ON THE SOLVABILITY OF SOME EQUATIONS IN DENSE SEQUENCES OF INTEGERS

P. ERDÖS, A. SARKÖZI AND E. SZEMERÉdI*

In a previous paper [1], making use of a simple combinatorial result of Kleitman [4], we showed that if $a_{1}<a_{2}<\cdots$ is an infinite sequence of integers for which there are infinitely many x satisfying the inequality $A x=\Sigma_{a_{i} \leq x} 1 / a_{i}>c_{1}(\log x) /(\log \log x)^{1 / 2}$, then the equations $\left(a_{i}, a_{j}\right)=a_{r}, r<i<j$, $\left[a_{i_{1}}, a_{j_{1}}\right]=a_{r_{1}}, i_{1}<j_{1}<r_{1}$, have infinitely many solutions. We also showed that this theorem cannot be improved in a specific sense, namely that the constant c_{1} cannot be replaced by an arbitrarily small constant. More precisely, we constructed a sequence satisfying the hypothesis

$$
\begin{equation*}
\sum_{a_{i} \leqslant x} 1>c_{2} x /(\log \log x)^{1 / 2} \tag{1}
\end{equation*}
$$

but nevertheless the equation $\left[a_{i_{1}}, a_{j_{1}}\right]=a_{r_{1}}, i_{1}<j_{1}<r_{1}$, is not solvable.
In the present paper, c, c_{1}, c_{2}, \cdots will denote absolute constants; p denotes primes; $P(n)$ is the greatest and $p(n)$ the smallest prime factor of n. Denote the sequence $a_{1}<a_{2}<\cdots$ by A.

We shall say that the sequence $u_{1}<u_{2}<\cdots$ possesses property I if the equation $u_{i} q=u_{j}$, $p(q)>P\left(u_{i}\right)$ has no solutions.

In this paper we shall show that the behavior of the equation $\left(a_{i}, a_{j}\right)=a_{r}$ is completely different from that of the equation $\left[a_{i}, a_{j}\right]=a_{r}$.

We shall prove the following theorem.
Theorem. Let $a_{1}<\cdots$ be a sequence of integers for which the equation

$$
\begin{equation*}
\left(a_{i}, a_{j}\right)=a_{r}, \quad r<i<j \tag{2}
\end{equation*}
$$

has no solutions. Then

$$
\begin{equation*}
\sum \frac{1}{a_{i} \log a_{i}}<c \tag{3}
\end{equation*}
$$

We shall make a few preliminary comments. By means of partial summation, we easily find from the theorem in our paper [2] that if equation (2) has no solutions, then for every k we have the equality

$$
\lim _{x \rightarrow \infty} \inf \sum_{a_{i} \leqslant x}\left(\frac{x}{\prod_{r=2}^{k} \log _{r} x}\right)^{-1}=0
$$

$\left(\log _{r} x\right.$ denotes the r th iteration of the logarithm).
Therefore relations similar to (1) cannot exist in this case.
The sequence $b_{1}<\cdots$ is called primitive if there exists no number dividing all the remaining terms of the sequence. It is well known [3] that for every primitive sequence we have the inequality

$$
\begin{equation*}
\sum \frac{1}{b_{i} \log b_{i}}<c_{3} \tag{4}
\end{equation*}
$$

[^0]and also (see [2]) the equation
\[

$$
\begin{equation*}
\lim _{x=\infty} \sum_{b_{i} \leqslant x} \frac{1}{b_{i}}\left(\frac{\log x}{(\log \log x)^{1 / 2}}\right)^{-1}=0 \tag{5}
\end{equation*}
$$

\]

and this relation cannot be refined.
We prove that if $a_{1}<a_{2}<\cdots$ is an infinite sequence for which equation (2) is not solvable, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{a_{i} \leqslant x} \frac{1}{a_{i}}\left(\frac{\log x}{(\log \log x)^{1 / 2}}\right)^{-1}=0 \tag{6}
\end{equation*}
$$

The proof of equation (6) is rather complex, and we shall come back to it later. The relations (3), (4), (5), and (6) prompt the following question. Let $b_{1}<b_{2}<\cdots$ be an infinite primitive sequence. Do there exist a constant $c>0$ and a sequence $a_{1}<\cdots$ for which equation (2) is not solvable and $a_{n} \ll b_{n}^{2}$? We are unable to answer this question.

Now let us consider the proof of the theorem. We shall make use of the following lemma due to Alexander.

Lemma 1. Let $a_{1}<a_{2}<\cdots$ be a sequence with Property I. Then

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i} \log u_{i}}<c_{4} . \tag{7}
\end{equation*}
$$

If $u_{i} \nmid u_{j}$ (i.e. if the sequence $u_{1}<u_{2}<\cdots$ is primitive), then the inequality (7) is proved in [3]. The proof of Lemma 1 resembles the proof given in [3], but for the sake of completeness we shall sketch it here. We easily see that condition I means (see [3]) that $u_{i} q=u_{j} q^{\prime}, p(q)>P\left(u_{i}\right)$, $p\left(q^{\prime}\right)>P\left(u_{j}\right)$.

Making use of the sieve of Eratosthenes, we conclude that the number of integers $u_{i} q \leq x$, $p(q) \geq P\left(u_{1}\right)$, is greater than

$$
\begin{equation*}
\prod_{p \leqslant P\left(u_{i}\right)}\left(1-\frac{1}{p}\right)-2^{u_{i}} . \tag{8}
\end{equation*}
$$

From (8) we easily obtain the inequality

$$
\begin{equation*}
\sum_{i} \prod_{p \leqslant P\left(u_{i}\right)}\left(1-\frac{1}{p}\right) / u_{i} \leqslant 1 \tag{9}
\end{equation*}
$$

whence, with the use of Mertens' theorem,

$$
\prod_{p<y}\left(1-\frac{1}{p}\right)<c / \log y
$$

follows the proof of our lemma.
We now define a subsequence $A\left(a_{i}\right)$ of the sequence A in the following manner: a_{j} belongs to $A\left(a_{i}\right)$ if a_{i} is the largest a for which the equation $a_{j}=a_{i} q, p(q)>P\left(a_{i}\right)$, is solvable. Let A^{\prime} be a subsequence of the sequence A which is not included in any subsequence $A\left(a_{i}\right)$. Clearly $A=A^{\prime} \bigcup_{i=1} A\left(a_{i}\right)$. Therefore

$$
\begin{equation*}
\sum_{k} \frac{1}{a_{k} \log a_{k}}=\sum_{a_{k} \text { in } A^{\prime}} \frac{1}{a_{k} \log a_{k}}+\sum_{i=1}^{\infty} \sum_{a_{k} \operatorname{in} A\left(a_{i}\right)} \frac{1}{a_{k} \log a_{k}} . \tag{10}
\end{equation*}
$$

Evidently the subsequence A^{\prime} possesses Property I. Thus, by virtue of Lemma 1 , we have the
inequality

$$
\begin{equation*}
\sum_{a_{k} \operatorname{in} A^{\prime}} \frac{1}{a_{k} \log a_{k}}<c_{4} . \tag{11}
\end{equation*}
$$

We now prove Lemma 2.

Lemma 2.

$$
\sum_{a_{k} \text { in } A\left(a_{i}\right)} \frac{1}{a_{k} \log a_{k}}<\frac{c_{5}}{a_{i} P\left(a_{i}\right)^{x / 2}} .
$$

It is easily seen ($q_{1}<q_{2}<\cdots$ ranges over the set of all primes) that

$$
\sum \frac{1}{n(P(n))^{1 / 2}}=\sum_{m=1}^{\infty} \frac{1}{q_{m}^{1 / n}} \prod_{i=1}^{m}\left(1+\frac{1}{q_{i}}\right)<\sum_{m=1}^{\infty} \frac{c \log q_{m}}{q_{m}^{3 / s}}<\infty
$$

Our Theorem 1, therefore, follows immediately from (10), (11), and Lemma 2. To complete the proof it remains only to prove Lemma 2. Let $a_{i} q_{r}^{i}, r=1, \cdots, p\left(q_{r}^{(i)}\right)>P\left(a_{i}\right)$, be integers of the subsequence $A\left(a_{i}\right)$. Clearly, the subsequence $q_{r}^{(i)}$ possesses property I. If it did not, and if $q_{r_{2}}^{(i)} / q_{r_{1}}^{(i)}$ is an integer satisfying the inequality $p\left(q_{r_{2}}^{(i)} q_{r_{2}}^{(i)}\right)>P\left(q_{r_{1}}^{(i)}\right)$, then $a_{i} q_{r_{2}}^{(i)}$ (which belongs to the subsequence $\left.A\left(a_{i}\right)\right)$ can be written in the form $a_{l} q, P(q)>P\left(a_{l}\right), a_{l}=a_{i} q_{r}^{(i)}, q_{r_{2}}^{(i)} / q_{r_{1}}^{(i)}=q$, in contradiction with the maximality of a_{i}.

We now show that there exist no two coprimes $q_{r}^{(i)}$. In order to see this, we first of all make use of the fact that equation (2) has no solutions. Namely, assuming that $\left(q_{r_{1}}^{(i)}, q_{r_{2}}^{(i)}\right)=1$, we find $\left(a_{i} q_{r_{1}}^{(i)}, a_{i} q_{r_{2}}^{(i)}\right)=a_{i}$. In other words, equation (2) has a solution, which contradicts our assumption.

Lemma 3. Let the sequence $q_{1}<\cdots$ possess Property $\mathbf{I},\left(q_{i}, q_{j}\right) \neq 1, p\left(q_{i}\right)>t$. Then

$$
\sum_{i} \frac{1}{q_{i} \log q_{i}} \leqslant c_{5} / t^{1 / 2}
$$

The correctness of Lemma 2 follows immediately from Lemma 3, Since

$$
\sum_{a_{k} \text { in } A\left(a_{i}\right)} \frac{1}{a_{k} \log a_{k}}=\sum_{r} \frac{1}{a_{i} q_{r}^{(i)} \log a_{i} q_{r}^{(i)}} \leqslant \frac{1}{a_{i}} \sum_{r} \frac{1}{q_{r}^{(i)} \log q_{r}^{(i)}}<c_{5} / a_{i} p\left(a_{i}\right)^{1 / 2} .
$$

Thus there remains only to show the correctness of Lemma 3. It is highly probable that Lemma 3 is not the strongest one possible and that the expression $c_{5} / t^{1 / 2}$ may be replaced by c_{5} / t.

For the proof of Lemma 3 let us first assume that there exists an i for which

$$
\begin{equation*}
\sum_{p ; q_{i}} \frac{1}{p} \leqslant \frac{1}{t^{1 / 2}} \tag{12}
\end{equation*}
$$

Since there exist no two coprimes q, then every q^{r} must be divisible by at least some p, where $p \mid q_{i}$. Hence

$$
\begin{equation*}
\sum_{r} \frac{1}{q_{r} \log q_{r}} \leqslant \sum_{p ; q_{i}} \frac{1}{p} \sum^{\prime} \frac{1}{q_{r / p} \log q_{r}} \tag{13}
\end{equation*}
$$

where the stroke indicates the summation ranges over all q such that $p \mid q$. The sequence q_{r} / p clearly possesses Property I (except for the fact that one of the numbers q_{r} / p may be unity). Hence, by virtue of Lemma 1 ,

$$
\begin{equation*}
\sum \frac{1}{q_{r} \log q_{r}}<1+c_{3} \tag{14}
\end{equation*}
$$

From inequalities (12), (13), and (14), we find

$$
\sum_{r} \frac{1}{q_{r} \log q_{\boldsymbol{r}}}<\left(1+c_{3}\right) \sum_{p \mid q_{i}} \frac{1}{p} \leqslant \frac{1+c_{3}}{t^{t^{2}}}
$$

which proves the lemma.
To complete our proof let us now assume that inequality (12) does not hold for $q_{r^{*}}$ Let l be an integer and $x>x_{0}(l)$ large. Consider the integers which do not exceed x by $q_{r}(t)$, where all the prime factors of t are larger than q_{r}. Since the sequence q_{r} possesses property I , we find, just as in Lemma 1, that the integers

$$
\begin{equation*}
q_{r} m, \quad r=1,2, \ldots, l, \quad m<x / q_{r} \tag{15}
\end{equation*}
$$

are distinct. Denote the numbers of the form (15) by $u_{1}, u_{2}, \cdots, u_{s}$. We find, by virtue of Mertens, Theorem and the sieve of Eratosthenes, that

$$
\begin{equation*}
s=(1+O(1)) \sum_{r=1}^{l} \frac{x}{q_{r}} \prod_{p=P\left(q_{r}\right)}\left(1-\frac{1}{p}\right)>C x\left(\sum_{r} \frac{1}{q_{r} \log q_{r}}\right)+O(x) . \tag{16}
\end{equation*}
$$

Clearly, all the prime factors of u are greater than t, and since inequality (12) does not hold, we have

$$
\sum_{p \mid u_{i}} \frac{1}{p}>\frac{1}{t^{1 / 2}} .
$$

Hence on the one hand

$$
\begin{equation*}
\sum_{i=1}^{s} \sum_{p \nmid u_{i}} \frac{1}{p}>\frac{s}{t^{1 / 2}} \tag{17}
\end{equation*}
$$

and on the other

$$
\begin{equation*}
\sum_{i=1}^{s} \sum_{p \mid u_{i}} \frac{1}{p}<\sum_{u=1}^{x} \sum_{\substack{p \not n \\ p>t}} \frac{1}{p}<\sum_{p>t} \frac{x}{p^{2}}<\frac{x}{t} . \tag{18}
\end{equation*}
$$

Thus from inequalities (17) and (18) we find the inequality

$$
\begin{equation*}
s<x / t^{1 / 2} \tag{19}
\end{equation*}
$$

Therefore, inequalities (16) and (19) lead to the inequality

$$
\begin{equation*}
\sum_{r=1}^{l} \frac{1}{q_{r} \log q_{r}}<c_{5} t^{1 / 2} \tag{20}
\end{equation*}
$$

and since the last inequality holds for every l the proof of Lemma 3, and therefore of the theorem, is complete.

Our proof does not make use of the combinatorial result of Kleitman [4]. We do not know how to deal with the equation $\left[a_{i}, a_{j}\right]=a_{r}$ without making use of Kleitman's result.

Mathematical Institute
Received 4/APR/67
Hungarian Academy of Sciences
Budapest

BIBLIOGRAPHY

[1] P. Erdös, A. Sarközi, E. Szemerédi, J. Math. Anal. Appl. 15 (1966), 60. MR 33 \#4035. , J. Australian Math. Soc. 7 (1967), 9.
[3] P. Erdös, J. London Math. Soc. 10 (1935), 116.
[4] D. Kleitman, Proc. Amer. Math Soc. 17 (1966), 139.

Translated by:
A. N. Rossolimo

[^0]: * Editor's note. The present translation incorporates suggestions made by the authors.

