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P. li RI) Ös (t3U1.APEST)

Put a, (u) = a(n), q1(n)

	

(/(n-) atid, for / > 1, ak(1) ) = a1 ar, . ._1(tt)) .

qk Ot) = q'l(9k-1(n)) .
NCIunze1 conjectured that for every k

ak(n)41)

	

limitif	 < cc .
ft

M41,owski and 8chinzet [21 proved (1) for k = 2 . In fact, they showed
i among others) that

lit) i	(-n)

	

VOt)nf	or,

	

and

	

lünsnp	
) 1

	

n

	

"

At present, 1 cannot prove (1) for k -- 3, but i show the following
differences between the cases k = 2 and k = 3 . Denote by
the number of integers n .r for which

q/'kOt) > ( .u .

and by

	

u, x) the number of integers n-

	

for which

o'k(i't) < an- .

'TiLEoIn Nt 1 . klor ever/ a< , arbit7arily s~)).all e

	

0 ae~d arhiha-rihq
large t we have for x > x,(a, I, e) the i»,equalities

(2)

	

lo
~, (log logx) r

	

N (2 . u, e) < log xxr

fudher, for every u > 0 a,rad L > 0, lee hare for a' > X 0 (a . e)

:r
(t, x) <

	

-(loga)' .
(logx) 2
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Tm,,oi>i~:\L 2 . Wc h(t- ;e for cver,q

	

x > x„(t)

X
(4)

	

U (2, " . ;r)

	

(loglogx),log x

aw1 for erery

	

- 0 (1wi r

	

0 -if x ;> xo(s , (t)

X

	

"C'
( :,)

	

V,,(2, a, x) <_,
log-X-

(logx)E ,

	

.'„(3, (t, x)-

	

(log. )z (logx)' .

.For a > 2 We have T200 < )2,f2, thus, hi Theorem 1, a < 12 is the
best possible .

Before I prove these theorems, I would like to make a few remarks .
Let p > 2 be any prime (throughout this paper p, q and r will denote
primes). Denote by Q, the set of all primes q(1) < gilt < . . . satisfying
q(, 1) - I (mod p). Denote by Q 2 the set of primes q~2t < g22 t < . . . for
which q 2t - I (mod q;' ) ) for at least one j but which are not in Q, .
Generally, Qk denotes the set of primes qi'`~ < q kt < . . . for which qz''> = 1-

k-- i

(mod

	

for at least one ,j but which do not belong to U Q, ; in other
l -=1

words, q,

	

1 (rnodgt?t) for every j and I < k-- 1 . Put

V I,
W

Q( 't and Qa denote the sets of primes which do not belong to Q(k) and Q ,.
respectively . ltiT,(Q) denotes the number of elements not exceeding x of
the set Q. It follows from the prime number theorem for arithmetic pro-
gressions that

o(I)) _ .
(h -- 1.)1ogx

It easily follows from the primee number theorem for arithmetic
progressions and the sieve of Eratosthenes that

o('» l- X- .

By using Brun's method we easily obtain the following stronger
result (c,,(,27 . . . are positive absolute constants)

(6)

	

N-'<. (Q(2» <

'rite proof of (6) is Oiiitee straightforward and can be left-, to the rca ;der .
I liave not proved t11at Ns(Qt2>) tends to infinity as x - oo, but this
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should perhaps be possible by Unnik's method [1]. In other words, the
problem (P595) is to prove that there are infinil ely many primes r for which

r -w 1(modp)

	

and w zA 1(mody,~)),

	

i

	

1, 2 . . . .

It is easy to deduce from (6) by using Brun's method that

(7)

	

1VX(Q (3) ) < c 2 .x/(logx) 2 .

Very likely there are infinitely many primes in each Q k and also
in Qom . The problem of the existence of infinitely many primes in Q ..
and Qt, is connected with the following question. Let pi' ) -_- 2 < p(V )
< . . . < p;' ) be a finite set of primes . We define inductively a set of primes
as follows. By p~2) < p2 2"' ) < . . . we denote the set of primes, for -which
p;2 ) -1 is composed entirely of the p.(,' ) 's. Generally, the p (ik) are the
primes for which pzk>-I is composed entirely of the pi('), 1< k . It seems
likely that for every k there are primes p (jk) (perhaps infinitely many),
but nothing is known about this . It is not difficult to deduce from (7)
that the number of the p (1- ) , i = 1, 2, . . ., k = 1, 2, . . ., not exceeding x
is less than c,x/(logx) 2 but very likely this is a very poor upper bound .

We can prove that for every s > 0 for all but a(x) integers n < x

ak(n)

	

O'In0(i

	

It

	

p) .
A<(lug lo

l
gx)k--e

The sauie result holds for q, (11,) . i+'nrther we can 8110`1- that if we neg-
lect a sequence of density 0, then

~ k (')'i)

	

- 1 ( 11 )(1 F O (I))

	

(1 ko(l))Xé, log log log it
6k_ 1(a)

	

(Pk Oil)

but we do not prove these results in this note .
We will only prove Theorem 1 since the proof of Theorem 2 is similar,

but even in the proof of Theorem 1 we will not always give all the details .
First we discuss to what extent oiu theorems are the best possible . We
have, for r) > "' y; 2 (11) < n/2 ; thus in Theorem I the number 2 cannot
be replaced by any greater number . It seems very hard to give an asymp-
totic formula for ,,(3, a ; x) or N,(2, u, x) (see (3)) and the second in-
equality of (5) can -perhaps be improved (P 596) .

Now Nve discuss (1) . It is best possible in the sense that a = 2 cannot
be replaced by any smaller number . We outline the proof . Let y < 2 .
If '7 2 (11) < yli,, then there clearly is an d so that or(a) # 0(ruod 2 1 ) or n
has fewer than l prune factors which occur in the factorization of a with
an exponent l . 1:n other words, 11 = 1~1 R2 , (R I , R2 )

	

1, where _P1 is
square free and has fewer than l prime factors and all prime factors of R 2
occur with an exponent greater than 1 . From this remark it follows by
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.1 simple colliputatioli that if y < 2, there is an. 6 = 1(y) such that

x (log logx) r
A

	

--1

, (l

	

x) < e3 .--

	

log` --. .

By the methods used in the proof of Theorem I it is easy to show
t hat for every y >

~' U4 log .X'

We do not give the details of the proof .
If a2 (7c) < -N, then v and cr (n) must be odd ; hence -n is a square

and thus iá`,(2, ;, x) < x 1 2 . In fact, it would be easy to show that
,x) = o(;r' 2 ) and íY,(2, l, x) > c,x1/2 /logx . It will not be easy

to obtain an asymptotic formula for -1%, (12, z , x) . Similarly, we could
investigate N. (2, a, x) for a < ' . We only make one final remark . It:
is easy to prove that if )1 1 < ác 2 < . . . is a sequence of integers for which
a 2 (it z ) 1rcj -3. 1, then, for every e > 0, ~~ 1 = o(xe ) .

9i.1 c :x•

Now we prove Theorem 1 . First we prove the First inegnalit-r in
(2) . We need the following

LLN11te . To epcry r

	

0 there is a c,, > 0 slab that the )tlrniber of -pri)),es
x for echich

( )

	

</- (P

	

1) < 1 '!..
P ---1

	

2

is greater tha11 c,x1logx .
A simple computation shows that (8) holds if (r odd prime)

'1`llus, to prove 0111 . lenxma it will suffice to shoNN- that the number
of primes p < x satisfying (9) is greater than c,,x/logx . To see this let
A- --- k( •rt) be snfficieiitly large and let 3 = q, < . . . < q1, be the first: 1,'
odd prinles. Let p, < . . . < p, x be the set of primes p < x satisfying

1, - --1 (mod (1 q;). It follows from the prime number theorem for arith-
7 - 1

metic -progressions that

( to)

	

1 ~- (1 ---0(1))
log .x .I I

	

-1)

	

.
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i=1 r ;ui--1

< e,

ITERATES OF q - -IND a

	

1 99

1

x

	

1
(12)

	

cs --k--

	

log( k'- )
rj(gj -1 )

G,
_4 (r x-)

91 -
4k<r`x

V

	

lo	
_1 1

k

	

k

	

<7n, 1 ,
Ilk,r<x l2 jj(q;-1)

	

rnq,

k
If r1p i - 1, we must haN,e p.j

	

1. (mod fjq;) and pi --: 1 (mod r) .

By a theorem of Titchmarsh-Prachar ([3], p. 44, Theorem 4.1) the number
of those primes _4 (r, x) not exceeding x is less than

From (12) and (10) we obtain by a simple calculation (clearly r1p i - 1
implies r > qk)

r

Which proves (11) . From (11) we immediately deduce that the number
of primes p-t. < x which satisfy (9) is greater than 1/2, which by (10) proves
our lemma .

Let now a < be given andd choose ij --- rj(a, t) to be sufficiently
small. Let pí < p2 < . . . be the primes satisfying (8) where pí > c(,q, t) .
By our lemma we have for y > y(rj , t)

i

	

1

	

y
(13)

	

1

	

-
L

	

logy

Denote by it, <i2< . . . the integers composed of at most t+2
primes pi . From (13) we infer by a simple computation using induction
with respect to t that (c, = c, ( ,q))

(14)

	

~I1

	

c
x(loglogx) t+ ,

.~

	

'

	

logxui<x

From (8) we obtain

1
( 1 .5 )

	

T2("á) > 9 ( 1- rl) tT( 14~
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and frold pi > c(r~, t) we have
I

	

t}2
(16)

	

f Oi-i) > ui I

	

c(yl t) )

(15) and (16) imply if n is sufficiently small and c(91, t) sufficiently
large that

(17)

	

T2(lli) > atti .

(14) and (17) prove the first inequality in (2) .
Now we prove the second one . Let k == k (a) be sufficiently large

and let q„ . . ., qh be the first k primes . f 99 2 00 > an, we evidently have

P . FRD6S

1

	

1

	

1

	

1
-<- hence

	

--<- .
Plro(n)

Ct

	

4i199(n) qi a

Hence by (18) and from the well-known theorem of Afertens
=log logk- ;-0(1)) we have for k == k(a)

(19)

	

m(ra)

	

0(modq,t),

	

. . < jr

	

k,

There are clearly fewer than 2'` choices for j, < . . . < jr V k . Thus
our prooff will be complete if we show that for every choice of j, < . . .

r
< jr -- k satisfying Y 1 /q;i > loglog k the number of integers
satisfying

	

i=1

(20)

	

4n('n) = 0(mod gj i ),

	

j, < . . . < j, . ~ k,

is less than
x
-- (logX)R12

log x

it k ---- k(s, a) is sufficiently large .
It is easy to see that (20) implies that every prime factor p of a

satisfies p I(inodq;i ), j, < . . . < J, k . From the prime number the-
orem for arithmetic progressions and the sieve of Eratosthenes using
(19) we easily obtain that the set of primes s, < s 2 < . . . for which s ZA 1
(mod q;) . i = 1, . . ., r, satisfies

T
1.

	

I
(21)

	

Si
=(1 -0(1))II

(1-
--)loglogx

si<x

	

i= t
r

exp (-
V

,2 ) loglogx <
-

loglog .r

if k = k(s) is sufficiently largo .

~, -1-- > 7
loglogk .



ITERATES OF r, AND a 201.

If n satisfies (20), it must be composed entirely of the se's. Hence
i[ t, < t 2 < . . . are the primes x which ire not s,'s, we must have
a # 0(m.od t,) . From. (21.) we have

(22)

	

t
> (1-

	

loglogx .

From (22) we deduce by Brun's method that the number of these
n ` x is less than (if x > x,(E))

17 ~

	

1 )	 x
c ax

	

1 -- <	(log x)`/2
t,,

	

logx

which completes the proof of (2) .
To complete the proof of Theorem 1 we now have to prove (3) .

We will only outline the proof, since it is similar to the proof of the second
part of (2) . -1f 99,(n) > an, we must have I 1/p < 1./a ; hence, as in the

2'Iro2(n)

previous proof, we must have (as in (19))

T2 (n) = 0(1[10(1 ),

(23 )

	

r
11

	

1

1C

		

- > - log log k .
i

	

q,i

Denote : as in the previous proof, by t, < t, < . . . the primes for which .
t _ I(mod qj,) for some j c , -i == 1	n, and by s, < s 2 < . . . the set
of primes for which

(24-)

	

s # I(tnod i,;),

	

.1 = 1 2 . .

(23) clearly implies that n is composed entirely of the si .
From. (21) and (22) it follows by 1'lrnn's method that for y > y,(E )

(2 .i)

	

<	Y	(log ;!t) ej2
I

log rt)2

We need the following
Li;irn,k. Let {s j } be a segitenee of primes satisfying (25) . Then the

r7onber of -i=dcfjens -atnt exz(:red-i,ng x of the forma nszi is less than

C 'x
	 (logX) ,12 .

(logx) 2

We supress thee details of the proof .
Since there are fewer thait 2'~ choices for j, < . . . < j, ` k, our lemma

immediately implies (3) and hence the proof of Theorem 1 is complete .
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Ly the same method we can prove that

(26)

	

X,(4 ' a,
x) < (logx) '2

where clo is an absolute constant independent of a .
(26) is probably very far from being the best possible .
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