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Let [P,(")] be the class of all subsets P, ( ') of the k-dimensional Euclidean
space consisting of n distinct points and having diameter 1 . Denote by dk (n, r)
the maximum number of times a given distance r can occur among points of a
set Pn ( k) . l'ut

Dk (n) = max, d, (n, r) .

In other words Dk (n) denotes the maximum number of times the same distance
can occur between n suitably chosen points in k-dimensional space .

Lenz showed that D4 (n) > ±n 2 + en, and by using the method of Lenz and
a graph-theoretic result of Stone and myself (1)1 proved (2) that

(1) lim D k(n)
n=cn

m(n; p) = 2(p -1) (n2 - r 2 ) I (2)
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Denote by G(n ; 1) a graph of n vertices and l edges and denote by m(n ; p)
the largest integer for which there exists a G(n ; m(n, p)) which contains no
complete graph of p vertices K, Turán (6) proved that

In this note we prove the following sharpening of (1)

THEOREM 1 . Let k = 21, n =- 0 (mod 2k), n > no(k) . Then

n2 l - 1(2)

	

D,(n) = nz(n ; l) + n =

	

2 + n.

Further, for every n > no(k),

in (n ;l)+n-l CD,(n) <m(n ;l)+n .

For odd k I cannot substantially improve the results stated in (2) . 1 have
not been able to disprove that for every k and n

(3)

	

D, (n) = n 2 (2 2[ k]) + 0(n)
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if n ==r(modp-1) .
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holds . (3) is certainly false unless the following result holds . Let there be given n
points on the surface of the two-sphere ; then the same distance can occur at
most cn times between them .

Denote by (x i , x ;) the distance between x i and x ;. We outline the proof of the
following theorem .

THEOREM 2. To every s there is a c,, so that if x i , . . . , x,, (n > no (s)) are n
disünct points in four-dimensional Euclidean space . Then there are (it least s
distinct numbers amongst any In 2 + c,n of the (x if x;) .

Theorem 2 has some interest in view of the fact that, by Theorem 1, for
c, = 1 all the distances can be equal .

It seems to be very difficult to obtain a good estimation for D2 (n) and D;3 (n) .
It is known (3) that

n'+ei'os'os < D2(n) < n3/2 .

The lower bound in (4) is probably close to being best possible, but I could
not even prove that D 2 (n) = 0W") .

First we prove that

(5)

	

D1,(n) < in (n ; l) + n .

Denote by K,(pi , . . . , p,) the complete r-chromatic graph which has
vertices of the ith colour . To prove (5) we need the following lemma .

LEMMA. Every G(n ; in (n ; l) + n + 1) contains a K3, . . . , 3) for
n > n o (1) .

This lemma is due to Simonovits and myself (5) .
Now let x i , . . . , x" be n points in k-dimensional space for which

d k (n ;r) > in (n ;l) +n+1

for some r . Define a graph G whose vertices are x,, . . . , x" ; we join two vertices
x z and x; if their distance is r . By our lemma this G(n; d k (n ; r)) contains a
K(1, 3, . . . , 3), i .e . there are 3l + 1 points

x i ( i ) , and xi ( " ) (2 < s < l + 1, i = 1, 2, 3)

so that the distance between any two x i ( ' ) for different values of s is always r .
But this is easily seen to be impossible in k = 2l-dimensional space since the
points x i O` ) ( 2 < s < l + 1, i = 1, 2, 3) determine l planes which must be
mutually orthogonal, and then clearly x i ( ' ) cannot be equidistant from all
these points (the x i ( ' ) , i = 1, 2, 3, for 2 < s < l + 1, must all lie on circles
with equal radius and common centre, which is the intersection of the orthog-
onal planes) . This completes the proof of (5) .

Next we show that for n = 0 (mod 2k)

(6) Dk(n) > m(n ; l) + n.
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Our proof is substantially identical with that of Lenz .
Consider l mutually orthogonal planes in k = 2l-dimensional space . In each

of these planes consider a circle of radius 2 and assume that all these circles
have a common centre . On each of these circles choose n/l = 4r points which
form r squares of side I/-\/2 . Clearly the distance between any two of these
points which are on different circles is 1/V/2 and this gives

m(n ; l) = n 2 (l - 1)/2l

pairs of points whose distance is 1/x/2 ; the points on the circles clearly give the
remaining n pairs of points at distance 1/ V2 . This completes the proof of (6) .
(5) and (6) prove (2) . The same method which proved (6) gives

D1 (n)>m(n ;l)+n-1.

This completes the proof of Theorem 1 .

Now we outline the proof of Theorem 2 . We define a [G(n ; ',n 2 + c, n] as
follows: The vertices are our x i , . . . , x,, . x i and x; are joined if and only if x i
and x; belong to the 4n 2 + Cs n selected pairs . Let l = l(k) be sufficiently
large ; it will be determined later . It follows from (5) that for sufficiently large
c s our graph contains a K 3 (1, l, l) . Denote the vertices of this K 3 (1, l, l)
by x, ; y,, . . , y, ; z a , . . . , z i . If there are at least s distinct numbers amongst
the (y,, z ;), Theorem 2 is proved . If not, then the same distance-say r occurs
at least l 2/s times . Join y = and z; if and only if (yz, z;) = r . It easily follows
from a theorem of Kövári, Sós, and "furán (4) that for l > lo(s) this graph
contains K 2 (2s - 1, 2s - 1) . Without loss of generality, denote the vertices
of this graph by y i , .

	

y 2s_ l ; z a , . . . , z 2s_ i . Since

(y i , z;) = r

	

(1 G i, j G 2s - 1),

it easily follows that the x's and y's are on two orthogonal planes, and on these
planes they are on circles which have a common centre-the intersection of the
two planes . xi is in the 4-dimensional space spanned by these two planes ;
hence if we drop a perpendicular from x l onto these planes, the foot of at least
one of them cannot be the intersection of these planes (i .e . the common centre
of our two circles) . Without loss of generality we can assume that the foot of
the perpendicular dropped from x i onto the plane of the y's is not the centre
of the circle containing the y's . But then at most two y's are equidistant from
x i ; hence there are at least s distinct distances amongst the (x i , y ;), j = 1, .
2s - 1. This completes the proof of Theorem 2 .

F] natty we state the following without proof .

THFORE-%t 3 . Let there be given n points x i , . . . , x,,, in 4-dimensional space .
Then there is an absolute constant c and an n o = n o (E, c) so that for n > no (E, c)
there are more than ne distinct numbers amongst any 4n2 (1 + E) of the (x i , x ;) .



The proof of Theorem 3 is similar to that of Theorem 2 ; no doubt both are
special cases of a more general theorem which gives an estimation of the number
of distinct numbers among 4n2 + of (n) numbers (x i , x j ) .
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