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ON THE SOLVABILITY OF SOME EQUATIONS IN DENSE SEQUENCES OF INTEGERS

P . ERDOS, A . SARKOZI AND E . SZFMEREDI
*

In a previous paper [1], making use of a simple combinatorial result of Kleitman [4], we showed

that if a I < a 2 < . . . is an infinite sequence of integers for which there are infinitely many x satisfying

the inequality Ax = Yai<x 1/a i > c 1 (log x)/(log log x)' 4 , then the equations (a i , a 1 ) = a r , r < i < j,

[ail,
a j 1 , ar 1, i 1 < 11 < r l , have infinitely many solutions . We also showed that this theorem cannot

be improved in a specific sense, namely that the constant c I cannot be replaced by an arbitrarily

small constant . More precisely, we constructed a sequence satisfying the hypothesis

ú~ 1 >C2.2/(10g log x)'%=,

	

(1)
a, ,<x

but nevertheless the equation [a il , a1 I ] = ar
1

i 1 < j 1 < r I , is not solvable .

In the present paper , c, c 1 , c 2, • • • will denote absolute constants ; p denotes primes ; P(n) is

the greatest and p (n) the smallest prime factor of n . Denote the sequence a I < a 2 < • • • by A.

We shall say that the sequence u I < u 2 < . . possesses property I if the equation u iq = u,,
p (q) > P (u i ) has no solutions .

In this paper we shall show that the behavior of the equation (a i , a 1 ) = a r is completely different

from that of the equation [a i , a 1 ] = ar .

Vie shall prove the following theorem .

Theorem. Let a I < . . . be a sequence of integers for which the equation

(ai, a1) = ar, r < i < j,
has no solutions. Then

We shall make a few preliminary comments . By means of partial summation, we easily find from

the theorem in our paper [2] that if equation (2)has no solutions, then for every k we have the

equality

lim inf

	

l	k
x

	

= (1

log, x
/=2r

x-PO

	

a. <x

~	1
LJ a i log a t

(Iog r x denotes the rth iteration of the logarithm) .
V

Therefore relations similar to (1)cannot exist in this case .

The sequence b I < . . . is called primitive if there exists no number dividing all the remaining

terms of the sequence . It is well known [3] that for every primitive sequence we have the inequality

'Y 1
L.1 bi log bi < c3'

	

(4)

* Editor's note . The present translation incorporates suggestions made by the authors .
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and also (see [2]) the equation

and this relation cannot be refined .

lim t'
1

	

log x

	

t
`l

	

)

= Q,

	

(5)n

	

bt

	

log log x)'i2

We prove that if a l < a 2 < • • ' is an infinite sequence for which equation (2) is not solvable, then

line ~1	 1

	

logx

	

-

i _
Q

x-> a`Jx at ((log log x)'~= )
i

The proof of equation (6) is rather complex, and we shall come back to it later . The relations (3),

(4), (5), and (6) prompt the following question . Let b 1 < b 2 < . . . be an infinite primitive sequence .

Do there exist a constant c > 0 and a sequence a l < . . . for which equation (2) is not solvable and

as << bn ? We are unable to answer this question .

Now let us consider the proof of the theorem . We shall make use of the following lemma due to

Alexander .

Lemma 1 . Let a l < a 2 < . . . be a sequence with Property 1 . Then

1
ui log ui

i

If u iq u j (i .e . if the sequence u i < u 2 < • • • is primitive), then the inequality (7) is proved in
[3] . The proof of Lemma 1 resembles the proof given in [3], but for the sake of completeness we shall

sketch it here . We easily see that condition I means (see [3]) that uiq = u iq', p (q) > P(u i ),

p (q ') > P (u
i
) .

Making use of the sieve of Eratosthenes, we conclude that the number of integers u iq < x,

p (q) > P (u 1 ), is greater than

f ~1
- 1

P i Z
- 2u'

.P 6P(ui)

Evidently the subsequence A' possesses Property 1 . Thus, by virtue of Lemma 1, we have the

1 16 1

(6)

(7)

(8)

From (8) we easily obtain the inequality

	

- 11

ú] II

	

P)/U
j C I ,

	

(9)
i P-<P (ui)

whence, with the use of Mertens , theorem,

11 (1 -
1

) < c/log y,
P<U

follows the proof of our lemma .

We now define a subsequence A (a i ) of the sequence A in the following manner : a
i
belongs to

Ala i ) if a i is the largest a for which the equation a
i
= a iq, p (q) > P (a i ), is solvable . Let A ' be a

subsequence of the sequence A which is not included in any subsequence A (a i ) . Clearly

A = A' lji=1 A (a,) . Therefore

1

	

C̀O

ak log ak

	

ak log ak + J

	

ak log a k

	

(10)
k

	

La k inA'

	

i_ta.inA(ai)



inequality

We now prove Lemma 2 .

Lemma 2.

It is

tJra(P(z))y

	

m-t q n

1
ak log akak in A'

C5

ak log ak

	

aiP (ai)
y zak in A (ai, )

easily seen (q I < q 2 < ' ' ' ranges over the set of all primes) that

771

	

W

1

	

Í1

	

I

	

Ni r log gm
i-1

	

qa

	

ni_1

	

g , ,

Our Theorem 1 ; therefore, follows immediately from (10), (I1), and Lemma 2 . To complete the

proof it remains only to prove Lemma 2 . Let a i qr, r = 1, • • • , p (q(` ) ) > P (a be integers of the sub-

sequence A(a i ) . Clearly, the subsequence qr` ) possesses property I . If it did not, and if
q(')/q( l )

is an integer satisfying the inequality p (gri )/gri)) > P(gri)) then a ign ) (which belongs to the sub-

sequence Mad) can be written in the form atq, P(q) > P(a,), a t = a igr i) , qr2) /qr1 ) = q, in
contradiction with the maximality of a i.

We now show that there exist no two coprimes qr` ). In order to see this, we first of all make use
of the fact that equation (2) has no solutions . Namely, assuming that (q ( ' l) , q ( '

2
)) = 1, we find

(a i q rt l, a i q (`2) = a . . In other words, equation (2) has a solution, which contradicts our assumption .

Lemma 3. Let the sequence q, < . . . possess Property 1, (q i , q ) )

	

1, p (q i ) > t. Then
I

qi log qi ` r5/t'
'

The correctness of Lemma 2 follows immediately from Lemma 3, Since

--j

	

ah Jog a i,

	

a . (ti) to a 0) < ai

	

(ti) to

	

r~)
< c,5/ails (a i )`I .

a~a in A(a i )

	

r

	

i q,

	

g i qr

	

r

	

qr

	

g q

Thus there remains only to show the correctness of Lemma 3 . It is highly probable that Lemma 3

is not the strongest one possible and that the expression c 5/t'- may be replaced by c 5 It .

For the proof of Lemma 3 let us first assume that there exists an i for which

	 1

	

1

	

(12)

P;"

	

`
t ",

Since there exist no two coprimes q, then every q r must be divisible by at least some
plg i . Hence

r 4 r log q r \ P~14i i°

	

4, p log qr

where the stroke indicates the summation ranges over all q such that p I q . The sequence q r/p

clearly possesses Property I (except for the fact that one of the numbers q r/p may be unity). Hence,

by virtue of Lemma 1,
1

q,, lo, g r
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p, where



From inequalities (12), (13~ and (14), we find

1

	

1

	

(1

	

)

	

1 -~- Cg
qr

1
0

., (1r

	

t,/2

i
which proves the lemma .

To complete our proof let us now assume that inequality (12) does not hold for q r . Let l be an

integer and x > x O (l) large . Consider the integers which do not exceed x by qr (t), where all the

prime factors of t are larger than q r . Since the sequence qr possesses property I, we find, just as in

Lemma 1, that the integers

q rm, r = 1, 2, . . . . 1, m < x / q,.,

are distinct. Denote the numbers of the form (15) by u1, u Z , • • • , us • We find, by virtue of Mertens'
Theorem and the sieve of Eratosthenes, that

t

s = (1 0 (1))

	

q

	

(1-
P

)

	

Cx (vq 1	) + 0 (a,) .
r=1 r p=P (qr)

	

r

	

r lob 9r

Clearly, all the prime factors of u are greater than t, and since inequality (12) does not hold, we have

p:u
p > t1i2

L
Hence on the one hand

and on the other

1

i=1 plui p

t

s

i=1 plui P

	

u=1 p.~n~ P

	

p>t P
p>t

Thus from inequalities (17) and (18) we find the inequality

S<x/t'h .
Therefore, inequalities (16) and (19) lead to the inequality
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s

	

(17)
t112

9

X
t

1

	

\ C5í1/2,q r lob q rr=1

and since the last inequality holds for every l the proof of Lemma 3, and therefore of the theorem, is

complete .

Our proof does not make use of the combinatorial result of Kleitman [4] . We do not know how to

deal with the equation [a i , a
i

] = a r without making use of Kleitman's result .
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