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A sequence a,< . . . of integers is called primitive if no a divides any
other . (a 1 < . . . will always denote a primitive sequence .) It is easy to
see that if a i < . . . < a,,, < n then max k = [(n + 1) /2] . The following question
seems to be very much more difficult . Put

f(n) =niax E 1) ,
a,,

where the maximum is taken over all primitive sequences all of wliose
terms are not exceeding n . Determine, or obtain an asymptotic formula
for f(n) . Tile explicit determination of f(n) is probably hopeless but we
will obtain an asymptotic formula for f(it) . In fact we will prove the
following

THEOREM.
f(n)=(1+0

	

leg n
(1)~ (27rloglogn)i

	

( 1 )

Behrend [2] provecl that (c 1 , . . . will denote positive absolute constants)
log n

f(n) <C1 (loglogn)O
and Pillai showed that

log n
f(n) > c2 (loglogn)i

P . Erdős [3] stated without giving a detailed proof that (1) holds .
He proves in [3] that

1+0(1)f(n)>,

	

logn
(21r log log ?a)}

	

(2)

but the proof of the upper bound is only indicated . I. Anderson [1]
showed that the proof suggested in [3] only gives

f(n)<(1+0(1))	
loge

(-rr log loge) .
In the present paper we will prove (1), but our proof will be com-

pletely different than envisaged in [3] . In view of (2) it will suffice to
prove that

f(n)+o(1)
log n

(

	

) (27r loglogn)i
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and in the rest of our paper we will mainly be concerned with the proof
of (3) .

Denote by a.Oiz) the number of prime factors of m multiple factors
counted multiply . v(m) denotes the number of distinct prime factors
of Ill . Put

r

(v)

	

1
r

	

,
t

, t<n, o,(t)=r.

Denote [log log n] = x . In [3] it is proved that
(n)

	

log n
I-(1+0(1)) (27rx) .

Thus (3) and hence our theorem will be proved if we show that
(n)

f(n) ( 1 + 0 ( 1 ))x,

	

(5 )x

Instead of (5) we could prove

An) < \
1+c3 60

)z •

	

(6)x x

We (to not discuss the proof of (6) since perhaps very much more is true .
Possibly

ín)
f(n) - max ~,

r

	

r

is much smaller (we can show that it is not bounded) . The value of r
00

for which assumes its maximum is estimated very accurately in [3] .

Now we prove (5) . We need the following

LEMMA .

	

1

	

(ogn)Eif =° xi
where in 1, 1 ,< t ,< n and a (t) - v (t) > 100 log x .

Let t be an integer for which a(t)-v(t)> 1001ogx . Then t is clearly
divisible by a square va for which u (m) - v(m) > 25 log x . Hence we obtain
by a simple argument (p runs through the primes)

E1
1
< ~12

)10,09x

	

I < 3 )'0109x
2 1og~a=o l-(E

	

ú - -
t

	

,> p

	

t

	

4

	

( 09") ,

which proves the Lemma .
Let a, < . . . < a,, < n be a primitive sequence for which

a(az)-v(ai) < 100 log x .
Now tive shoat

(4)

Ir

	

1

	

(n)
Y, - <(i+ 0 (l.» ú •
t-i a, T

( 7 )
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(7), and our Lemma implies (5) . Thus to prove our theorem it will
suffice to prove (7) .

Denote by a; (r) the set of those a's which have r prime factors
(i .e . a (a; (r) ) = r) . Write

k

E a2 = rI E a_( r)++rE E _(r)=El+E2+ E3 .

	

(8)

Some of the sums on the right-hand side of (8) may be empty, an
empty sum is 0 .

Consider first the a;(r ) with r > x . Replace each such a;(r ) by all its
divisors having exactly x prime factors . Thus we obtain the sequence
b, < . . . . In other words the b's are those integers with a (bi) = x which
are divisors of some a;(r) with r > x. Similarly d, < . . . are those integers
not exceeding n with a (di ) = x which are multiples of some a ;(r) with r < x .
Since al < . . . < ak < n is a primitive sequence the three sequences
bl < . . . ; a 1(x) < . . . ; d,< . . . are disjoint, hence

1

	

1

	

1

	

(n)
-+~ - +~

i bi

	

; a;(~)

	

i di

	

a

In view of (8) and (9), (7) [and hence (5) and (1)] will follow if we show

and

E 1 , ( 1+0(1)) Y

	

(10)b2

2 ~
+o (logn, .

	

(11)
ú 3 ~(1-+-0(1))~

	

l

	

J~
2

Thus to prove our Theorem we have to show (10) and (11) . First we
prove (10) the proof of (11) will be similar but slightly more involved .
Put

max a(ai ) = rl, "na(aí)=r2'
i

	

i
We can assume that r, > x, for it not then E 1 = 0 and (10) is trivial . We
will transform the set of a's satisfying a(a;) > x into the b's by an induction
process. The first step is to consider all the integers ui(r1 -1) [u( k ) denotes
an integer with a(u(k))= k] which divides some a (rd. Those integers
clearly all differ from the a; (rl -1) (since the a's are primitive) . Now con-
sider all the u i (ri -2) which divide either one of the u ih-1) or one of the
a,(rl 1) . These ui(ri2) all differ from the a;h -2). If we apply this process
rl-x times we clearly obtain the b's (in other words the b's are the
ui(r-x) 's . We have for every l

1

	

1

	

1

	

1
(r a) ~- (r l - l + 1- 100 log x)

	

(rl i+1) + Z a (r,-a+1)

	

(12)
i ui l P

	

ui

	

i

	

;
The proof of (12) follows easily from the definition of the u(r) 's . The

integers 2ci(r1-') are defined as the set of all divisors, having r, -I prime
factors, of the integers a,(rit+1) and a,h-i+1) . Hence if we multiply each



ON AN EXTREMAL PROBLEM CONCERNING PRIMITIVE SEQUENCES 487

integer ui (rl -1) by all the primes p < n we obtain each integer m= ui(r1~+1)

or m=a;(ri-1+1) at least v(m) times and by Lemma 1

v (m) 3 rl - l + 1-100 log x .

This completes the proof of (12) .
From (12) and the theorem of Mertens,

1
-<x+c4 ,

p-<n p

we obtain
1 > r l -l + 1-100logx

	

1

	

1
ui(rl1)'

	

x + r4

	

ui(r1-1+1) + a,(rl-1+1)) .

	

(13)

Clearly
rl -1 + 1-1001ogx > 1 if rl -l>x+2001ogx

	

(14)x + C 4

and for every r l - l >, x (x > x0 )

r l - l + 1-100 logx > 1- 200 log x
x + c4

	

x

	

(15)

From (13), (14) and (15) we obtain by a simple induction argument
with respect to l

1

	

1

	

200 log x) 200 log x

	

1
~- _E-> 1-		E E- =(1+0(1)) El (16)
i ui(x)

	

i bi

	

x

	

r>x a~(r)

hence (10) is proved .
We now prove (11) . We can assume that r, ,,,, x. As in the proof of

(10) we start with the integers ai(r2). Denote by ui(r2+1) the set of all
(distinct) integers of the form p ai( '9, p < n llx2 . The ui( r2+1) and a,(r2+ 1 )

are distinct as in the proof of (10) . By ui(r2+2) we denote the numbers
of the form p ui(r2+1) and p a;(r2+1) , p < n l lx2 , etc . We repeat this process
x - r2 times . The u's are all less than n . n (1)x2)(x- r2) ,< n 1+ 11x,

The numbers u i(x) consist of some (perhaps all) the d's and also some
(or all) the integers in the interval (n, nl+11x) having x prime factors .
We have

( CLi(a+l) + ui(r2+1)) V <M11,2 p

	

(r2 + l + 1) ui(r2 I+p ,

(17) is evident since each integer having r 2 + l + 1 prime factors has at
most r 2 + l + 1 divisors having r2 + l prime factors .

By the theorem of Mertens we obtain from (17)
1

	

x-3 log x

	

1

	

1

	

(
ui(r2+1+1)

	

r2+1+1 ( ui(r2+1) + ai(r2+1))

	

18)
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If r2+'+ 1<x- 3 log x then
x -3logx~ 1
r 2 +1+1

and since r 2 + l + 1 ' x we always have
x -3logxx-3logx-1- 3logx
r2+1+1 ->

	

x

	

x

Thus as in the proof of (10) we have by induction with respect to l
3 log x 3 log x

E 1 I > (1-	
/

	

.3=((l+o(1))E3 .

	

(19)ui(x)~

	

x
On the other hand we have

1

	

1

	

n l+i/' 1

	

1

	

log n
2Li(x) < E d2 +

	

dZ
+ 0%

x 1
.

	

(20)

(11) immediately follows from (19) and (20) and
t
hence (3) and (1)

are proved .
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