COLLOQUIUM MATHEMATICUM

SOME REMARKS
on the iterates of the q and a flNCTIONs
BY

> P. ERDÖS (BUDAPEST)

Put $\sigma_{1}(n)=\sigma(n), \varphi_{1}(n)=\varphi(n)$ and, for $k>1, \sigma_{k}(n)=\sigma_{1}\left(\sigma_{k-1}(n)\right)$, $\gamma_{k}(n)=\varphi_{1}\left(\varphi_{k-1}(n)\right)$.

Schinzel conjectured that for every k

$$
\begin{equation*}
\liminf \frac{\sigma_{k}(n)}{n}<\infty \tag{1}
\end{equation*}
$$

Mąkowski and Schinzel [2] proved (1) for $k=2$. In fact, they showed (among others) that

$$
\liminf \frac{\sigma_{2}(n)}{n}=1 \quad \text { and } \quad \limsup \frac{\varphi_{2}(n)}{n}=\frac{1}{2} .
$$

At present, I cannot prove (1) for $k=3$, but I show the following differences between the cases $k=2$ and $k=3$. Denote by $N_{\varphi}(k, a, x)$ the number of integers $n \leqslant x$ for which

$$
\varphi_{k}(n)>\alpha n,
$$

and by $N_{\sigma}(k, a, x)$ the number of integers $n \leqslant x$ for which

$$
\sigma_{k}(n)<\alpha n .
$$

Theorem 1. For every $\alpha<\frac{1}{2}$, arbitrarily small $\varepsilon>0$ and arbitrarily large t we have for $x>x_{0}(\alpha, t, \varepsilon)$ the inequalities

$$
\begin{equation*}
\frac{x}{\log x}(\log \log x)^{t}<N_{\varphi}(2, \alpha, x)<\frac{x}{\log x}(\log x)^{\varepsilon} ; \tag{2}
\end{equation*}
$$

further, for every $\alpha>0$ and $\varepsilon>0$, we have for $x>x_{0}(\alpha, \varepsilon)$

$$
\begin{equation*}
N_{\varphi}(3, \alpha, x)<\frac{x}{(\log x)^{2}}(\log x)^{\varepsilon} . \tag{3}
\end{equation*}
$$

Theorem 2. We have for every t if $x>x_{0}(t)$

$$
\begin{equation*}
N_{\sigma}(2,2, x)>\frac{x}{\log x}(\log \log x)^{t} \tag{4}
\end{equation*}
$$

and for every $a>0$ and $\varepsilon>0$ if $x>x_{0}(\varepsilon, \alpha)$

$$
\begin{equation*}
N_{\sigma}(2, \alpha, x)<\frac{x}{\log x}(\log x)^{\varepsilon}, \quad N_{\sigma}(3, a, x)<\frac{x}{(\log x)^{2}}(\log x)^{\varepsilon} . \tag{5}
\end{equation*}
$$

For $n>2$ we have $p_{2}(n)<n / 2$, thus, in Theorem $1, a<\frac{1}{2}$ is the best possible.

Before I prove these theorems, I would like to make a few remarks. Let $p>2$ be any prime (throughout this paper p, q and r will denote primes). Denote by Q_{1} the set of all primes $q_{1}^{(1)}<q_{2}^{(1)}<\ldots$ satisfying $q_{2}^{(1)} \equiv 1(\bmod p)$. Denote by Q_{2} the set of primes $q_{1}^{(2)}<q_{2}^{(2)}<\ldots$ for which $q_{i}^{(2)} \equiv 1\left(\bmod q_{j}^{(1)}\right)$ for at least one j but which are not in Q_{1}. Generally, Q_{k} denotes the set of primes $q_{1}^{(k)}<q_{2}^{(k)}<\ldots$ for which $q_{i-1}^{(k)} \equiv 1$ $\left(\bmod q_{j}^{(k-1)}\right)$ for at least one j but which do not belong to $\bigcup_{l=1} Q_{i}$; in other words, $q_{i}^{(k)} \not \equiv 1\left(\bmod q_{j}^{(2)}\right)$ for every j and $l<k-1$. Put

$$
Q^{(k)}=\bigcup_{l=1}^{k} Q_{l}, \quad Q_{\infty}=\bigcup_{l=1}^{\infty} Q_{i} ;
$$

$\bar{Q}^{(k)}$ and \bar{Q}_{∞} denote the sets of primes which do not belong to $Q^{(k)}$ and Q_{\sim} respectively. $N_{x}(Q)$ denotes the number of elements not exceeding x of the set Q. It follows from the prime number theorem for arithmetic progressions that

$$
N_{x}\left(Q_{1}\right)=(1+o(1)) \frac{x}{(p-1) \log x} .
$$

It easily follows from the prime number theorem for arithmetic progressions and the sieve of Eratosthenes that

$$
N_{x}\left(Q_{2}\right)=(1+o(1)) \frac{x}{\log x} .
$$

By using Brun's method we easily obtain the following stronger result (c_{1}, c_{2}, \ldots are positive absolute constants):

$$
\begin{equation*}
N_{x}\left(Q^{(2)}\right)<c_{1} x /(\log x)^{1+1 /(p-1)} . \tag{6}
\end{equation*}
$$

The proof of (6) is quite straightforward and can be left to the reader. I have not proved that $N_{x}\left(\bar{Q}^{(2)}\right)$ tends to infinity as $x \rightarrow \infty$, but this
should perhaps be possible by Linnik's method [1]. In other words, the problem ($\mathbf{P} 595$) is to prove that there are infinitely many primes r for which

$$
r \not \equiv 1(\bmod p) \quad \text { and } \quad r \not \equiv 1\left(\bmod q_{i}^{(1)}\right), \quad i=1,2, \ldots
$$

It is easy to deduce from (6) by using Brun's method that

$$
\begin{equation*}
N_{x}\left(\bar{Q}^{(3)}\right)<c_{2} x /(\log x)^{2} . \tag{7}
\end{equation*}
$$

Very likely there are infinitely many primes in each Q_{k} and also in \bar{Q}_{∞}. The problem of the existence of infinitely many primes in \bar{Q}_{∞} and Q_{k} is connected with the following question. Let $p_{1}^{(1)}=2<p_{2}^{(1)}$ $<\ldots<p_{r}^{(1)}$ be a finite set of primes. We define inductively a set of primes as follows. By $p_{1}^{(2)}<p_{2}^{(2)}<\ldots$ we denote the set of primes, for which $p_{i}^{(2)}-1$ is composed entirely of the $p_{i}^{(1)}$'s. Generally, the $p_{i}^{(k)}$ are the primes for which $p_{i}^{(k)}-1$ is composed entirely of the $p_{i}^{(1)}, l<k$. It seems likely that for every k there are primes $p_{i}^{(k)}$ (perhaps infinitely many), but nothing is known about this. It is not difficult to deduce from (7) that the number of the $p_{i}^{(k)}, i=1,2, \ldots, k=1,2, \ldots$, not exceeding x is less than $c_{3} x /(\log x)^{2}$ but very likely this is a very poor upper bound.

We can prove that for every $\varepsilon>0$ for all but $\sigma(x)$ integers $n<x$

$$
\sigma_{k}(n) \equiv 0\left(\bmod \prod_{p<(\log \log x)^{k-\varepsilon}} p\right) .
$$

The same result holds for $\varphi_{k}(n)$. Further we can show that if we neglect a sequence of density 0 , then

$$
\frac{\sigma_{k}(n)}{\sigma_{k-1}(n)}=(1+o(1)) \frac{\varphi_{k-1}(n)}{\varphi_{k}(n)}=(1+o(1)) k e^{y} \log \log \log n
$$

but we do not prove these results in this note.
We will only prove Theorem 1 since the proof of Theorem 2 is similar, but even in the proof of Theorem 1 we will not always give all the details. First we discuss to what extent our theorems are the best possible. We have, for $n>2, \varphi_{2}(n)<n / 2$; thus in Theorem 1 the number $\frac{1}{2}$ cannot be replaced by any greater number. It seems very hard to give an asymptotic formula for $N_{p}(2, a, x)$ or $N_{\sigma}(2, \alpha, x)$ (see (3)) and the second inequality of (5) can perhaps be improved ($\mathbf{P} 596$).

Now we discuss (4). It is best possible in the sense that $\alpha=2$ cannot be replaced by any smaller number. We outline the proof. Let $\gamma<2$. If $\sigma_{2}(n)<\gamma n$, then there clearly is an l so that $\sigma(n) \not \equiv 0\left(\bmod 2^{l}\right)$ or n has fewer than l prime factors which occur in the factorization of n with an exponent 1. In other words, $n=R_{1} R_{2},\left(R_{1}, R_{2}\right)=1$, where R_{1} is square free and has fewer than l prime factors and all prime factors of R_{2} occur with an exponent greater than 1 . From this remark it follows by
a simple computation that if $\gamma<2$, there is an $l=l(\gamma)$ such that

$$
N_{\sigma}(2, \gamma, x)<c_{3} \frac{x(\log \log x)^{l-1}}{\log x} .
$$

By the methods used in the proof of Theorem 1 it is easy to show that for every $\gamma>\frac{3}{2}$

$$
N_{\sigma}(2, \gamma, x)>c_{4} \frac{x}{\log x} .
$$

We do not give the details of the proof.
If $\sigma_{2}(n)<\frac{3}{2} n$, then n and $\sigma(n)$ must be odd; hence n is a square and thus $N_{\sigma}\left(2, \frac{3}{2}, x\right)<x^{1 / 2}$. In fact, it would be easy to show that $N_{\sigma}\left(2, \frac{3}{2}, x\right)=o\left(x^{1 / 2}\right)$ and $N_{\sigma}\left(2, \frac{3}{2}, x\right)>c_{5} x^{1 / 2} / \log x$. It will not be easy to obtain an asymptotic formula for $N_{\sigma}\left(2, \frac{3}{2}, x\right)$. Similarly, we could investigate $N_{\sigma}(2, \alpha, x)$ tor $\alpha<\frac{3}{2}$. We only make one final remark. It is easy to prove that if $n_{1}<n_{2}<\ldots$ is a sequence of integers for which $\sigma_{2}\left(n_{i}\right) / n_{i} \rightarrow 1$, then, for every $\varepsilon>0, \sum_{n_{i} \leqslant x} 1=o\left(x^{\varepsilon}\right)$.

Now we prove Theorem 1. First we prove the first inequality in (2). We need the following

Lemma. To every $\eta>0$ there is a $c_{\eta}>0$ such that the number of primes $p<x$ for which

$$
\begin{equation*}
\frac{\varphi(p-1)}{p-1}<\frac{1-\eta}{2} \tag{8}
\end{equation*}
$$

is greater than $c_{3} x / \log x$.
A simple computation shows that (8) holds if (r odd prime)

$$
\begin{equation*}
\sum_{r \mid n-1} \frac{1}{r}<\eta \tag{9}
\end{equation*}
$$

Thus, to prove our lemma it will suffice to show that the number of primes $p<x$ satisfying (9) is greater than $c_{\eta} x / \log x$. To see this let $k=k(\eta)$ be sufficiently large and let $3=q_{1}<\ldots<q_{k}$ be the first k odd primes. Let $p_{1}<\ldots<p_{1} \leqslant x$ be the set of primes $p<x$ satisfying $p \equiv-1\left(\bmod \prod_{j=1}^{k} q_{j}\right)$. It follows from the prime number theorem for arithmetic progressions that

$$
\begin{equation*}
l=(1+o(1)) \frac{x}{\log x} \prod_{j=1}^{k}\left(q_{j}-1\right)^{-1} \tag{10}
\end{equation*}
$$

Now we prove

$$
\begin{equation*}
\sum_{i=1}^{l} \sum_{r \mid p_{i}-1} \frac{1}{r}<\frac{1}{2} \eta_{1} l \tag{11}
\end{equation*}
$$

If $r \mid p_{i}-1$, we must have $p_{i} \equiv-1\left(\bmod \prod_{j=1}^{k} q_{j}\right)$ and $p_{i} \equiv 1(\bmod r)$. By a theorem of Titchmarsh-Prachar ([3], p. 44, Theorem 4.1) the number of those primes $A(r, x)$ not exceeding x is less than

$$
\begin{equation*}
c_{6} \frac{x}{r \prod_{j=1}^{k}\left(q_{j}-1\right)} \log \left(\frac{x}{r \prod_{j=1}^{k} q_{j}}\right)^{-1} \tag{12}
\end{equation*}
$$

From (12) and (10) we obtain by a simple calculation (clearly $r \mid p_{i}-1$ implies $r>q_{k}$)

$$
\begin{aligned}
\sum_{i=1}^{l} \sum_{r \mid p_{i}-1} \frac{1}{r} & =\sum_{q_{k}<r \leqslant x} \frac{A(r, x)}{r} \\
& <c_{6} \sum_{q_{k}<r \leqslant x} \frac{x}{r^{2} \prod_{j=1}^{k}\left(q_{j}-1\right)}\left(\log \frac{x}{r \prod_{j=1}^{k} q_{j}}\right)^{-1}<\frac{1}{2} \eta_{1} l
\end{aligned}
$$

which proves (11). From (11) we immediately deduce that the number of primes $p_{i}<x$ which satisfy (9) is greater than $l / 2$, which by (10) proves our lemma.

Let now $\alpha<\frac{1}{2}$ be given and choose $\eta=\eta(\alpha, t)$ to be sufficiently small. Let $p_{1}^{\prime}<p_{2}^{\prime}<\ldots$ be the primes satisfying (8) where $p_{1}^{\prime}>c(\eta, t)$. By our lemma we have for $y>y(\eta, t)$

$$
\begin{equation*}
\sum_{p_{i}^{\prime}<y} 1>\frac{1}{2} c_{\eta} \frac{y}{\log y} \tag{13}
\end{equation*}
$$

Denote by $u_{1}<u_{2}<\ldots$ the integers composed of at most $t+2$ primes p_{i}^{\prime}. From (13) we infer by a simple computation using induction with respect to t that $\left(c_{7}=c_{7}(\eta)\right)$

$$
\begin{equation*}
\sum_{u_{i}<x} 1>c_{7} \frac{x(\log \log x)^{t+1}}{\log x} \tag{14}
\end{equation*}
$$

From (8) we obtain

$$
\begin{equation*}
\varphi_{2}\left(u_{i}\right)>\frac{1}{2}(1-\eta)^{t} \varphi\left(u_{i}\right) \tag{15}
\end{equation*}
$$

and from $p_{1}^{\prime}>c(\eta, t)$ we have

$$
\begin{equation*}
\varphi\left(u_{i}\right)>u_{i}\left(1-\frac{1}{c(\eta, t)}\right)^{t+2} \tag{16}
\end{equation*}
$$

(15) and (16) imply if η is sufficiently small and $c(\eta, t)$ sufticiently large that

$$
\begin{equation*}
\varphi_{2}\left(u_{i}\right)>\alpha u_{i} \tag{17}
\end{equation*}
$$

(14) and (17) prove the first inequality in (2).

Now we prove the second one. Let $k=k(\alpha)$ be sufficiently large and let q_{1}, \ldots, q_{k} be the first k primes. If $\varphi_{2}(n)>\alpha n$, we evidently have

$$
\begin{equation*}
\sum_{p \mid \varphi(n)} \frac{1}{p}<\frac{1}{\alpha} \quad \text { hence } \quad \sum_{q_{i} \mid \varphi(n)} \frac{1}{q_{i}}<\frac{1}{\alpha} \tag{18}
\end{equation*}
$$

Hence by (18) and from the well-known theorem of Mertens $\left(\sum_{i=1}^{k} 1 / q_{i}\right.$
$=\log \log k+O(1))$ we have for $k=k(\alpha)$

$$
\begin{equation*}
\varphi(n) \neq 0\left(\bmod q_{j_{i}}\right), \quad j_{1}<\ldots<j_{r} \leqslant k, \quad \sum_{i=1}^{r} \frac{1}{q_{i_{i}}}>\frac{1}{2} \log \log k . \tag{19}
\end{equation*}
$$

There are clearly fewer than 2^{k} choices for $j_{1}<\ldots<j_{r} \leqslant k$. Thus our proof will be complete if we show that for every choice of $j_{1}<\ldots$ $<j_{r} \leqslant k$ satisfying $\sum_{i=1}^{r} 1 / q_{j_{i}}>\frac{1}{2} \log \log k$ the number of integers $n \leqslant x$
satisfying

$$
\begin{equation*}
\varphi(n) \not \equiv 0\left(\bmod q_{j_{i}}\right), \quad j_{1}<\ldots<j_{r} \leqslant k \tag{20}
\end{equation*}
$$

is less than

$$
\frac{x}{\log x}(\log x)^{\varepsilon / 2}
$$

if $k=k(\varepsilon, \alpha)$ is sufficiently large.
It is easy to see that (20) implies that every prime factor p of n satisfies $p \not \equiv 1\left(\bmod q_{j_{i}}\right), j_{1}<\ldots<j_{r} \leqslant k$. From the prime number theorem for arithmetic progressions and the sieve of Eratosthenes using (19) we easily obtain that the set of primes $s_{1}<s_{2}<\ldots$ for which $s \not \equiv 1$ $\left(\bmod q_{j_{i}}\right), i=1, \ldots, r$, satisfies

$$
\begin{align*}
\sum_{s_{i} \leqslant x} \frac{1}{s_{i}} & =(1+o(1)) \prod_{i=1}^{r}\left(1-\frac{1}{q_{j_{i}}}\right) \log \log x \tag{21}\\
& <\exp \left(-\sum_{i=1}^{r} \frac{1}{q_{j_{i}}}\right) \log \log x<\frac{\varepsilon}{4} \log \log x
\end{align*}
$$

if $k=k(\varepsilon)$ is sufficiently large.

If n satisfies (20), it must be composed entirely of the s_{i} 's. Hence if $t_{1}<t_{2}<\ldots$ are the primes $\leqslant x$ which are not s_{i} 's, we must have $n \neq 0\left(\bmod t_{j}\right)$. From (21) we have

$$
\begin{equation*}
\sum \frac{1}{t_{j}}>\left(1-\frac{\varepsilon}{4}\right) \log \log x \tag{22}
\end{equation*}
$$

From (22) we deduce by Brun's method that the number of these $n \leqslant x$ is less than (if $x>x_{0}(\varepsilon)$)

$$
c_{8} x \prod_{t_{j}<x}\left(1-\frac{1}{t_{j}}\right)<\frac{x}{\log x}(\log x)^{\varepsilon / 2}
$$

which completes the proof of (2).
To complete the proof of Theorem 1 we now have to prove (3). We will only outline the proof, since it is similar to the proof of the second part of (2). If $\varphi_{3}(n)>a n$, we must have $\sum_{p \mid \varphi_{2}(n)} 1 / p<1 / \alpha$; hence, as in the previous proof, we must have (as in (19))

$$
\varphi_{2}(n) \not \equiv 0\left(\bmod q_{i_{i}}\right)
$$

$$
\begin{equation*}
j_{1}<\ldots<j_{r} \leqslant k, \quad \sum_{i=1}^{r} \frac{1}{q_{j_{i}}}>\frac{1}{2} \log \log k . \tag{23}
\end{equation*}
$$

Denote, as in the previous proof, by $t_{1}<t_{2}<\ldots$ the primes for which $t \equiv 1\left(\bmod q_{j_{i}}\right)$ for some $j_{i}, i=1, \ldots, r$, and by $s_{1}<s_{2}<\ldots$ the set of primes for which

$$
\begin{equation*}
s \not \equiv 1\left(\bmod t_{j}\right), \quad j=1,2, \ldots \tag{24}
\end{equation*}
$$

(23) clearly implies that n is composed entirely of the s_{i}.

From (24) and (22) it follows by Brun's method that for $y>y_{0}(\varepsilon)$

$$
\begin{equation*}
\sum_{s_{i}<y} 1<\frac{y}{(\log y)^{2}}(\log y)^{\varepsilon / 2} \tag{25}
\end{equation*}
$$

We need the following
Lemma. Let $\left\{s_{i}\right\}$ be a sequence of primes satisfying (25). Then the number of integers not exceeding x of the form $\Pi s_{i}^{a_{i}}$ is less than

$$
\frac{c_{9} x}{(\log x)^{2}}(\log x)^{\varepsilon / 2}
$$

We supress the details of the proof.
Since there are fewer than 2^{k} choices for $j_{1}<\ldots<j_{r} \leqslant k$, our lemma immediately implies (3) and hence the proof of Theorem 1 is complete.

By the same method we can prove that

$$
\begin{equation*}
N_{\varphi}(4, \alpha, x)<\frac{c_{10} x}{(\log x)^{2}} \tag{26}
\end{equation*}
$$

where c_{10} is an absolute constant independent of α.
(26) is probably very far from being the best possible.

REFERENCES

[1] Ju. V. Linnik, The dispersion method in binary additive problems, American Mathematical Society, Providence, Rhode Island 1963.
[2] A. Mąkowski and A. Schinzel, On the functions $\varphi(n)$ and $\sigma(n)$, Colloquium Mathematicum 13 (1964), p. 95-99.
[3] K. Prachar, Primzahlverteilung, Berlin-Göttingen-Heidelberg 1957.

Regu par la Rédaction le 20. 1. 1966

