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A sequence of integers 0 < a 1 < a 2 < . . . no term of which divides
any other will be called a primitive sequence . Throughout this paper
Cl, c 2 , • • • will denote suitable positive absolute constants . Behrend [1]
proved that for every primitive sequence

(1)

	

fA (x) _

	

1 < c1 log X/ (log log x)1.
a,<m a .

Sivasankaranarayana Pillai observed that (1) is in a sense best possible .
He showed that there is a c 2 so that for every x there is a primitive sequence
a 1 < . . . < a, < x for which

(2)

	

IA (X) > C 2 log XI ( 109 log X )

In the present paper we are going to prove the following

THEOREM 1 . Let A be an infinite Primitive sequence . Then

(3)

	

IA (X) = o (log XI ( 109 log X)1 ) -

Our Theorem shows that though for a finite primitive sequence (1)
is best possible, it can nevertheless be improved for infinite primitive
sequences .

Before proving our Theorem we show that it is best possible . In fact
we shall show that if h(x) -* oo arbitrarily slowly, then there exists a
primitive sequence A so that

(4)

	

lim sup IA (x)h(x) (log log X) /109 x = co .

We only outline the proof of (4) since the details can easily be filled
in by the reader using the methods of [3] . Let x 1 < x2 < . . . tend to infinity
sufficiently fast. In the interval (x„_1 , x,) our sequence consists of the
integers having exactly [log log x,] distinct prime factors greater than
x r_ 1 (and no prime factor < x„_1 ) . A simple computation shows that if
x, -* o sufficiently fast (depending on h(x)) then (4) holds .
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[2]

To prove Theorem 1 we assume that there is a primitive sequence
A = {a: < a 2 < . . . } for which (3) does not hold and we will obtain a
contradiction. First of all we observe that if a sequence A exists for which
(3) does not hold, we can assume that there is such a sequence all whose
terms are squarefree. Put

where the greatest square factor of the integers of A(k) is k 2. It easily follows
from 10, 1/k 2 < oo and (1) that if A does not satisfy (3) then for some
fixed k o , A(ko) also does not satisfy (3) . Put

A(ko) = {aiko) < a (2ko) < . . .} .

Clearly a (ik o ) = k 2 bi where b ; is squarefree and bl < b 2 < . . . evidently
does not satisfy (3) .

Henceforth we assume that A is a primitive sequence of squarefree
numbers for which (3) does not hold . Then there clearly exists a sequence
xl < x2 < • • • tending to infinity sufficiently fast (this will be specified
later) so that

(5)

	

1 > C3 109 x„/ (log log xv)1 .
x„_ I <at<x„ ai

We shall show that (5) leads to a contradiction and this will prove Theorem 1 .
We need the following crucial

LEMMA 1 . Let u < w _< y, where w is
Let (the a's are squarefree)

(6)

	

u<a,< . . .<ak<w,a,• a,,

	

1<i<j<k

and

00
A=UA ( k)

k=1

(7)

	

1 > C3 log w/ (109 log w)1 .
i_, a i

sufficiently large compared to u .

Denote by b l < . . . < b 8 < y the integers o f the form

a iQt',,, Q. < ylai,

	

1 < i < k

where all the prime factors o f Q,,, are greater than u . Then

1
- > C4 log y

=1 b,
where c4 depends only on c 3 .

Assume that Lemma 1 has already been proved then we prove Theorem
1 as follows : Let Ac. > 2, y = xk . For each 1 < v < A we denote by BO' ) the
sequence of integers W1

	

8V) < • < 09 of the form
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aiQ (M xv-1 < a i < x,,, Q ( v ) < x v /a i

where all prime factors of Q„á ) are greater than x„_, . By Lemma 1 we have
sv 1

(8)

	

> C4 109 Y*

Now we show that
(9)

	

BM n B( °" ) _ 0 if v

	

v' ;

in other words biv)

	

bj(") if v' > v . If (9) would be false we would have
a i Q,n ) = a,Q ;,°' ) or a ila;Q (" ) . But by our definitions a i < x,,, a, > xv .-1 > xv ,
thus a i < of and hence ai T a, . On the other hand all prime factors of
Q ( " ) are greater than x

	

> x Thus (a Q ( v' ) ) = 1 hence a .la •Q (" )n

	

v'-1 - v •

	

a, n

	

,

	

x

	

n
implies a i/a;, an evident contradiction . Hence (9) is proved . Clearly b{v ) < y
for v < 2. Thus by (8), (9) and 2C4 > 2,

2 log y > i >

	

>_ 2C 4 log y > 2 log y
tt< V

	

v=1 i=1 i

an evident contradiction which proves Theorem 1 .

Thus to prove Theorem 1 we only have to prove Lemma 1 . We first
assume y = w and prove the Lemma in this special case . The general
case will follow easily . Denote by d1 (n) the number of divisors of n amongst
the a i , 1 < i < k, d2 (n) denotes the number of divisors of n amongst the
Vs. The number of divisors d (n) of the squarefree integer n clearly equals
21' (n) where v(n) is the number of distinct prime factors of n. Clearly

W
I d2 (n) _ I Ct < w 1
n=1

	

i=1 bi

	

i=1 bi

Thus to prove Lemma 1 in the case y = w it will suffice to show that
W

(1O)

	

G d2 (n) > C5W log w .
n=1

Denote by n, < n2 < • • • < n t < w the sequence of integers satisfying

(11)

	

v(n i) > log log w and d,(n i) > C62v(n i ) lv(n i ) ,

where C6 is a sufficiently small constant which will be determined later .
Clearly

t

	

m
(12)

	

1 d1 (nj) = G d1 (n) - :E' d1 (n) -

	

d1 (n)
i=1

	

n=1

where in

	

n < w and v(n) < log log w, and in ~"

(13) n < w, v(n) > log log w, d, (n) < Cs2v(n)/(v(n))~ < C6 21 ( ''x)/(log logw)I .
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From (7) we evidently have

1 -w > - w log w/(log log w)k.
i=1 ai

	

2

~' dl (n) < w 2 109 log w .

(14)

	

Y dl(n) > w
n=1

Clearly

(15)

From (12) we have
w

	

2P(n)

	

c

	

w
" dl n< cs	 8	

( )

	

(log log w )1 < (log log W)'

	

n

< 2c sw log WI (log log w)1 .

From (12), (14), (15) and (16) we have for cg < c3/10

(17)

	

dl (n i ) >
c3
w log W1 (log log w) .

i=1

	

`1

Thus to prove (10) we only have to show that for 1 < i < t

(18 )

	

d2(ni) > c7di(ni)(v(ni)) I > C7 d, (n i ) (log log w) 1 .

The last inequality of (18) follows from (11), (17) and (18) clearly imply (10) .
To prove (18) let

Y1< . . .<jb,,1<u<ql< . . .<q,a<w

be the prime factors of n i . Clearly rl < u, further by (11)

r 2 > log log w-u > .21109 log w > ri

if w is sufficiently large (e.g. w > exp exp 2u) . Let al , • , at be the divisors
of ni amongst the a's. By (11)

l > cs 2v(ni) /(v(ni))I •

To obtain a lower bound for the number of b's dividing ni , we multiply
each alpi by all the products of the q's which do not divide a. To show
(18) we prove the following combinatorial

LEMMA 2 . Let S = Sl v S2 , Sl n S 2 = 0 . The elements of S l are e l , • • •, ek ,
the elements of S 2 are f l , •, fa . Assume l > k. Let A i C S, 1 s i < r,

(19)

	

r > c 9 2 k + 1/(k+l)j

be subsets of S no one of which contains any other . Denote by B I ,

	

, Bt all
the (distinct) subsets o f S o f the form
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(20)

	

Ai v R, I < i < r, R C S2

where in (20) R runs through all the 21 subsets o f S 2 . Then

t > c,02 k+1 .

(18) immediately follows from Lemma 2 (to see this it suffices to
identify the p's with the e's and the q's with the f's (19) is satisfied because
of (11) .) Thus to complete the proof of Theorem 1 it suffices to prove
Lemma 2.

Before proving Lemma 2 we first need

LEMMA 3 . Let
Di C S2 , I < i < j, j > c,2'h1

be subsets o f the set S 2 having l elements where no D contains any other. Let
El , • • •, ES be the set o f all subsets o f S 2 which contain at least one D. We have

S>c14 2a

Denote by a r (T) the number of those Di for which ID i l = r and by
~r (T) the number of the E j satisfying AEI = r (JAI is the number of elements
of A). We first show

(21)

	

Pr >

	

aj .
jár

Lemma 3 can be deduced from (21) by a simple computation which
we leave to the reader .

To prove (21) it clearly will be sufficient to show that

Nr ~ Nr-1+ar •

Consider all the E's with JE J = r-1 . Their number is Con-
sider now all sets of r elements which contain one of these E's . Their number
is Nr-1(r-1) 1)(n-y+1) and the same set occurs at most r times. Therefore
the number of these sets is at least

R

	

-~-1

	

Q
Nr-1(r-i)

n-r

	

- Nr-1(r)r '

These sets are all E's satisfying JET = r and by assumption
none of them are D's having r elements. Hence (21) is evident, and thus
Lemma 3 is proved .

We conjectured and Kleitman proved the following stronger result :
In a set S of n elements let there be given (;) subsets of S

Dl . . ., D(7) , Di D,,

	

I < 2 < 9 < G) •
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Denote by E l , •

	

E 3 those subsets of S which contain at least one of
the D's. Then

(22)

(23)

r
s >

	

(i) •i=o
Now we prove Lemma 2 . Put

A i = (A i n S1 ) u (A i n S 2 ),

We split the class of all A's into 2k classes Cl , • • •, C2 k where two A's belong
to the same class if they have the same intersection with S l . Let A il and
A il belong to the same class then A il n S 2 clearly does not contain A i9 n S2 .
Hence by the theorem of Sperner [5] each class contains at most

l

	

2'
\[2l]1 < cu l

1 <

	

1 ~ 1
b {<Y bi

	

b;<w bi t ;<v/w ti

We already proved Lemma 1 if y = w, hence

1<i<y,

A's . From (22), (19) and l >_ k we obtain by a simple computation that
there are at least c12 2k classes which contain more than c 13 2t/l1 A's . Denote
these classes by C ik , 1 < k < r, r > c12 2k. By Lemma 3 the number of
B's for which B C Sl U S 2 and B n S 2 = A n S 2 where A is in Cik
(1 < k < r) is greater than c14 2 1 . Thus the number of B's is clearly greater
than

C12c14
2k+1 > c1o 2k}l

which proves Lemma 2 and therefore Lemma 1 in the case y = w .
To prove Lemma 1 in the general case denote by 1 = t1 < t2 <

the integers all whose prime factors are greater than w . We evidently have

(24)

	

1
> c 15 log w .

b,<w bi

Further we obtain by a simple computation from a result of de Bruijn
[2] that

(25 )

	

1 > cl6 log y/log w
wt,<v/w t i

Lemma 1 clearly follows from (23), (24) and (25) . Thus the proof of
Theorem 1 is complete .

It is easy to see that Lemma 2 remains true for l > cls k but fails
for l = o(k) .

We now state the following sharpening of Theorem 1 :
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THEOREM 2 . Let A be a primitive sequence, x l , x 2 , • be any sequence
satisfying

(26)

	

log log x„+1 > (1-+ 17 ) log log x„

where c17 is an arbitrary constant. Put

(log log x„) I
a v =

	

log x

	

fA(x") .
X,

Then
Co
I Ev

	

e18
v=1

where c18 defiends only on c17
We do not give the proof of Theorem 2 since it is very similar to that

of Theorem 1 and further (26) can probably be very much improved ;
perhaps Theorem 2 remains true if (26) is replaced by

log log xi+1 > log log x '+019 (log log x')i .

Theorem 1 gives the best upper bound for the growth of IA (x) for an
infinite primitive sequence . Nevertheless further questions can be asked .
A well known theorem [4] states that there is an absolute constant c20 so
that for every primitive sequence,

1
(27)

	

< c20k a k log a k

From (27) we obtain by partial summation

( 28 )

	

G fÁ(22" ) /2n < C21 •
n

Now we prove

THEOREM 3 . Let g(x) be an increasing function for which

'Ig(22")/2n = oo .
n

Then
lim inf IA (x)/g(x) = 0 .

On the other hand if gl (x) = log x/log log x h (x) where h (x) is increasing
and gl (x) is also increasing and

(29)

	

1 gl(22")/2n
n

converges, then there is a Primitive sequence for which

(30)

	

lim IA (x)/g(x) = 00 .
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The first part of Theorem 3 follows immediately from (28), hence we
only have to prove (29) . We will leave some of the details to the reader .
Let Pi < $2 < . . . be a sequence of primes for which I ifp,< < oo and
px = ( I+o(1))k log k u(k) where u(k) = o(h(k)) . By (29) such a choice is
possible. Our primitive sequence consists of the integers of the form

fi k t, 1 < k < oo, v(t) = k 2, Pi ~ t, 1 < i < k.

It is not difficult to show by using the methods of [3] that the number
of a i not exceeding x is greater than

C 22X 114 (X ) log log X '
In other words for all sufficiently large n, a„ < c 23 nu(n) log log n or

1A (x) > c24 log x/u (x) log log x.

In other words (30) holds . The monotoncity conditions on g(x) could no
doubt be relaxed, but we do not investigate this question .
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