On the divisibility properties of sequences of integers (I)

by

P. Erdös, A. SÁrközy and E. Szemerédi (Budapest)

Let $a_{1}<a_{2}<\ldots$ be a sequence A of integers. Put $A(x)=\sum_{a_{i} \leqslant x} 1$. The sequence is said to have positive lower density if

$$
\lim _{x=\infty}(A(x) / x)>0,
$$

it is said to have positive upper logarithmic density if

$$
\varlimsup_{x=\infty} \frac{1}{\log x} \sum_{a_{i} \leqslant x} \frac{1}{a_{i}}>0 .
$$

The definition of upper density and lower logarithmic density is selfexplanatory.

Besicovitch ([2]) was the first to construct a sequence of positive upper density no term of which divides any other. Behrend ([1]) and Erdös ([4]) on the other hand proved that in a sequence of positive lower density there are infinitely many couples satisfying $a_{i} \mid a_{j}$, Behrend in fact proved this if we only assume that the upper logarithmic density is positive.

Davenport and Erdös ([3]) proved that if A has positive upper logarithmic density there is an infinite subsequence $a_{i_{j}}, 1 \leqslant j<\infty$ satisfying $a_{i_{j}} \mid a_{i_{j+1}}$.

Put

$$
f(x)=\sum_{\substack{a_{i} \mid a_{j} \\ a_{j}<x}} 1
$$

It is reasonable to conjecture that if A has positive density then

$$
\begin{equation*}
\lim \frac{f(x)}{x}=\infty \tag{1}
\end{equation*}
$$

We have proved (1) and in fact obtained a fairly accurate determination of the speed with which $f(x) / x$ has to tend to infinity, this
strongly depends on the numerical value of the density of A. We will prove (1) in a subsequent paper.

Throughout this paper c_{1}, c_{2}, \ldots will denote positive absolute constants, not necessarily the same at each occurence, $\log _{k} x$ denotes the k-fold iterated logarithm. In the present paper we shall prove the following

Theorem 1. Assume that the sequence A has positive upper logarithmic density and put

$$
\begin{equation*}
\varlimsup \frac{1}{\log x} \sum_{a_{i}<x} \frac{1}{a_{i}}=c_{1} \tag{2}
\end{equation*}
$$

Then there is a c_{2} depending only on c_{1} so that for infinitely many x

$$
\begin{equation*}
f(x)>x e^{\epsilon_{2}\left(\log _{2} x\right)^{1 / 2} \log _{3} x} . \tag{3}
\end{equation*}
$$

On the other hand there is a sequence A satisfying (2) so that for all x

$$
\begin{equation*}
f(x)<x e^{c_{3}\left(\log _{2} x\right)^{1 / 2} \log _{3} x} . \tag{4}
\end{equation*}
$$

First we prove (3). Our principal tool will be the following purely combinatorial

Theorem 2. Let \mathscr{S} be a set of n elements and let $B_{1}, \ldots, B_{z}, z>c_{4} 2^{n}$ $\left(c_{4}<1\right)$ be subsets of \mathscr{S}. Then if $n>n_{0}\left(c_{4}\right)$ one of the B 's contains at least $e^{c_{5} n^{1 / 2} \log n}$ of the $B ' s$, where c_{5} depends only on c_{4}.

Before we prove Theorem 2 we show that apart from the value of c_{5} it is best possible. To see this let the B 's be all subsets of \mathscr{S} having t elements where $\frac{1}{2} n+c_{6} n^{1 / 2}>t>\frac{1}{2} n-c_{6} n^{1 / 2}$. A simple computation shows that for suitable $c_{6}, z>c_{4} 2^{n}$ and every B contains fewer than $e^{c_{7} n^{1 / 2} \log n}$ other B 's.

To prove Theorem 2 we first note the well known fact that for suitable c_{8}

$$
\begin{equation*}
\sum_{1}\binom{n}{j}+\sum_{2}\binom{n}{j}<\frac{c_{4}}{2} 2^{u}, \tag{5}
\end{equation*}
$$

where in $\sum_{1}, j<\frac{1}{2} n-c_{8} n^{1 / 2}$ and in $\sum_{2}, j>\frac{1}{2} n+c_{8} n^{1 / 2}$. Because of (5) we can assume without loss of generality (replacing c_{4} by $\frac{1}{2} c_{4}$) that $|B|$ denotes the number of elements of B

$$
\begin{equation*}
\frac{1}{2} n-c_{8} n^{1 / 2}<\left|B_{i}\right|<\frac{1}{2} n+c_{8} n^{1 / 2} . \tag{6}
\end{equation*}
$$

Denote by $\mathscr{S}^{(i)}$ the family of these B^{\prime} 's which have precisely j elements (j satisfies (6)) and denote by $B_{1}^{(j)}, \ldots, B_{g(j)}^{(j)}$ the sets of $\mathscr{S}^{(j)}$. Clearly

$$
\begin{equation*}
\sum^{\prime} g^{(j)} g(j) \leqslant \frac{c_{4}}{2} 2^{n} \leqslant \frac{z}{2}, \tag{7}
\end{equation*}
$$

where in Σ^{\prime} the summation is extended over those j 's for which $g(j)$ $\leqslant \frac{c_{4}}{2}\binom{n}{j}$. By (7) and $\binom{n}{j}<\frac{c 2^{n}}{\sqrt{n}}$ we can assume without loss of generality that either $g(j)=0$ or $g(j)>\frac{1}{2} c_{4}$ and that

$$
\begin{equation*}
\sum g(j)>c_{9} \sqrt{n} . \tag{8}
\end{equation*}
$$

We obtain this by considering only the B 's which have j elements where $g(j)>\frac{1}{2} c_{4}$.

Put

$$
s=\left[\frac{2}{c_{4}}\right]+2 .
$$

From (8) we obtain by a simple argument that for a suitable c_{11} there is a sequence $j_{1}<j_{2}<\ldots<j_{s}$ satisfying

$$
\begin{equation*}
g\left(j_{r}\right)>\frac{1}{2} c_{4}, \quad r=1, \ldots, s \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{r+1}-j_{r}>c_{10} n^{1 / 2}, \quad r=1, \ldots, s-1 . \tag{10}
\end{equation*}
$$

From (10) we obtain by a simple computation that

$$
\begin{equation*}
\binom{j_{r}}{j_{r-1}}>e^{c_{11} n^{1 / 2 l \log n}}, \quad r=1, \ldots, s . \tag{11}
\end{equation*}
$$

We are going to show that c_{5} can be chosen as $\frac{1}{2} c_{11}$. In fact we shall show that if we consider only the set of $\mathscr{S}^{\left(j_{r}\right)}, r=1, \ldots, s$ and denote these sets by $B_{1}^{\prime}, \ldots, B_{r_{1}}^{\prime}$ then there is a B^{\prime} which contains at least

$$
\begin{equation*}
e^{c_{5} n^{1 / 2} \log n}, \quad c_{5}=\frac{1}{2} c_{11} \tag{12}
\end{equation*}
$$

B 's. Assume that (12) is false for sufficiently large n, we will arrive at a contradiction. Denote by $I^{\left(j_{r}\right)}$ the subsets of \mathscr{S} having j_{r} elements which contain at least $e^{c_{5} n^{1 / 2} \log n}$ of the sets B. By our assumption the families $I^{\left(j_{r}\right)}$ and $\mathscr{S}^{\left(j_{r}\right)}$ are disjoint. Denote $I^{\left(j_{r}\right)} \cup \mathscr{S}^{\left(j_{r}\right)}=V^{\left(j_{r}\right)}$. Put

$$
\left|I^{\left(j_{r}\right)}\right|=h\left(j_{r}\right), \quad\left|V^{\left(j_{r}\right)}\right|=\varphi\left(j_{r}\right)
$$

By our assumption we have

$$
\begin{equation*}
\varphi\left(j_{r}\right)=h\left(j_{r}\right)+\left|\mathscr{S}^{\left(j_{r}\right)}\right| \geqslant h\left(j_{r}\right)+\frac{1}{2} c_{4}\binom{n}{j_{r}} . \tag{13}
\end{equation*}
$$

We will obtain our contradiction by showing that for a suitable r

$$
\begin{equation*}
\varphi\left(j_{r}\right)>\binom{n}{j_{r}} . \tag{14}
\end{equation*}
$$

Now we estimate $q\left(j_{r}\right)$ from below. First of all we evidently have

$$
\begin{equation*}
p\left(j_{1}\right)=\left|\mathscr{S}^{\left(i_{1}\right)}\right|>\frac{1}{2} c_{4}\binom{n}{j_{1}} . \tag{15}
\end{equation*}
$$

Now we show that for every $r \leqslant s\left(s=\left[\frac{2}{c_{4}}\right]+2\right)$

$$
\begin{equation*}
\varphi\left(j_{r}\right)>(r+o(1)) \frac{1}{2} c_{4}\binom{n}{j_{r}} . \tag{16}
\end{equation*}
$$

To prove (16) we use induction with respect to r. By (15), (16) holds for $r=1$. Assume that it holds for $r-1$, we will deduce it for r. To show this we will prove that if (16) holds for $r-1$ then

$$
\begin{equation*}
h\left(j_{r}\right)>(r-1+o(1))\binom{n}{j_{r}} . \tag{17}
\end{equation*}
$$

By (13), (17) implies (16) for r and thus we only have to prove (17). Consider now all the subsets of \mathscr{S} having j_{r} elements which contain one of the sets of $V^{\left(j_{r-1}\right)}$. We will estimate $h\left(j_{r}\right)$ from below by counting in two ways the number of times a subset of \mathscr{S} having j_{r} elements can contain a set of $V^{\left(j_{r-1}\right)}$. First of all there are clearly $\varphi\left(j_{r_{-1}}\right)\binom{n-j_{r-1}}{j_{r}-j_{r-1}}$ such relations, since to each of the $\varphi\left(j_{r-1}\right)$ sets of $V^{\left(j_{r-1}\right)}$ there are clearly $\binom{n-j_{r-1}}{j_{r}-j_{r-1}}$ subsets of \mathscr{S} having j_{r} elements which contain it. On the other hand the $h\left(j_{r}\right)$ sets of $I^{\left(i_{r}\right)}$ each contain at most $\binom{j_{r}}{j_{r-1}}$ sets of $V^{\left(j_{r-1}\right)}$ (since they contain at most $\binom{j_{r}}{j_{r-1}}$ subsets having j_{r-1} elements). The other $\binom{n}{j_{r}}-h\left(j_{r}\right)$ subsets of \mathscr{S} having j_{r} elements contain fewer than $e^{c_{5} n^{1 / 2} \log n}$ sets of $V^{\left(j_{r-1}\right)}$. To see this observe that such a set can not contain a set of $I^{\left(j_{r-1}\right)}$ since otherwise it would belong to $I^{\left(j_{r}\right)}$ and since it does not belong to $I^{\left(i_{r}\right)}$ it contains fewer than $e^{c_{5} n^{1 / 2} \log n}$ sets of $\mathscr{S}^{\left(i_{r}\right)}$. Thus we evidently have

$$
\begin{equation*}
q\left(j_{r-1}\right)\binom{n-j_{r-1}}{i r-j_{r-1}}<h\left(j_{r}\right)\binom{j_{r}}{j_{r-1}}+\binom{n}{j_{r}} e^{c_{5} n^{1 / 2} \log _{n}} . \tag{18}
\end{equation*}
$$

From (18) we obtain by a simple computation using (11) and $c_{5}=\frac{1}{2} c_{11}$

$$
\begin{align*}
h\left(j_{r}\right) & >\varphi\left(j_{r-1}\right)\binom{n-j_{r-1}}{j_{r}-j_{r-1}}\binom{j_{r}}{j_{r-1}}^{-1}-\binom{n}{j_{r}} e^{c_{5} n^{1 / 2} \log n}\binom{j_{r}}{j_{r-1}}^{-1} \tag{19}\\
& \geqslant \varphi\left(j_{r-1}\right)\binom{n}{j_{r-1}}^{-1}\binom{n}{j_{r}}-\binom{n}{j_{r}} e^{-c_{5} n^{1 / 2} \log n} .
\end{align*}
$$

In (19) we use

$$
\binom{n-j_{r-1}}{j_{r}-j_{r-1}}\binom{j_{r}}{j_{r-1}}^{-1}=\binom{n}{j_{r-1}}^{-1}\binom{n}{j_{r}} .
$$

From (19) and the fact that (16) holds for $r-1$ we have

$$
h\left(j_{r}\right)>(r-1+o(1))\binom{n}{j_{r}},
$$

which proves (17), and hence (16) holds for all $r \leqslant s$.
But (16) implies that (14) holds for $r=s$. This contradiction proves Theorem 2.

By the same method we would prove the following
Theorem 3. Let \mathscr{S} be a set of n elements and let $B_{1}, \ldots, B_{z}, z>c \frac{2^{n}}{\sqrt{n}} x$, where $x>1, z \leqslant 2^{n}$ and c is a sufficiently large constant. Then if $n>n_{0}$ one of the B^{\prime} contains at least $e^{c \cdot x \log n}$ of the $B^{\prime} s$.

Theorem 3 clearly contains Theorem 2. The proof of Theorem 3 is similar but somewhat more complicated then that of Theorem 2. We supress the proof of Theorem 3.

The proof of (3) is now a simple task. In fact we shall prove the following slightly stronger

Theorem 1'. Let $a_{1}<\ldots<a_{l} \leqslant N$ be a sequence of integers satisfying

$$
\begin{equation*}
\sum_{i=1}^{l} \frac{1}{a_{i}}>c_{12} \log N \tag{20}
\end{equation*}
$$

Then there is a constant c_{13} depending only on c_{12} so that if N $>N_{0}\left(c_{11}, c_{12}\right)$ then

$$
\begin{equation*}
\sum \frac{1}{a_{i}}>\frac{1}{2} c_{12} \log N \tag{21}
\end{equation*}
$$

where in (21) the summation is extended over the a's, which have at least $\exp \left(c_{13}\left(\log _{2} N\right)^{1 / 2} \log _{3} N\right)$ divisors among the $a^{\prime} s$.

It is easy to see that Theorem 1^{\prime} implies Theorem 1 . To see this observe that if (2) holds then (20) holds for infinitely many N. But if (21) holds a simple computation shows that to each N which satisfies (21) there is an $M=M(N)<N$ which tends to infinity with N and for which the number of $a_{l}<M$ which have at least $\exp \left(c_{13}\left(\log _{2} N\right)^{1 / 2} \log _{3} N\right)$ divisors among the a 's is greater than $\frac{1}{4} c_{12} M$. Thus M satisfies (3) and hence Theorem 1^{\prime} implies (3).

Thus we only have to prove Theorem 1^{\prime}. Assume that Theorem 1^{\prime} is false. Then for arbitrarily large values of n there exists a sequence
$a_{1}<\ldots<a_{l} \leqslant N$ satisfying (20) which does not satisfy (21). Then there clearly exists a subsequence of the sequence $a_{1}<\ldots$, say $b_{1}<\ldots<b_{r} \leqslant N$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{1}{b_{i}}>\frac{1}{2} c_{12} \log N \tag{22}
\end{equation*}
$$

so that each b has fewer than $\exp \left(c_{13}\left(\log _{2} N\right)^{1 / 2} \log _{3} N\right)$ divisors among the b 's. We now show that this conclusion leads to a contradiction.

First we observe that by using

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}<2
$$

we obtain that there is a t so that there is a subsequence $b_{i_{1}}<\ldots<b_{i_{s}}$ of the b 's each of which can be written in the form

$$
b_{i_{r}}=t^{2} q_{r}, \quad 1 \leqslant r \leqslant s
$$

where the q_{r} are squarefree integers and where

$$
\begin{equation*}
\sum_{r=1}^{s} \frac{1}{q_{r}}>\frac{1}{4} c_{12} \log N \tag{23}
\end{equation*}
$$

(23) immediately follows from the fact that every integer can be written (uniquely) as the product of a square and a squarefree number.
$d(n)$ (as usual) will denote the number of divisors of $n . d^{+}(n)$ denotes the number of q 's which divide n. By our assumption we have for all $r(r=1, \ldots, s)$

$$
\begin{equation*}
d^{+}\left(q_{r}\right)<\exp \left(c_{13}\left(\log _{2} N\right)^{1 / 2} \log _{3} N\right) \tag{24}
\end{equation*}
$$

From (23) we have for $N>N_{0}$

$$
\begin{equation*}
\sum_{m=1}^{N} d^{+}(m)=\sum_{r=1}^{s}\left[\frac{N}{q_{r}}\right] \geqslant N \sum_{r=1}^{s} \frac{1}{q_{r}}-N>\frac{1}{5} c_{12} N \log N . \tag{25}
\end{equation*}
$$

Denote by $v(m)$ the number of distinct prime factors of m. Since the q 's are squarefree we have $d^{+}(n) \leqslant 2^{p(n)}$.

Thus from (25) we obtain (the dash indicates that the summation is extended over the $n \leqslant N$ for which $v(n)>\log _{2} N$)

$$
\begin{equation*}
\sum_{m=1}^{N} d^{\prime}(m)>\frac{1}{5} c_{12} N \log N-N 2^{\log _{2} N}>\frac{1}{10} c_{12} N \log N \tag{26}
\end{equation*}
$$

On the other hand we evidently have

$$
\sum_{m=1}^{N} d(m)=\sum_{m=1}^{N}\left[\frac{N}{m}\right]<2 N \log N .
$$

Thus by (26) there is an m satisfying $v(m)>\log _{2} N$ for which

$$
\begin{equation*}
d^{+}(m)>\frac{c_{12}}{20} d(m) \geqslant \frac{1}{20} c_{12} 2^{r(m)} . \tag{27}
\end{equation*}
$$

The last equality of (27) follows from the fact that since the q 's are squarefree we can assume that m is squarefree.

Now we can apply Theorem 2 . The set \mathscr{S} is the set of prime divisors of $m, v(m)=n$. The B 's are the q 's which divide $m, c_{12} / 20=c_{4}$. We thus obtain by Theorem 2 that there is a q / m for which

$$
d^{+}(q)>\exp \left(c_{5}\left(\log _{2} N\right)^{1 / 2} \log _{3} N\right)
$$

which contradicts (24) if c_{13} is sufficiently small.
This completes the proof of Theorem 1^{\prime} and hence (3) is proved. It is clear from the above proof that (21) would remain true with $1-\varepsilon$ instead of $\frac{1}{2}$.

To complete the proof of Theorem 1 we now have to show (4). (We do not give the proof in full detail.) In fact we shall prove the following stronger

Theorem 4. There is an infinite sequence A of positive density for which for all x

$$
\begin{equation*}
f(x)<x \exp \left(c_{14}\left(\log _{2} x\right)^{1 / 2} \log _{3} x\right) . \tag{28}
\end{equation*}
$$

Our principal tool for the proof of Theorem 4 will be the following result from probabilistic number theory:

Theorem 5. Let n be squarefree. Let $n=\prod_{k} p_{k}^{(n)}, p_{1}^{(n)}<\ldots<p_{v(n)}^{(n)}$, be the decomposition of n into primes. Then for every $c_{15}>0$ there is a k_{0} $=k_{0}\left(c_{14}\right)$ so that the density of integers n which satisfy for all $k_{0}<k \leqslant \nu(n)$

$$
\begin{equation*}
e^{e^{k-c_{15}\left(\log _{2} n\right)^{1 / 2}}<p_{k}<e^{e^{k+c_{15}\left(\log _{2} n\right)^{1 / 2}}} . .{ }^{1 / 2}} \tag{29}
\end{equation*}
$$

is positive.
Theorem 5 can be proved by the methods of probabilistic number theory ([5], [6]). We do not give here the proof of Theorem 5.

Now we show that the sequence of integers which satisfy (29) for all $k>k_{0}\left(c_{15}\right)$ also satisfy (28) and if this is accomplished Theorem 4 and therefore (4) is proved. Thus the proof of Theorem 1 will be complete.

Let $a_{1}<\ldots<a_{l} \leqslant x$ be the sequence of integers satisfying (29). From (29) we obtain by a simple computation that for every $r, 1 \leqslant r \leqslant l$

$$
\begin{equation*}
\log _{2} a_{r}-2 c_{14}\left(\log _{2} a_{r}\right)^{1 / 2}<v\left(a_{r}\right)<\log _{2} a_{r}+2 c_{14}\left(\log _{2} a_{r}\right)^{1 / 2} \tag{30}
\end{equation*}
$$

Denote as before by $d^{+}\left(a_{r}\right)$ the number of a^{\prime} 's dividing a_{r}. To prove (28) it will suffice to show that for every r

$$
\begin{equation*}
d^{+}\left(a_{r}\right)<\exp \left(c_{14}\left(\log _{2} x\right)^{1 / 2} \log _{3} x\right) \tag{31}
\end{equation*}
$$

Denote by $p_{1}<\ldots<p_{r\left(a_{r}\right)}$ the prime factors of a_{r}. Assume $a_{t} \mid a_{r}$. If $v\left(a_{t}\right) \leqslant k_{0}$ then by (30) there are clearly fewer than $v\left(a_{r}\right)^{k_{0}+1} \leqslant\left(\log _{2} x\right)^{k_{0}+2}$ choices for a_{t}, thus these can be ignored. If $v\left(a_{t}\right)>k_{0}$, let p_{s} be the greatest prime factor of a_{t}. Since a_{t} and a_{r} both satisfy (29) and (30) a simple computation shows that

$$
\begin{equation*}
s-3 c_{14}\left(\log _{2} a_{r}\right)^{1 / 2} \leqslant v\left(a_{t}\right) \leqslant s \tag{32}
\end{equation*}
$$

Thus by an easy argument and simple computation

$$
\begin{aligned}
d^{+}\left(a_{r}\right) & <\left(\log _{2} x\right)^{k_{0}+2}+\sum_{s=k_{0}+1}^{v\left(a_{r}\right)} \sum_{s-3 c_{15}\left(\log _{2} a_{r}\right)^{1 / 2}}^{s}\binom{s}{u} \\
& <\left(\log _{2} x\right)^{k_{0}+2}+v\left(a_{r}\right)\left(v\left(a_{r}\right)\right)^{4 c_{15}\left(\log _{2} a_{r}\right)^{1 / 2}} \\
& <v\left(a_{r}\right)^{5 c_{15}\left(\log _{2} a_{r}\right) 1 / 2}<\exp \left(c_{16}\left(\log _{2} x\right)^{1 / 2} \log _{3} x\right) .
\end{aligned}
$$

Thus (31) is proved (with $c_{16}=c_{14}$).

References

[1] F. Behrend, On sequences of numbers not divisible one by another, J. London Math. Soc. 10 (1935), pp. 42 -44.
[2] A. S. Besicovitch, On the density of certain sequences, Math. Ann. 110 (1934), pp. 336-341.
[3] H. Davenport and P. Erdös, On sequences of positive integers, Acta Arith. 2 (1936), pp. 147-151.
[4] P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), pp. 126-128.
[5] - On the distribution function of additive functions, Ann. Math. 47 (1946), pp. 1-20.
[6] J. Kubilius, Probabilistic methods in the theory of numbers, Translation of Math. Monographs, Amer. Math. Soc. 1964, vol. 11.

