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ON SOME PROBLEMS OF A STATISTICAL
GROUP-THEORY. II

By

P . ERDŐS and P. TURÁN (Budapest), members of the Academy

1. In the first paper of this series' we showed that for almost all elements P
of the symmetric group S;, of n letters (i .e . apart from at most o(n!) P's) the order
O(P) of P satisfies the inequality

log' nO (P) - 1
2
log -n

Ac-la Mathematica Acadeiniae Scientiarum Hungaricae
Tomus 18 (1-2), 1967, pp. 151-163 .

3

co (n) log 2 n

if only co(n) -> - with n . Hence log O(P) is for almost all P's much less than its maxi-
mum, which is as LANDAU 2 proved, 1/n log n . Though several questions in the
first paper were left to later papers of this series and we intend indeed to return to
them in paper 111, in this paper we launch another trend which seems to us equally
interesting in itself and perhaps even more inherent to the algebraic aspects . This
refers to the arithmetical structure of the order O(P) . We assert the following
tlieorems . 3

THEOREM L f o)(n)->- with n arbitrarily slowly then for almost all P's the
order O(P) is divisible by all prime-powcrs not exceeding 4

A def log n
1 1 -1 3 1093 11

- en(n)-~
log 2 n

	

log-n log2n

As an immediate corollary of this theorem we remark that "almost no" P's
have a square-free order O(P) and for arbitrarily large integer b the order O(P)
is for almost all P's divisible by b .

How far is this Theorem I best-possible? We shall prove that replacing in (1 . 2)

the term (-l('9
(n)r~ by

+

l

-a

g

>?

)

then only o(n!) P's have this property . However
gz

	

1-
we shall state this in a slightly stronger form as

' Zeitschr. fir Wahrscheinlichkeitstheorie and rcar . Gebiete, 4 (1965), pp . 175-186 .
z Handbuch der Lehre i ,on der Verteilung der Priinzahlen, 1909, Bd. I . p . 222 .
3 The starting point of these investigations was the question of A . SCI-IINZEL, whether or not

for almost all P's O(P) is even .
4 Throughout this paper log,n means v-times iterated logarithms .
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1 5 2 P . ERDŐS AND P . 'FURÁN

THEOREM 11 . If co(n) -- arbitrarily, sloji ,ly with n thenn for ahnost all P's the
order O(P) is not divisible by some prime not exceeding

(1 . 3)

	

B aer log n 1 + 3 109317 +
w

(n)
1092 n

	

109211

	

1092 n J

For the sake of orientation we remark that for primes > e log n much more
is true. We formulate the

THEOREM 111 . If x is fixed positive morzber and p o is any prime ofform (x 0(1))log n
ire have fo the number b(n) of P's with the property O(P) being not divisible by p o
the relation

(1 .4)

	

Jim
-b
(n) = e- x

__ nl
holds.

In particular if w(n) -> - arbitrarily slowly with n and p o >w(n) log n, then for
almost all P's O(P) is not divisible by p, .

2. What are the corresponding theorems for "large prime-factors of O(P)?
As to this we assert the

THEOREM IV. If c(n) is positive and tends with 1/n to zero arbitrarily slowly,
then for almost all P's O(P) is not divisible by any prime

(2.1) > ne -E(1=)ylagn

Again we shall prove that this theorem is essentially best possible by showing
that replacing in (2 . 1) e(n) by Ilc(n) the situation completely changes . We assert
this fact as

THEOREM V . If w(n) tends to infinity Leith n whatever slowly then for almost all
P's O(P) has a prime factor
(2.2)

	

> ne-wWYlogn

From theorems IV and V one has the following somewhat surprising

COROLLARY . If w(n) tends to - with n arbitrarily slowly then for almost all P's
	 r ylog n

the r77axm1al prime-factor of O(P) is betleeen ne -o,(n)Y1og n and ne -(n)

Further we proved that for an arbitrarily small c >0 for almost all P's the number
of prime-factors of O(P) (counting with or without multiplicity) is between
(1 + c) logn-log, n. Since the proof does not differ essentially from that of Theorem
11, we shall not go into details .

As one can easily see from our subsequent proofs we laid no particular stress
to squeeze out sharpest possible laws . E .g. our proof for Theorem V would result
also that for almost all P's O(P) has not only one but several prime-factors satisfying
(2 . 2). We could show that the number of P's whose group-order O(P) is divisible
by all prime-powers not exceeding

1109 171
it + 3 log,11

	

loC n~

	

(e real)

lcade,-, scientia-m Ilun, rrcae r5, t967



ON SOME PRO13LEMS OF A STATISTICAL GROUP-THEORY . 11

	

153

divided by n! has a distribution function f,(c) and the salve holds for the number
of P's whose order is not divisible by any prime greater than

ne- "flog^

	

(c real) .

Our theorems refer to the group S„ ; obviously the same holds for the alternating
group A„ of n letters too .

We call the attention also to Theorem VI in 8 .
As the first of us remarked that by the same method as used in the proof of

Theorem 11, combined with the sharpened form of the prime number theorem for
arithmetical progressions lie can prove the following theorem . Let w(n)-- arbitrarily
slowly then for almost all integers min the Euler-function (p(in) is divisible by all
primes not exceeding

log, n
1+3

log,n

	

09(n)
109 3 11

	

1093 11

	

1093 11

and cp(m) has (t - ;- o(I)) (log log 11)'- prime factors .
3. Next we turn to the proof of our theorems . We represent P uniquely as union

of disjoint cycles ; let P consist of m, cycles of length n,, m, cycles of length n,, . . .
so that
(3 .1)

	

nl<na< . . .<nk,

	

k=k(P)

(3.2)

	

n=mi ni + m, n, + . . . + mknk .

The number of those P's with prescribed k, m l,' s and nv's is, as remarked by
Cauchys

(3 .3) n!
in 1 ! m,l . . .mk ! ni'nz2 . . .nkk

It is well-known that
(3 .4)

	

O(P) _ [n 1 , n2 l . . ., nk] .

Let p" be an arbitrary prime-power

	

n and ,f(n, p") be the number of P's such
that O(P) is not divisible by p" . Then Theorem I will be any easy consequence of the

LEMMA 1 . For f(n, p") we have the nice exact formula

(3 . 5)

	

f(n,p") _ (1-I l (1-1	1 -
n!

	

p"

	

2p"

	

11

	

"
P " p

For the proof we remark first that the left-side of (3. 5) is owing to (3 . 3) nothing
else than the coefficient of z" in

l+
1~ ti~'

- + 2 ! -

	

+ . . .~

I See e. g. J . RiORDAN's book An introduction to combinatorial analysis, New York, 1958 .
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1 5 4

where the prime means that the product is to be extended to all Vs divisible by the
(a - I )th power of p at most. But this can be written for I,z'I < 1 as

1

	

1
7

	

z°

	

Z°pá~

	

(1-ZP°)p .

	

rl+Z+Z2 + . . . +Zpx-i Pz

v exp v = exp V

	

v- vp

	

1-z

	

(1-z)P" - i

=(1+Z+Z2 + . . . +Zp" -1)I1ln~ll
P

" II1

	

2p
"J

I1 -
3p

,
tp"

Iz'npa 1
which proves the lemma at once .

For later use we remark that if p, q are different primes and g(n, p, q) is the
number of P's such that O(P) is divisible neither by p nor by q then the same reasoning

gives that ~? i- g(n, p, q) equals the coefficient of Zn in the MacLaurin series of

(3.6)

4. For the proof of Theorem I we estimate n i f(n, p") from above using Lemma 1 .

This gives for p"-n

(4.1)

Since
log 11

	

1

	

det
A

	

log, 11
1 -

log3 n

	

w (n)

	

A1

3 log, n + 21og,n

6 c,, c2, . . . denote positive numerical constants .

P . ERDŐS AND P. TURÁN

_ (1 +Z+Z 2 +Z 3 + . . . +ZPn-1)(1-

1

	

1
(1 - Zp)P (1 -Z'1)9 defG Z	 1

	

P,q( ) .

(1 - Z)(1 - Zpy)P R

in f(n>p") < eXp {- p
1"

	

i	 n1c _~	 1

ilcla 1lmb, dica A-l-i,, Sci-ti--, Hung,,i,- r,', ~9G-

log
	 L	

n

	

log jx
< exp -	

p
	 P < 3 exp --

p~

Px- 1

P"

Hence the number of P's whose order is not divisible by a prime-power p" not ex-
ceeding A (in (1 . 2)) we get the upper bound 6

n

	

A

der

	

log
p°

	

log n

	

1

	

log n
S

	

exp	z- < c

	

exp -- , < c2 l

	

exp

	

-
P ~A

	

P

	

P -A

	

p

	

og x

	

x
2



ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . It

we have
Al

{4.2)

	

S < c2

J log exp I-1g nI dx
2

.
g

	 x

The integral over (2, log n to
n

is evidently
ga

(4 . 3)

	

< c3
log n	I 	= c3

1092 n log n

	

1092 11

For the remaining integral S' we get substituting

S ' = e2

3 1093n -i (0( 11 )

I

	C3

(1og 2 n) 3

31093 11 - 1 c (n)

I

log n
log z n-y

eY dy

if n -i -, which together with (4 . 3) and (4 . 2) proves the theorem .
The proof of Theorem III follows also easily from Lemma I . This gives namely

i f(n'p0) = I ~ 1 -1 = exp S- l	v+0n

	

(lz,r n

	

r

	

p0p0

	

p0l~r~l
n

`PO

	

Po

=(1+0(1))exp(_logn }
l po

which already proves Theorem Ill . '

5. For the proof of Theorem 11 we shall need as to the coefficient of in (3 . 6) the
LEMMA 11 . If

3 log n
(5 .1)

	

logo n p < q

	

10 l- n
and n is sufficiently large then

n 1
g (n, p, q) = n P

	

11 + O (log n)} .

' The ordo-sign refers throughout this paper to n--

1

(1-log (1092n -y)1
t

	

J(l
1 -

g
y
z n

z (log z n)
logzn

	

-o
,3

eYdy < c,e-'zw(n)-0

Acta W,the,,ati,a A-1,ni- Scie,,i
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1 56

would follow from known result of Darboux ; a but here p and q vary with n as re-
stricted by (5 . 1) . A sketch of the rather technical proof we shall postpone to an
Appendix. A more direct (real-variable or algebraic) approach to the determination
of this coefficient would be desirable . v

6. The proof of Theorem H (and also Theorem V) will be based on an idea
which was introduced into arithmetics in 1934 by one of us ; 10 this is on the way
to become a part of the folklore in this subject . Let (with B in (1 . 3))

1 log n(6 . 1)

	

2 to

	

pl ` P2 < . . . < p, ~B
gz n

be all primes in this interval ; if n is sufficiently large, we have

(6.2)

	

1

	

log n 2

	

l< 3 log n .

10 (1092 n)

	

0092n)2

We introduce the function h(P) of P as the number of the p ;'s from (6 . 1) which do
not divide O(P) . For this h(P) we shall prove two simple lemmata .

LEMMA I 1 1 . Putting Si = 1

	

h(P) we have
11 . P

i

	

I
logn

S, -
V-1

exp -
PV

+O(1) .

For the proof we remark first that with notation of Lemma I we have

(6 .3 1)

Applying Lemma

If p and q were fixed and n -, the relation

PP g q

	

11 P 9 pn
coeffs z'! in Gp.9(z) ti -

(pq)r"i T
111

	

1

l1

	

1 ~~
P

	

9

SI-

P. ERDÓS AND P . TURAN

I this gives

'

	

1

	

1

	

1
l	1 - -.- . . . 1 -

PV

	

2pV

	

n
PV

PV

G. D aRP.uux, Memoirs sur ('approximation des fonctions de trés Brands nombres etc ., Journ .
de nraih, pores et rrppl., Ser. III. Tome 1V (IS78) .

y The same holds for the functions (I -z),,'(I--zP")(1-zp)-n(1-z")-° which - and their
obvious generalization - reminds one to the cyclotomic polynomials .

10 P. TuanN, On a theorem of Hardy and Ramanujan, Journ. London Math . Soc ., 9 (4) (1934),
pp. 274--276 and Über einige Vera] lgcmeineru ii .-en eines Satzcs von Hardy und Ramanujan, ibid.,
11 (1936), pp . 125-133 . See also the beautiful booklet of M . KAC, Statistical independence in
probability, analysis and number theory, Carus Math. Monographs, No . 12 .
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Using (6 . 1) (and (1 . 3)) the product is

exp ~- Ilog n+ O 1~~ = exp ~_ log n + O log P" ~~ _
P,

	

PV

	

Pv

	

PV

	

P~

= i l+ 0 l
(log z n)2 ~~ eX

	

logn l

l

	

log n

	

p

	

Pv
and thus, using (6 . 2)

as stated .
Further we need the

LEMMA IV . Patting Sz =
1
: i(P) 2 xe haveT . P

S,

	

exp 1 _ logn l +0(1)

V=I

	

PV

S

		

log n z1

	

I ----
PV

<

{~

exp
l-

Pv -~~ 1+0 - ~'lognv= 1

Using also Lemma III we get
I
exp (_ log n,

+0(l)+ (1

	

0(1) -

p

	

P,1

	

)flog n
as stated .

exp

For the proof we write (p,'s in (6 . 1))

Sz

	

n1 Z(pµ21

	

(p í(P)
I

The contribution of the pairs with p = r is obviously S, ; hence

(6.4)

	

Sz = S, + 2

	

1

	

1 = S, + 2

	

1- g (n, p, p,)
I-F1

	

, nI pµ o(p)

	

r<p, !, nl
P"iO(P)

with the notation of (3 . 6) . Using the remark (3 . 6) and Lemma It we get

S Z = S,+2

	

n P P 1+O -
=p -I

	

1 log n

p=1

e

7. Lemma III and IV give quickly the proof of Theorem 11 . We form the ex-
pression

((7.1)

	

Z`'`e 1

	

Ih(P)- Zexp

	

log n z-

	

.
ni P

	

p=j

	

P u Ij
Lemma III and IV give at once

1

	

'

	

log 11 )12+
( 7(7 .2)

	

z = 0 1
log n

	

exp

	

Pp

	

U(l) ~1=-
1

log n

Pv
+0(1) .

p (--11g
nj12

exp - log n

Pp

157
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Let U be the set of P's with

which is

indeed .

i . e ., if p- 1'il say .

(8 . 1)

Hence for the proof of our Theorem IV we have only to show that

analogously as in 4 .

3 1'193 n

P . ERDŐS AND P. TURÁN

h(P) =o

and IU1 their number ; (7. 1) and (7. 2,) give a fortiori

U'

	

1

	

log n -1

	

lo n

	

'
(7 . 3)

	

yr , ` 0(1) ylogn + ` _ 1 ex p -- µ ~

	

+ ~µ 1 exp	 pµ ~~

	

.

If we succeed in proving
1

V aer

	

exp -log n
µ = 1

	

iiµ
with n we are ready . But

V
;

	

Zp

	

eXp

I-

log nl

log n 1+3 1093 n

	

w(n) log n

	

pp
P--

	

- .

	

~ .	
1082 11

	

1092 n

	

(109210 2

3 1C9311+ yW(II)

C,

	

e!' dy
(log,n) 3

	

f

	

y

	

log (log2 11

	

)
1

	

1 - -
1092 j1) l

	

1092 n

31093n+ ro(n)
C g

	

ey dy
(10-2 n)3

	

f
31093n- <u(10

8. The proof of Theorem IV, once having Lemma I is again easy. This gives
namely if f(n, p) stands for the number of those P's, whose order O(P) is divisible
by p the exact formula

An,Ip)= I- 1-
I - 1-2p . . . 1- fal--

	

1-expI-
1
log

n
+0( p

p

	

1

	

~

~p

	

p

	

p

	

Pp
P

n
log -
n + O 1

n!

	

p

	

p

{l-10
9 ,1 +0 (--~~

	

0.
nexp(- E(n)~l09n) =P~=n p

	

p

	

lp

1,11 Ilun,arrrae t3, 196,7



ON SOME PROBLEMS OF A STATISTICAL GROUP THEORY . II

For the second sum this is well-known ; for the first it follows easily since it cannot
exceed

which tends to 0 indeed .

9. The proof of Theorem V will be easy after having the Theorem V1, which
is of independent interest . This is the following.

THEOREM V1 . Let
(9.1)

	

1~a,-az< . . .<a,-n

be a sequence of integers . Then the number of P's having no cycles with the length
a, or a, . . . or a,,, cannot exceed the quantity

E (n) }/log n

	

2,

	

1
n exp ( -e(nfylog n)< p- n p

by H, we have

n!
S

	

1

	

.

a,

S

Hence if

	

av ' tends with n to ~, then almost all P's have at least one cycle
v=1

the length of which is among the numbers in (9 . 1) .
The proof of Theorem V1 will be based again on the dispersion-idea . Let L(P)

be the number of the a v 's from (9. 1) with the property that P has a cycle with length_
a v Then we assert the

LEmMA V. Denoting the expression

P
L
(Pn!

	

)

S

H,, = L,
1

v-1 av

For the proof we start from the fact that

(9 .2)

ra
a,! 1

_

	

n !
av

	

av

	

av(n-a,,)!

159

where the summation within the bracket refers to all P's containing a cycle with
the length a v (v fixed). But what is the value of this sum? The elements of this cycle
can be selected in rn ways ; after selection each can be written down on a,! ways .la,,
Since a cyclic permutation gives the wine cycle, our selection gives rise to

Ad2 AI tGem2dca Arndemiae Scie:rtfrzru IIeut,gmicae rS, tq!i7
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different cycles of length a, . Each can be completed to a P by permuting the remaining
(n-aj elements . Hence the value of the inner bracket is for fixed v 1/a,, which
proves the lemma .

We need further the

LEMMA VI . Denoting the expression

by H, ire have

For the proof we start from the fact that

(9.4)

(9.6)

P. ERD6S AND P . TURÁN

nl

	

L(p)2

Malhclnati,a A-1,núae S,i,ntia,um Hunga,i,ae 15', 1967

{9 . 3)

	

Hz =	~, (

	

1) (

	

1) = H, +2

	

lf "Il
n!' P

	

,9in2:

	

2~P

	

a~in P

	

1--µ<v_S n PP
a,,+av=n

where the

	

" is to be extended to all P's having two cycles with the length a,1 and av
respectively. What is the value of the inner sum in (9 . 3)? The cycle of length a,1 can

i
be filled as before in -a ( fin'-

u)
i ways ; the cycle of length a, afterwards in

a, (n-a,,-av)!

ways. Each can be completed to a P in (n-a.-a,)! ways. Hence the value of the
expression in the bracket in (9 . 3) is 1/a„a v . Hence

H
1

	

1
H2 =

	

--- +
2=1 av

	

1 :,,<v-, ap a,
aµ+ a, n

indeed .
In order to prove Theorem V we consider the expression

1 z
(9 .5)

	

Z, aee l, Z L(P)-

	

.
n . P

	

v= 1 av
From Lemma V and VI we get

z,

(11- a,) !

Denoting by U, the set of P's with L(P)=0 and by I U 1 I the number of P's in U,
(9. 5) and (9. 6) give

~Ui
n!

	

V=

	

v

i .e . Theorem VI is proved already .

s

	

1



(10.1)

(10.2)

	

--

	

_
pcIP v - nv-n

hence this sum is

(1)

w
2n) y4og n

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . H

10• In order to deduce Theorem V from Theorem VI we define the a,'s
multiples of all primes in the interval

which do not exceed n . The sum of their reciprocals is

I :

pc1

pcrt

n exp (-co (n) ~log ti) = p - n

1

	

n

	

1

	

n
-log- +O(1)Z 1- _ -log -+O(1) .
P

	

P

	

pcr P pcr P

	

P

The remaining sum is
n- log-

ncj~ P

	

P
where I, stands for the interval

nexp{-w(n)~Iognj = p = nexp j-~2n) ylogn} ;

P

Hence with exception of at most

w (n)	
2 - j/log n

	

(n)

	

1•

	

-3	 _
Vlog n

6	i
co(n)!' n .

P's the other ones are such that O(P) is divisible by a prime p in L Q.e .d .

Appendix

We sketch the proof of Lemma 11 . We have for n--10 obviously

l

	

nq- I 1

	

r
ni P, (n, p, 9) _

	

-~ J G,11,(z)z- i -1 áz,
(D )

w (n)~

161

as all

where D, means the following path of integration . We cut off the plane along the
segment

zniv

z=re pq ,

	

r~--- 1

then D, comes from infinity along the ray

27r varc z=

	

-0
P9

11
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2nív
encircles the point z=e Pq in negative sense with a "small" circle and then goes
to infinity along the ray

are z=-
2nv

+0.
pq

The contribution of the "small" circles goes obviously to 0 and hence

(2)

where

( 2.ni /' GPq r exp i pg + a - G1,
q	 Ir

exp
i	 l
pq -

el
1

(3)

	

I - lim je Pq

J
	 dr_

E +0

	

rn+1

(5)

and

1

We consider first the I„'s with

1 -1, - pq-1 .
We have (roughly)

1

	

Pq - 1

~ g(n,p, q) _

	

Iv,n =0

lOpq

	

lOpq
IGpq(Z)1

	

-	 1	1
(rPq _ 1) Pq

	

(r- 1) Pq

and hence
1

Pq-1

	

('

	

dr

	

(' _ 1

	

1

I„1 - 10(Pq)2 /

	

= 10(pq) 2
J

t P 4 0 - t)n-1+ Pq dr
''= 1

	

rn+ 1 (r - l) Pq 0

on putting r =
1
1_ t . Using the well-known formula

1

(4)

	

f P(1-t)sdt =
T(a+l)P((~+1)

	

(a > -1, /3 > -1)
0

	

r(a+fl+2)

we get for n >n0

and hence

As to I0 , putting

Pq-1

	

F ín+1	1

II,1 < 20(pq)2
	 pq < (Pq)3n

	

1
Pq

-1

	

F(n+l)

1
g (n, p, q) n - 10

1

(pq)3n Pq

I

	

1

P

	

q

1

	

1

	

1

g(r'
_

	

1
rP-1 IP ~rq-ll

	

1
q

	

r

r

	

-1 )pq

-

	

r - 1

	

rPq -

.1,/, D(rcthematie a dcadenriae Scicntiamni Hungrn - icee i8, ig67



we get

_ sm zÁ

	

g (r) dr

The contribution of r l + 100 log n is 0(n-50 ) quite roughly ; replacing on then
remaining interval g(r) by

11*
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1

	

1
pPgq

1

(pg) Pq

gives an error of 0(n` log' ii) . Completing again the integration range to
we get

I

	

1
si

	

P 4

	

('
(6)

	

to - 7r

	

p g1 {1+0(n-1log~

	

f
n)}J rn+1(r-ly +O(n- so) .

(pg) pq
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Substituting again r by 11t and applying (4) we get for the main term in (6)

1

	

1

{1+0(n-Ilog2n)}
p P g q . sin7rA-F(1-A)r(n+A)

I

	

7 f' (n + 1)
(pg) Pq

1

	

1

	

1

	

1

_ {1+0(n-tlogzn)}p P g q	r(n+~)	_ {1+0(n - tlog z n)}	
pPgq

i r(~)F(n+l)

	

1
(pg) Pq

	

(pg) Pq

1

	

1

	

1
n p q Pq

F (A)
But in our case
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the proof of Lemma 11 is complete .

(Received 15 January 1966)
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