ON AN EXTREMAL PROBLEM CONCERNING PRIMITIVE SEQUENCES

P. ERDÖS, A. SÁRKÖZI and E. SZEMERÉDI

A sequence $a_{1}<\ldots$ of integers is called primitive if no a divides any other. ($a_{1}<\ldots$ will always denote a primitive sequence.) It is easy to see that if $a_{1}<\ldots<a_{k} \leqslant n$ then $\max k=[(n+1) / 2]$. The following question seems to be very much more difficult. Put

$$
f(n)=\max \left(\Sigma \frac{1}{a_{i}}\right),
$$

where the maximum is taken over all primitive sequences all of whose terms are not exceeding n. Determine, or obtain an asymptotic formula for $f(n)$. The explicit determination of $f(n)$ is probably hopeless but we will obtain an asymptotic formula for $f(n)$. In fact we will prove the following:

Theorem.

$$
\begin{equation*}
f(n)=(1+o(1)) \frac{\log n}{(2 \pi \log \log n)^{\frac{1}{2}}} . \tag{1}
\end{equation*}
$$

Behrend [2] proved that (c_{1}, \ldots will denote positive absolute constants)

$$
f(n)<c_{1} \frac{\log n}{(\log \log n)^{\frac{1}{2}}}
$$

and Pillai showed that

$$
f(n)>c_{2} \frac{\log n}{(\log \log n)^{\frac{1}{2}}} .
$$

P. Erdős [3] stated without giving a detailed proof that (1) holds.

He proves in [3] that

$$
\begin{equation*}
f(n) \geqslant(1+o(1)) \frac{\log n}{(2 \pi \log \log n)^{\frac{1}{2}}} \tag{2}
\end{equation*}
$$

but the proof of the upper bound is only indicated. I. Anderson [1] showed that the proof suggested in [3] only gives

$$
f(n) \leqslant(1+o(1)) \frac{\log n}{(\pi \log \log n)^{\frac{1}{2}}} .
$$

In the present paper we will prove (1), but our proof will be completely different than envisaged in [3]. In view of (2) it will suffice to prove that

$$
\begin{equation*}
f(n) \leqslant(1+o(1)) \frac{\log n}{(2 \pi \log \log n)^{\frac{1}{2}}} \tag{3}
\end{equation*}
$$

Received 7 February, 1966.
and in the rest of our paper we will mainly be concerned with the proof of (3).

Denote by $\alpha(m)$ the number of prime factors of m multiple factors counted multiply. $v(m)$ denotes the number of distinct prime factors of m. Put

$$
\sum_{r}^{(n)}=\Sigma \frac{1}{t}, \quad t \leqslant n, \quad \alpha(t)=r .
$$

Denote $[\log \log n]=x$. In [3] it is proved that

$$
\begin{equation*}
\sum_{x}^{(n)}=(1+o(1)) \frac{\log n}{(2 \pi x)^{2}} . \tag{4}
\end{equation*}
$$

Thus (3) and hence our theorem will be proved if we show that

$$
\begin{equation*}
f(n) \leqslant(1+o(1)) \sum_{x}^{(n)}, \tag{5}
\end{equation*}
$$

Instead of (5) we could prove

$$
\begin{equation*}
f(n)<\left(1+\frac{c_{3}}{x}\right) \sum_{x}^{(n)} . \tag{6}
\end{equation*}
$$

We do not discuss the proof of (6) since perhaps very much more is true. Possibly

$$
f(n)-\max _{r} \sum_{r}^{(n)}
$$

is much smaller (we can show that it is not bounded). The value of r for which $\sum_{r}^{(n)}$ assumes its maximum is estimated very accurately in [3].

Now we prove (5). We need the following:
Lemma.

$$
\Sigma_{1} \frac{1}{t}=o\left(\frac{\log n}{x^{\frac{2}{2}}}\right)
$$

where in $\Sigma_{1} \quad 1 \leqslant t \leqslant n$ and $\alpha(t)-v(t)>100 \log x$.
Let t be an integer for which $\alpha(t)-v(t)>100 \log x$. Then t is clearly divisible by a square m for which $\alpha(m)-v(m)>25 \log x$. Hence we obtain by a simple argument (p runs through the primes)

$$
\Sigma_{1} \frac{1}{t}<\left(\sum_{n} \frac{1}{p^{2}}\right)^{10 \log x} \sum_{l \leqslant n} \frac{1}{t}<\left(\frac{3}{4}\right)^{10 \log x} 2 \log n=o\left(\frac{\log n}{x^{\frac{1}{2}}}\right),
$$

which proves the Lemma.
Let $a_{1}<\ldots<a_{k} \leqslant n$ be a primitive sequence for which

$$
\alpha\left(a_{i}\right)-v\left(a_{i}\right)<100 \log x .
$$

Now we show

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{a_{i}} \leqslant(1+o(1)) \sum_{x}^{(n)} \tag{7}
\end{equation*}
$$

(7), and our Lemma implies (5). Thus to prove our theorem it will suffice to prove (7).

Denote by $a_{j}^{(r)}$ the set of those a 's which have r prime factors (i.e. $\alpha\left(a_{j}^{(r)}\right)=r$). Write

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{a_{i}}=\sum_{r>x} \sum_{j} \frac{1}{a_{j}^{(r)}}+\sum_{j} \frac{1}{a_{j}^{(x)}}+\sum_{r<x} \sum_{j} \frac{1}{a_{j}^{(r)}}=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} . \tag{8}
\end{equation*}
$$

Some of the sums on the right-hand side of (8) may be empty, an empty sum is 0 .

Consider first the $a_{i}{ }^{(r)}$ with $r>x$. Replace each such $a_{j}{ }^{(r)}$ by all its divisors having exactly x prime factors. Thus we obtain the sequence $b_{1}<\ldots$. In other words the b 's are those integers with $\alpha\left(b_{i}\right)=x$ which are divisors of some $a_{j}{ }^{(r)}$ with $r>x$. Similarly $d_{1}<\ldots$ are those integers not exceeding n with $\alpha\left(d_{i}\right)=x$ which are multiples of some $a_{j}^{(r)}$ with $r<x$. Since $a_{1}<\ldots<a_{k} \leqslant n$ is a primitive sequence the three sequences $b_{1}<\ldots ; a_{1}{ }^{(x)}<\ldots ; d_{1}<\ldots$ are disjoint, hence

$$
\begin{equation*}
\sum_{i} \frac{1}{b_{i}}+\sum_{j} \frac{1}{a_{j}^{(x)}}+\sum_{i} \frac{1}{d_{i}} \leqslant \sum_{x}^{(n)} . \tag{9}
\end{equation*}
$$

In view of (8) and (9), (7) [and hence (5) and (1)] will follow if we show

$$
\begin{equation*}
\Sigma_{1} \leqslant(1+o(1)) \sum_{i} \frac{1}{b_{i}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{3} \leqslant(1+o(1)) \sum_{i} \frac{1}{d_{i}}+o\left(\frac{\log n}{x^{\frac{1}{2}}}\right) . \tag{11}
\end{equation*}
$$

Thus to prove our Theorem we have to show (10) and (11). First we prove (10) the proof of (11) will be similar but slightly more involved. Put

$$
\max _{i} \alpha\left(a_{i}\right)=r_{1}, \quad \min _{i} \alpha\left(a_{i}\right)=r_{2} .
$$

We can assume that $r_{1}>x$, for it not then $\Sigma_{1}=0$ and (10) is trivial. We will transform the set of a 's satisfying $\alpha\left(a_{j}\right)>x$ into the b 's by an induction process. The first step is to consider all the integers $u_{i}^{\left(r_{1}-1\right)}\left[u^{(k)}\right.$ denotes an integer with $\alpha\left(u^{(k)}\right)=k$] which divides some $a^{\left(r_{1}\right)}$. These integers clearly all differ from the $a_{j}^{\left(r_{1}-1\right)}$ (since the a 's are primitive). Now consider all the $u_{i}^{\left(r_{1}-2\right)}$ which divide either one of the $u_{i}^{\left(r_{1}-1\right)}$ or one of the $a_{j}^{\left(r_{1}-1\right)}$. These $u_{i}^{\left(r_{1}-2\right)}$ all differ from the $a_{j}{ }^{\left(r_{1}-2\right)}$. If we apply this process $r_{1}-x$ times we clearly obtain the b 's (in other words the b 's are the $u_{i}^{(r-x)}$'s. We have for every l

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i}^{\left(r_{1}-l\right)}} \sum \frac{1}{p} \geqslant\left(r_{1}-l+1-100 \log x\right)\left(\sum_{i} \frac{1}{u_{i}^{\left(r_{1}-l+1\right)}}+\sum_{j} \frac{1}{a_{j}^{\left(r_{1}-l+1\right)}}\right) . \tag{12}
\end{equation*}
$$

The proof of (12) follows easily from the definition of the $u^{(r)}$'s. The integers $u_{i}^{\left(r_{1}-l\right)}$ are defined as the set of all divisors, having $r_{1}-l$ prime factors, of the integers $u_{i}^{\left(r_{1}-l+1\right)}$ and $a_{j}{ }^{\left(r_{1}-l+1\right)}$. Hence if we multiply each
integer $u_{i}^{\left(r_{1}-l\right)}$ by all the primes $p \leqslant n$ we obtain each integer $m=u_{i}^{\left(r_{1}-l+1\right)}$ or $m=a_{j}^{\left(r_{1}-l+1\right)}$ at least $v(m)$ times and by Lemma 1

$$
v(m) \geqslant r_{1}-l+1-100 \log x .
$$

This completes the proof of (12).
From (12) and the theorem of Mertens,

$$
\sum_{p \leqslant n} \frac{1}{p}<x+c_{4},
$$

we obtain

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i}^{\left(r_{1}-l\right)}} \geqslant \frac{r_{1}-l+1-100 \log x}{x+c_{4}}\left(\sum_{i} \frac{1}{u_{i}^{\left(r_{1}-l+1\right)}}+\sum_{j} \frac{1}{a_{j}^{\left(r_{1}-l+1\right)}}\right) . \tag{13}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\frac{r_{1}-l+1-100 \log x}{x+c_{4}}>1 \quad \text { if } r_{1}-l>x+200 \log x \tag{14}
\end{equation*}
$$

and for every $r_{1}-l \geqslant x\left(x \geqslant x_{0}\right)$

$$
\begin{equation*}
\frac{r_{1}-l+1-100 \log x}{x+c_{4}}>1-\frac{200 \log x}{x} . \tag{15}
\end{equation*}
$$

From (13), (14) and (15) we obtain by a simple induction argument with respect to l

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i}^{(x)}}=\sum_{i} \frac{1}{b_{i}}>\left(1-\frac{200 \log x}{x}\right)^{200 \log x} \sum_{r>x} \sum_{j} \frac{1}{a_{j}^{(r)}}=(1+o(1)) \Sigma_{1} \tag{16}
\end{equation*}
$$

hence (10) is proved.
We now prove (11). We can assume that $r_{2}<x$. As in the proof of (10) we start with the integers $a_{i}^{\left(r_{2}\right)}$. Denote by $u_{i}^{\left(r_{2}+1\right)}$ the set of all (distinct) integers of the form $p a_{i}^{\left(r_{2}\right)}, p<n^{11 x^{2}}$. The $u_{i}^{\left(r_{2}+1\right)}$ and $a_{j}^{\left(r_{2}+1\right)}$ are distinct as in the proof of (10). By $u_{i}^{\left(r_{2}+2\right)}$ we denote the numbers of the form $p u_{i}^{\left(r_{2}+1\right)}$ and $p a_{j}^{\left(r_{2}+1\right)}, p<n^{1 / x^{2}}$, etc. We repeat this process $x-r_{2}$ times. The u 's are all less than $n \cdot n^{\left.(1) \mid x^{2}\right)\left(x-r_{2}\right)} \leqslant n^{1+1 \mid x}$.

The numbers $u_{i}{ }^{(x)}$ consist of some (perhaps all) the d 's and also some (or all) the integers in the interval ($n, n^{1+1 / x}$) having x prime factors. We have

$$
\begin{equation*}
\left(\sum_{j} \frac{1}{a_{i}^{\left(r_{2}+l\right)}}+\sum_{i} \frac{1}{u_{i}^{\left(r_{2}+l\right)}}\right) \sum_{p<m \mid x^{2}} \frac{1}{p} \leqslant\left(r_{2}+l+1\right) \sum_{i} \frac{1}{u_{i}^{\left(r_{2}+l+1\right)}}, \tag{17}
\end{equation*}
$$

(17) is evident since each integer having $r_{2}+l+1$ prime factors has at most $r_{2}+l+1$ divisors having $r_{2}+l$ prime factors.

By the theorem of Mertens we obtain from (17)

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i}^{\left(r_{2}+l+1\right)}} \geqslant \frac{x-3 \log x}{r_{2}+l+1}\left(\Sigma \frac{1}{u_{i}^{\left(r_{2}+l\right)}}+\Sigma \frac{1}{a_{i}^{\left(r_{2}+l\right)}}\right) . \tag{18}
\end{equation*}
$$

If $r_{2}+l+1 \leqslant x-3 \log x$ then

$$
\frac{x-3 \log x}{r_{2}+l+1} \geqslant 1
$$

and since $r_{2}+l+1 \leqslant x$ we always have

$$
\frac{x-3 \log x}{r_{2}+l+1} \geqslant \frac{x-3 \log x}{x}=1-\frac{3 \log x}{x}
$$

Thus as in the proof of (10) we have by induction with respect to l

$$
\begin{equation*}
\Sigma \frac{1}{u_{i}^{(x)}} \geqslant\left(1-\frac{3 \log x}{x}\right)^{3 \log x} \Sigma_{3}=\left((1+o(1)) \Sigma_{3}\right. \tag{19}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\sum_{i} \frac{1}{u_{i}^{(x)}} \leqslant \sum \frac{1}{d_{i}}+\sum_{t=n}^{n^{1+1 / x}} \frac{1}{t}=\sum_{i} \frac{1}{d_{i}}+O\left(\frac{\log n}{x}\right) \tag{20}
\end{equation*}
$$

(11) immediately follows from (19) and (20) and hence (3) and (1) are proved.

References

1. I. Anderson, " On primitive sequences ", Journal London Math. Soc., 42 (1967) 137-148.
2. F. Behrend, "On sequences of numbers not divisible one by another ", Journal London Math. Soc., 10 (1935), 42-44.
3. P. Erdós, " On the integers having exactly k prime factors ", Annals of Math., 49 (1948), 53-66.

Mathematical Institute, Hungarian Academy of Science,
and
University of Budapest.

