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ABSTRACT

Like the previous paper of the same title [5] this note contains disconnected
remarks on number theory .

1 . Bellman and Shapiro in one of their papers [1] prove among others the
following result : Denote by Q(a, b) the number of squarefree integers n satisfying
a <_ n < b and let A(n) be a strictly monotone function tending to infinity to-
gether with n . Then if we neglect a sequence n i of density 0 we have

We will prove a more general theorem which will show that (1) remains true
if the monotonicity of A(n) is no longer required. In fact we will prove

THEOREM 1 Let f(k) be a real valued number-theoretic function satisfying

Assume further that to every ri > 0 there is a g(q) so that for every l > g(q)
and every n > 0

Then to every c > 0 and 6 > 0 there is an h(s,5) so that for all but sx integers
n < x we have for every 1 > h (s, 6)
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Q(n, n + A(n)) = (1 + o(1)) 6 A(n) .

1 r-1
E f(n+k)<a+rl .1 k=O
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i i
(4)

	

a 6 < 1 E f(n+k)<a+S.
l k=0

Before we give the simple proof we make a few remarks . By the same method
we could that if for every l > g(q) and every n > 0

1 i 1

(3')

	

1 Z0 f(n + k) > a rl
k =O

(4) holds .
It is easy to see that our Theorem implies that if for every A(n) * oo

1

	

A(n)

lim sup
Á(n) xYo f (n + k) <_ a

n=m

then for almost all n <_ x (i .e . all n neglecting a sequence of density 0)

1

	

A(n)
(5)

	

nlim
A(n) k

I0 f(n + k) = a .

Now we prove our Theorem . The upper bound in (4) is trivial since it follows
from (3) so it is enough to prove the lower bound . Let us assume that (4) does
not hold, then there is an r > 0 and 6 > 0 so that for every t there are arbitrarily
large values of x so that the number of integers n i <_ x for which there is an li > t
satisfying

1 t ; 1

E f(ni+k)<=a S
_Ii k=0

is greater than ex . We shall now show that for n < 186, t > g(q) (6) contradicts (3) .
To see this let m i be the largest integer for which

m ; n ; 1
(7)	 1

	

E

	

f(t) _< a 8 .
m i ni a =„,

By our assumption and by (2)

(8)

	

g(q) < mi n i < oo .

Consider now the sequence of intervals (ni, m i) (i .e . n i < x < m;) . There clearly
exists a subsequence of disjoint intervals (n ir , m,,), r = l, 2, • . . so that each n i is
covered by one of the intervals (n i_, m i ), r = 1, 2, • . . . To see this put n i , = n 1 ,
m i , = m, and assume that the intervals (n i,,, m i .) r < s have already been con
structed . Let n i be the least n; greater than mi,(m i can not be one of the n's since
by (6) this would contradict the maximality property of mi ) . Put n i = n i mi = m;
and this sequence of intervals clearly has the required properties .

By our assumption E,. ; <x 1 > ex holds for infinitely many x, hence if mi is
the ; mallest m; >_ x we evidently have

(6)
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s
(9)

	

E (m,, n;)>Em,, .
r=1

Put m,, n,. = a, From (9) we have either

where in
loss of generality assume

(10)

By (2) we have
mi.

(11)

	

E f(k) _ (1 + o(1) a

	

= E' + E"
k =n,

where in E'

and in I"
s 3

m,2J+1<_t<n,,j+3,0<<j <_ 2

We have from (7)

(12)

	

~' <_ (a S) E 1 ar

We evidently have by (8)

Y J = n12j + 3 m, 2j+ I > m, 2 j n, 2 j > 90)

Y1 , r = 1 (mod 2) and r <= s, in G,2, r 0 (mod 2), and r <_ s. Without

s 1
n,2J+1

	

0<j<_ 2

(s 3)/2
E" < (a + 11) E

	

p; _ (a + n) (m,,

	

ar )+ 0(1)
i=0

	

1

(s 3/)2
E 1 ar +

	

y (3; = m i , n, =m,r + O(1) .

Thus from (11), (12), (13) and (10) we have

mi,,
(1 + o(1)) am,, = E f(k) <_ (a + q) m;, (q + 6) E 1 ar + O(1)

k=n1
1

< (a + 1) ms 2 e5ms + O(1)

~1 ar > 2 E m, , or ~2 ar > 2 E m,

E 1 ar > 2 E ms .
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an evident contradiction if n < 2 E6 . This completes the proof of our
Theorem .

Corollary . Let a, < az < . . . be any sequence of integers and let b, < b z < . . .
the sequence of integers not divisible by any a i . Assume that the b's have density a.
Then if U(n) + oo together with n we have for almost all n and every l > U(n)

lim B(n + 1) B(n)
= a (B(m) = E I) .

n=m

	

l

	

6,<m

The corollary easily follows from our Theorem . Let f (n) = 1 if n is a b and
f(n) = 0 otherwise. To prove our corollary we only have to show that our f(n)
satisfies (3) . Denote by ak the density of integers not divisible by any a„ 1 _< i <_ k .
Evidently a k exists and a, >_ az >_ It is known [4] that if the b's have density a
then

(14)

	

lim ak = a
k=m

Let fk(n) = 1 if n # 0(mod a), I <_ i <_ k and fk(n) = 0 otherwise . Clearly fk(n)
>= f (n) . fk(n) is periodic mod[a,, • • •, ad thus fk(n) clearly satisfies (3) with ak
replacing a, hence finally by (14) f(n) satisfies (3) . If E1 la, < oo the proof of (14)
is simple and direct and we do not need [4] .

It is also easy to see that our Theorem applies for f (n) = 6(n) /n orf (n) = 0(n) /n .
In fact it applies to every multiplicative function f(n) > I which satisfies

yE f(P) 1 < 00
P

	

P

we leave the details to the reader [6] . On the other hand our Theorem does not
seem to imply Theorem 4 of [7] .

2. In one of their papers Chowla and Vijayaraghavan [3] state that to every
e > 0 there is an A so that if a, < . . . < a k <_ x is a sequence of integers satisfying

k

	

1
E >= A, (a i , aj ) = 1
=i a i

then the number of integers n <_ x not divisible by any a is < Ex .

This result indeed easily follows by Brun's method [8] . The number of integers
n <_ x, n # 0 (mod a i), I <_ i <_ k is by Brun's method [8] less than c, e z (c, is an
absolute constant independent of a,, . . ., ak ) .

The following question seems to be of some interest :
Let a, < . . . be of any sequence of integers satisfying

	

1i1 /a ; < A. Denote by
f(a,, • • • ; x) the number of integers not exceeding x not divisible by any a i . Put

F(A ; x) = minf (a,, . . . ; x)
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where the minimum is to be taken over all sequences satisfying E;1 /a < <_ A .
How large is F(A ; x) and which sequence a, < . . . gives the minimum? Let p,.
be the largest prime <_ x and p, > p, _ , > . . . the sequence of primes < x . Define i by

E 1 <_A < E
i

	

Pi

	

i ,

1

Pi

It seems to me that perhaps F(A, x) = f (p i • • •, p„ x) or that at least

(15)

	

F(A ; x) _ (1 + 0(1)) f (p i , • • •, p„x) .

It easily follows from the results of de Bruijn [2] that for x > x o(A) and
A > A o (exp z = e')

F(A ; x) < .f(Pi, . . . p, ; x) < x exp( eA) .

I do not see how to prove (t5) and in fact I cannot even show that for some fixed
c > 0 (c independent of A and x)

F(A, x) > ef(P, . . . P. ; x),

in fact I have no satisfactory lower bound for F(A ; x) .
3. We prove by Brun's method [8] the following

Theorem 2 . To every c, there is a c z = e z(c l ) so that if a, < • • • < a k <_,n,
k > c,n is any sequence of integers then

11 d > cz log n

where in E 1 the summation is extended over all the integers d which are divisors
of some a ; .

Let E = e(c j be sufficiently small and write

f,(m) _ rl p, p < n e

Pa I Im

where p'I Im means p' l m, pa+ 1f m, d, < . . . < d, be the integers f,(a j), i = 1, , k .
To prove our Theorem it will clearly suffice to show

We need two lemmas .

LEMMA 1 . Let s < c l/8. Then for n > n o the number S of integers m < n
for which f,(m) > n' / Z is less than c ln/2 .

(16)

	

E 1 >c, logn .
i

_, di
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We evidently have by the well known result E loge = log x + O(1)
p<x p

n

nS/2 < 11 fe
(
m) < 1ep"/p+n/pl+ . . .

m=1

	

p<n

11 p"/ ' < exp 2en log n .
P <,a

Thus S < 4en < cin/2, which proves the lemma .

LEMMA 2 . Let u <_ n' l2 . The number of integers m 5 n for which f,(m) = u
is less than e 30" logn .

The integers m <_ n for which fE(m) = u are of the form ut where

(17)

	

t <_
u

, t 0 0(mod p), p <= n`

By Brun's method the number of integers t satisfying (17) is for u <_ n'/ 2 less
than

which proves the Lemma .

By Lemma 1 the number of a's with f,(a i) <_ n'/ 2 is greater than c l n/2. Thus
we have for these a's by Lemma 2 .

hence

c4 n 11 1 1)< c3leu log n
u p<n E

	

P

/

	

c3n

	

1
c 1 n2 <	elogn i=1 di

r 1 > aci logn
i=, di

	

2c3

which proves (16) and hence Theorem 2 .
I have no reasonable estimate for c2 as a function of ci .
4. Straus asked me the following question :

What is the maximum number of integers a i < . . . < ak <_ x no two of which are
relatively prime but every three of them are relatively prime? The question is
perhaps a bit artificial but it seems to me of some interest that a simple and fairly
precise answer can be given . Put max k = f (x), then

(18)

	

f(x) _ ( 2 +O(l)) log
	 log

og x
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To prove (18) observe that if a l < . . . < a k <_ x satisfies for every 1 <_ i t < i2 <_{k,
(a,, aj) 0 1 and for every 1 <_ j 1 < j2 < j 3 <_ k, (aj ,, a,2 , a j ) = 1 then to every
1 <_ i < j < k there corresponds a prime pi , ; so that pi .jl ai, p,, j I aj and for every
other r <_ k pi ,j f ar, hence the pi , j are distinct for distinct 1 <_ i < j <_ k and we
evidently have

(
k
2)

	

\211

	

2>
(19)

	

ai >

	

Pi,= ( lj qri

	

1<==i<j5k

	

r=1

where 2 = q 1 < . . . are the sequence of consecutive primes . From the prime
number theorem we have

(z)
(20)

	

fj qr = exp((1 + 0(1)) k2 log k
r=1

Hence from (19) and (20) we have k logx > (1 + 0(1)) 2k2 log k or

k <_ (1 + 0(1)) log x
2log log x

To complete the proof of (18) we now show that for every a > 0 there is an x o
so that if x > xo(e) we can construct integers a l < . . . < a k <_ x,

k>(I s) logx
2 log log x

so that no two a's should be relatively prime but every three of them
are relatively prime . Put k= [(1 8) logx /21og log x] and let q 1 < . . . < q ( k ) be
the first (z) consecutive primes . Form a symmetric matrix I u ;, j I of size k from
these primes the diagonal elements are all 1 s. a i is the product of the primes
in the i th row each a i is the product of k 1 primes by the prime number theorem
for every fixed e and x > x i,(s) a i < q ( k) < x. (a i , a j) is the prime u i ,j = uj , i and
(a, a j , a r) is clearly always one.

Let r be fixed and x large . Denote by fr (x) the largest value of k for which
there is a sequence a, < . . . < a k <= x so that no r of them are relatively prime,
but every r + 1 of them are relatively prime . In (18) we showed

f2(x) _
(2

1
+ 0(1) logx/log log x .

By the same method we can prove

((r 1)(r 1)\ 'Ir 1 ( log x )11r 1
fr(x) _ (1 + o(1))	r

	

JI

	

loglog x
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