[10]

The Minimal Regular Graph Containing a Given Graph

Paul Erdös and Paul Kelly

Abstract

In the first book on graph theory ever written, König proved the following result. If G is any graph, and d is the maximum degree of the points of G, then it is possible to add new points and to draw new lines joining either two new points or a new point with an old point, so that the result is a regular graph H of degree d.

In this lecture the authors, Paul Erdös and Paul Kelly, determine the smallest number of new points which must be added to G to obtain such a graph H. The result depends only on the degree sequence of the given graph G. A preliminary version of this proof appeared in the American Mathematical Monthly [2]. The present exposition is more gentle and is liberally illustrated.

Paul Kelly is a geometer at the Santa Barbara campus of the University of California. Fortunately for our seminar, he spent the year 1962-1963 at Cambridge University. Thus he helped to ameliorate the perennial deficit run by British Railways by attending all the meetings of our seminar in London.

F.H.

Let G be a graph of order n and maximum degree d. What is the teast possible order of a graph H which is regular of degree d and which contains G as an induced subgraph? One can regard the problem in the following way. The graph G is given together with a set I of m new isolated points. A graph H is formed from G and I by adding joins (new lines) between pairs of points in I and between points in I and G, but no joins are added between pairs of points in G. It is desired to make H regular of degree d and to have m as small as possible.

In Fig. 10.1 we illustrate such a completion for each of the three $(4,3)$ graphs, whose lines are drawn solid, to a minimal regular graph H_{i} contaising G_{i} as an induced subgraph. The new lines of H_{i} are drawn dashed.

It is well known that any graph G has a completion H. Suppose that H is constructed and that its order is $m+n$. Let $v_{1}, v_{2}, \cdots, v_{n}$ be the points in G and $u_{1}, u_{2}, \cdots, u_{m}$ those in I. Let F be the subgraph of H induced by I. Denote the degree of v_{i} as a point of G by d_{i}, and let $e_{i}=d-d_{i}$ denote the deficiency

Fig. 10.1.
of v_{i}, that is, the number of joins needed to complete v_{i} to degree d. Finally, call the number $s=\Sigma e_{i}$, the total deficiency, and $e=\max e_{i}$, the maximum deficiency.

In H there are clearly s lines which join a point of F and a point of G. Since each of the m points in F is adjacent to at most d points of G, it follows that

$$
\begin{equation*}
m d \geq s \tag{1}
\end{equation*}
$$

The sum of the degrees of $u_{1}, u_{2}, \cdots, u_{m}$ as points of F is $m d-s$, and F can have at most $m(m-1) / 2$ lines, so that $m(m-1) \geq m d-s$ or

$$
\begin{equation*}
m^{2}-(d+1) m+s \geq 0 . \tag{2}
\end{equation*}
$$

Clearly m can be no less than the deficiency of any point of G, so that

$$
\begin{equation*}
m \geq e . \tag{3}
\end{equation*}
$$

Finally, the sum of the degrees in any graph is even; hence

$$
\begin{equation*}
(m+n) d \text { is an even integer. } \tag{4}
\end{equation*}
$$

The conditions (1). (2), (3), and (4) are thus necessary conditions which m must satholy. Wer will show that they are also sullicient.
 \therefore, ar an itulaced subpouph. A necessaty and sullicwent condhton that m in n be the least possible od de for H is that m be the least integer satistying (1) $m d \leq s$, (2) $m^{2}(d \mid 1) m \mid s \cdot 0$, (1) m, c, and (4) $(m+n) d$ is cven.

To establish the sufliciency, we require a construction. Let m satisfy (1), (2), (3), and (4), and let I consist of $u_{1}, u_{2}, \cdots, u_{m}$, as before. Let $v_{1}, v_{2}, \cdots, v_{k}$
denote the points of G with positive deficiencies. Because $s \geq m d \backslash m m$ and $e \leq m$, the points of G can be completed by lines joining G with I. Let the completion be accomplished in the following way, as illustrated in Fig. 10.2. In this example, m sand $\left(6\right.$ is a graph in which exactly three points r_{1}, r_{2}, and r_{3} have positive deficiencies, which are respectively 2,4 , and 3 . First. r_{1} is completed by joins to $u_{1}, u_{2}, \cdots, u_{\text {, }}$. Then r, is completed br iwins te sucter

Fig. 10.2.
The degrees attained by points of I cannot differ by more than 1 from each other at any stage of this construction. Thus this is also true when all the points of G are complete. Let h and r be the quotient and remainder of s / m, so $s=h m+r$. Thus, now that the points of G have been completed, the first r of the points of I have degree $h+1$ and the remaining $m-r$ have degree h.

We must still show that there is a graph F, with the m points of I, in which r have degree $d-h-1$ and the others have degree $d-h$. Suppose $a_{i}=d-h$ when $i=1,2, \cdots, m-r$, and $a_{i}=d-h-1$ when $i=m-r+1, \cdots, m$. By a theorem of Erdös and Gallai [1] applied to this situation, there is such a graph F if $d-h<m, \Sigma a_{i}$ is even, and

$$
\begin{gathered}
\sum_{i=1}^{k} a_{i} \leq \frac{k(k-1)}{2}+\sum_{i=k+1}^{p} \min \left\{k, a_{i}\right\} \\
k=1,2, \cdots, p-1
\end{gathered}
$$

for all
Substituting $s=h m+r$ into condition (2), it follows at once that $d-h \leq m-1+r / m$; and since $r / m<1$ while $d-h$ and $m-1$ are integers, $d-h<m$. Since there are s lines joining points of G and I, $\Sigma a_{i}=m d-s$. Letting q denote as usual the number of lines in G, we find $s=n d-2 q$ so that

$$
m d-s=m d-(n d-2 q)=(m+n) d-2(n d-q)
$$

By (4), $(m+n) d$ is even, so $m d-s$ is even. The last of the three conditions for the existence of the graph F is routinely verified. Therefore there is a completion of G to a regular graph H of degree d and order $m+n$, proving the theorem.

Among all graphs of order n, the maximum value of this minimum is n. It is easily seen that since $e \leq d<n$ and $s<n d, n$ satisfies the four conditions and hence is an upper bound. That it is the least upper bound follows from an example. Let G be $K_{n}-x$, the graph obtained from a complete graph of

Fig. 10.3.
order n by deleting one line, whence $s=2$ and $d=n-1$. Then condition (2) is $m^{2}-m n+2 \geq 0$, which implies $m \geq n$.

We conclude with four examples showing that each of the four conditions can be the one which determines the minimum order m of the completion.

Graph G_{1} of Fig. 10.3 has four points of degree 3 and five points of degree 2 , so that $n=9, d=3, e=1$, and $s=5$. The smallest value of m satisfying (2), (3), and (4) is 1 , but this does not satisfy (1). The minimal completion H must have three additional points.

For graph G_{2}, which is $K_{4}-x, n=4, d=3, e=1$ and $s=2$, and we know that $m=4$. However, the number 2 satisfies (1), (3), and (4) simultaneously.

In the third graph, consisting of K_{3} and an isolated point, $n=4, d=2$, $e=2$, and $s=2$. Whereas the number 1 satisfies (1), (2), and (4), (3) forces m to be 2 .

In graph $G_{4}, n=5, d=3, e=2$, and $s=3$. Together (1), (2), and (4) imply that $m \geq 1$ while (1), (2), and (3) imply $m \geq 2$. All four conditions imply $m=3$.

References

[1] P. Erdös and T. Gallai, Graphen mit Punkten vorgeschriebenen Grades. Mat. Lapok. 11(1960) 264-274.
[2] __ and P. Kelly, The minimal regular graph containing a given graph. Amer. Math. Monthly 70(1963) 1074-1075.

