ON THE NUMBER OF POSITIVE INTEGERS $\leqslant x$ AND FREE OF PRIME FACTORS $>y$

P. Erdös
University of Illinois
Urbana, Illinois
and
J. H. van Lint
Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey

1. Introduction

Let $\Psi(x, y)$ denote the number of integers specified in the title. A number of estimates and asymptotic formulae for this function have been given (cf. [1] and the literature mentioned there). Recently De Bruijn ([2]) proved an asymptotic formula for $\log \Psi(x, y)$ which holds uniformly for $2<y \leqslant x$. Part of the proof consisted of showing that

$$
\Psi(x, y) \geqslant\binom{\pi(y)+u}{u} \text { where } u=[(\log x) /(\log y)] .
$$

It is the purpose of this note to extend this inequality to an asymptotic formula (which is weaker than De Bruisn's result). In fact we shall prove:

Theorem 1: For $2<y \leqslant x$ we have for $x \rightarrow \infty$, uniformly in y,

$$
\begin{equation*}
\log \Psi(x, y) \sim \log \binom{\pi(y)+u}{u} \tag{1}
\end{equation*}
$$

where

$$
u=[(\log x) /(\log y)] .
$$

We remark that this of course follows from De Bruinn's theorem. Our interest lies mainly in giving a short fairly straightforward proof. For some ranges of values of y (1) is nearly trivial and the most interesting part of the proof concerns the range $(\log x)^{\varepsilon}<y<(\log x)^{1+\varepsilon}$.

2. Proof of Theorem 1

We shall prove (1) by showing that for every $\varepsilon>0$ we have

$$
\begin{equation*}
\binom{\pi(y)+u}{u}<\Psi(x, y)<\binom{\pi(y)+u}{u}^{1+\varepsilon} \text { for } x>x_{0}(\varepsilon) \tag{2}
\end{equation*}
$$

a. The first inequality immediately follows from the fact that $\binom{\pi(y)+u}{u}$ represents the number of solutions of

$$
\sum_{p \leqslant y} \alpha_{p} \leqslant u=[(\log x) /(\log y)]
$$

in nonnegative integers α_{p} and this number is less than the number of solutions of

$$
\sum_{p \leqslant y} \alpha_{p} \log p \leqslant \log x
$$

which is $\Psi(x, y)$ by definition.
In sections \mathbf{b}, \mathbf{c} and \mathbf{d} we prove the second inequality of (2).
b. We now consider $y<(\log x)^{1+\varepsilon}$. We first remark that (2) is trivial for very small values of y, for example $y<(\log x)^{\varepsilon / 2}$, because

$$
\Psi(x, y) \leqslant\left(\frac{\log x}{\log 2}+1\right)^{\pi(y)}<\binom{\pi(y)+u}{u}^{1+\varepsilon} \text { if } y<(\log x)^{\varepsilon / 2} .
$$

Hence we can assume that $y>(\log x)^{\varepsilon / 2}$.
Let N_{1} denote the number of integers $\leqslant x$, free of prime factors $>y^{1-\varepsilon}$ and let N_{2} denote the number of integers $\leqslant x$ all of whose prime factors satisfy $y^{1-\varepsilon}<p \leqslant y$. Then $\Psi(x, y) \leqslant N_{1} N_{2}$.

$$
\text { Trivially } N_{1}<\left(\frac{\log x}{\log 2}+1\right)^{\pi\left(y^{1-\varepsilon}\right)} . \text { Furthermore }
$$

$\binom{\pi(y)+u}{u}>\left(\frac{\pi(y)+u}{\pi(y)}\right)^{\pi(y)}$. From this it follows that

$$
\frac{\log N_{1}}{\log \binom{\pi(y)+u}{u}}=O\left(\frac{\log \log x}{(\log x)^{\frac{1}{2} \varepsilon^{2}}}\right)
$$

i.e. $N_{1}<\binom{\pi(y)+u}{u}^{\varepsilon}$ for $x>x_{1}(\varepsilon)$.

Now N_{2} is less than the number of solutions of

$$
\sum_{y^{1-\varepsilon \ll p \leqslant y}} \alpha_{p} \leqslant \frac{\log x}{(1-\varepsilon) \log y}
$$

in nonnegative integers α_{p} and this number does not exceed

$$
\binom{\pi(y)+u^{\prime}}{u^{\prime}} \text { where } u^{\prime}=\left[\frac{\log x}{(1-\varepsilon) \log y}\right] .
$$

We now use the fact that if a, b and $b(1+\varepsilon)$ are positive integers then
$\binom{a+b}{a}^{1+\varepsilon}=\prod_{i=0}^{a-1}\left(1+\frac{b}{a-i}\right)^{1+\varepsilon}>\prod_{i=0}^{a-1}\left(1+\frac{b(1+\varepsilon)}{a-i}\right)=\binom{a+b(1+\varepsilon)}{a}$.
It follows that $N_{2}<\binom{\pi(y)+u}{u}^{1+O(\varepsilon)}$.
Combining the estimates for N_{1} and N_{2} we find

$$
\Psi(x, y)<\binom{\pi(y)+u}{u}^{1+O(\varepsilon)}
$$

proving (2) for $y<(\log x)^{1+\varepsilon}$.
c. For $y>(\log x)^{n(\varepsilon)}$ where for instance $n(\varepsilon)=2 / \varepsilon$ the right-hand side of (2) is trivial because

$$
\binom{\pi(y)+u}{u}>\left(\frac{\pi(y)}{u}\right)^{u} \text { which implies }\binom{\pi(y)+u}{u}^{1+\varepsilon}>x .
$$

d. The case $(\log x)^{1+\varepsilon}<y<(\log x)^{2 / \varepsilon}$ will be treated by writing $y=(\log x)^{x}$ and proving

$$
\begin{equation*}
\Psi(x, y)=x^{1-1 / \alpha+o(1)} \tag{3}
\end{equation*}
$$

which implies (2).
We first remark that $\binom{\pi(y)+u}{u}=x^{1-1 / \alpha+o(1)}$ and the same holds for $\binom{\pi(y)}{u}$. So it remains to show that

$$
\Psi(x, y)<x^{1-1 / \alpha+o(1)} .
$$

To do this we split the integers counted by $\Psi(x, y)$ into two classes. First those with at least u distinct prime factors. Their number is less than

$$
\frac{x}{u!}\left(\sum_{p<x} \frac{1}{p}\right)^{u}<x\left(\frac{2 e \log \log x}{u}\right)^{u}=x^{1-1 / x+o(1)} .
$$

The number of integers $\leqslant x$ with less than u distinct prime factors $\leqslant y$ is less than

$$
\binom{\pi(y)}{u}\binom{\frac{\log x}{\log 2}+u}{u}
$$

because there are $\binom{\pi(y)}{u}$ different u-tuples of primes $\leqslant y$ and for each of these the sum of the exponents is less than $\frac{\log x}{\log 2}$. We have

$$
\binom{\frac{\log x}{\log 2}+u}{u}=x^{o(1)}\left(\text { this foilows from }\left(\frac{n}{k}\right)<\frac{n^{k}}{k!}<\left(\frac{n \mathrm{e}}{k}\right)^{k}\right) .
$$

So the number of integers in the second class is also $x^{1-1 / x+o(1)}$.
This completes the proof of Theorem 1.

REFERENCES

[1] N.G. de Bruiun, On the number of positive integers $\leqslant x$ and free of prime factors > y, Proc. Kon. Ned. Akad. v. Wetensch., 54, 50-59 (1951).
[2] N.G. De Bruinn, On the number of positive integers $\leqslant x$ and free of prime factors $>y$, II, Proc. Kon. Ned. Akad. v. Wetensch., 69, 335-348 (1966).

