ' 121og1x) .

Denote by p l < . . . < pv(u,.) the prime factors of a,. . Assume at I a., .

I f v(a t ) < k o then by (30) there are clearly fewer than v(ar ) o'-' -- (log2x)ko+ 2

choices for at , thus these can be ignored. If v (at ) > k o , let p s be the gre-
atest prime factor of a t . Since a t and ar both satisfy (29) and (30) a simple
computation shows that

(32)

	

s-3014 (log 2 ar ) 112 < v(at ) < s .

Thus by an easy argument and simple computation

d+«i,)

	

(l0g2x)
ko1-2 +

v(ar)

s-k

s

('u l
+ 8-3C15(1092ar) 112

< (lng`x)10 2~. v (a r )(v (ar )) 4C15(1 o92ar) 112

15(

	

tar) l

	

112
< v (ar)sc

log. 1 2 < exp (C16 (1092') log 3 x) .

Thus (31) is proved (with CA -_
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