On a problem of P. Erdös and S. Stein

by
P. Erdös and E. Szemerédi (Budapest)

The system of congruences

$$
\begin{equation*}
a_{i}\left(\bmod n_{i}\right), \quad n_{1}<\ldots<n_{k} \tag{1}
\end{equation*}
$$

is called a covering system if every integer satisfies at least one of the congruences (1). An old conjecture of P. Erdös states that for every integer c there is a covering system with $n_{1}=c$. Selfridge and others settled this question for $c \leqslant 8$. The general case is still unsettled and seems difficult.

A system (1) is called disjoint if every integer satisfies at most one of the congruences (1). It is trivial that in a disjoint system we must have

$$
\left(n_{i}, n_{j}\right)>1 \quad \text { and } \quad \sum_{i=1}^{k} 1 / n_{i} \leqslant 1
$$

It is known that a disjoint system can never be covering [2] and that for a disjoint system we have [3]

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{n_{i}} \leqslant 1-\frac{1}{2^{k}} \tag{2}
\end{equation*}
$$

(2) is easily seen to be best possible.

Denote by $f(x)$ the largest value of k for which there exists a disjoint system (1) satisfying $n_{k} \leqslant x$. P. Erdös and S. Stein conjectured that $f(x)=o(x)$.

The main purpose of this paper will be to prove this conjecture. In fact, we prove the following

Theorem 1. For every $\varepsilon>0$ if $x>x_{0}(\varepsilon)$ we have (c_{1}, c_{2}, \ldots denote suitable positive constants)

$$
\begin{equation*}
\frac{x}{\exp \left((\log x)^{1 / 2+c}\right)}<f(x)<\frac{x}{(\log x)^{c_{1}}} . \tag{3}
\end{equation*}
$$

The proof of the lower bound we obtained with the help of S. Stein [3]. First we outline the proof of the lower bound in (3) leaving some details to the reader.

Let p_{r} be the least prime greater than $\exp \left((\log x)^{1 / 2}\right), n_{1}<\ldots<n_{k}$ are the squarefree integers not exceeding x the greatest prime factor of which is p_{r}. Put

$$
n_{j}=p_{i_{1}} \ldots p_{i_{l}} p_{r}, \quad p_{i_{1}}<\ldots<p_{i_{l}}<p_{r}
$$

Let

$$
\begin{array}{ll}
a_{j} \equiv 0\left(\bmod p_{i_{1}}\right), & a_{j} \equiv p_{i_{s-1}}\left(\bmod p_{i_{s}}\right), \quad 1<s \leqslant l, \tag{4}\\
& a_{j} \equiv p_{i_{l}}\left(\bmod p_{r}\right) .
\end{array}
$$

The congruences (4) determine a_{j} uniquely $\left(\bmod n_{j}\right)$. It is easy to see that the system $a_{j}\left(\bmod n_{j}\right), 1 \leqslant j \leqslant k$, is disjoint. Clearly k equals $\psi_{1}\left(x / p_{r}, p_{r}\right)$ where $\psi_{1}(u, v)$ denotes the number of squarefree integers not exceeding u all whose prime factors do not exceed v. It easily follows from the results of de Bruijn and others [1] that for $x>x_{0}(\varepsilon)$

$$
\psi_{1}\left(x / p_{r}, p_{r}\right)>\frac{x}{\exp \left((\log x)^{1 / 2+\varepsilon}\right)},
$$

which proves the lower bound in (3).
The proof of the upper bound will be considerably more difficult. Let $N=\left\{n_{1}<\ldots<n_{k} \leqslant x\right\}$ be an arbitrary sequence of integers. Denote by $g_{N}(d)$ the largest j for which there are $j n$'s the greatest common divisor of any two of which is d. $\left(g_{N}(1)\right.$ is thus the largest integer for which there are $g_{N}(1) n$'s which are pairwise relatively prime.)

Now we prove the following
Lemma 1. Assume that the system (1) is disjoint. Then we have for every $d \geqslant 1$

$$
\begin{equation*}
g_{N}(d) \leqslant d \tag{5}
\end{equation*}
$$

Assume that (5) is not satisfied for a certain d and assume that the greatest common divisor of any two of the integers $n_{i_{1}}, \ldots, n_{i_{d+1}}$ is d. We show that the congruences

$$
\begin{equation*}
a_{i_{j}}\left(\bmod n_{i_{i}}\right), \quad 1 \leqslant j \leqslant d+1, \tag{6}
\end{equation*}
$$

cannot be disjoint. To see this put $n_{i_{j}}=d m_{i_{j}}, 1 \leqslant j \leqslant d+1$, where any two of the m 's are relatively prime. By the box principle, there are two integers $1 \leqslant j_{1}<j_{2} \leqslant d+1$ satisfying $a_{i_{1}} \equiv a_{i_{2}}(\bmod d)$, but then the congruences $a_{i_{1}}(\bmod d)$ and $a_{i_{2}}(\bmod d)$ have a common solution, or the system (6) is not disjoint, which proves (5) and the lemma.

Denote $A_{N}(x)=\sum_{n_{l} \leqslant x} 1$. Put $F(x)=\max A_{N}(x)$ where the maximum is taken over all the sequences N which satisfy (5) for every $d \geqslant 1$. By Lemma 1 we have

$$
\begin{equation*}
F(x) \geqslant f(x) . \tag{6}
\end{equation*}
$$

Now we prove
Theorem 2. Let $c_{3}>0$ be sufficiently small and c_{2} sufficiently large. Then

$$
\begin{equation*}
\frac{x}{(\log x)^{c_{2}}}<F(x)<\frac{x}{(\log x)^{c_{3}}} . \tag{7}
\end{equation*}
$$

Theorem 2 and Lemma 1 prove the upper bound in (3) and this completes the proof of Theorem 1.

It is quite possible that $f(x)<x / \exp (\log x)^{c_{4}}$ for some $c_{4}>0$, but the lower bound in (7) shows that the method used in this paper cannot give $f(x)<x /(\log x)^{c_{2}}$.

To prove Theorem 2 we need some lemmas.
Lemma 2. The number of integers $n \leqslant x$ divisible by the square of a prime $p>\log x$ is $o(x / \log x)$.

The number of these integers is clearly less than

$$
\sum_{p>\log x} \frac{x}{p^{2}}=o\left(\frac{x}{\log x}\right)
$$

which proves the lemma.
Lemma 3. Put $n=\prod_{i=1}^{k} p_{i}^{a_{i}}, p_{1}<\ldots<p_{k}$. Let $c_{3}>0$ be sufficiently small. All but $o\left(x /(\log x)^{c_{3}}\right)$ integers $n \leqslant x$ have a prime factor p_{j} satisfying

$$
\begin{equation*}
p_{i}>(\log x)^{10} \prod_{i=1}^{j-1} p_{i}^{\alpha_{i}} \quad\left((\log x)^{10}=T_{1}\right) . \tag{8}
\end{equation*}
$$

A well known theorem of Hardy and Ramanujan [4] states that for a sufficiently small $c_{3}>0$ for all but $o\left(x /(\log x)^{c_{3}}\right)$ integers $n \leqslant x$ we have

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i}<\left(1+\frac{1}{10}\right) \log \log x \tag{9}
\end{equation*}
$$

Hence we clearly can assume that n satisfies (9) and

$$
\begin{equation*}
x / \log x<n \leqslant x . \tag{10}
\end{equation*}
$$

Denote by p_{r} the greatest prime factor of n which is less than $\log x$. By Lemma 2 we can assume that $\alpha_{r+i}=1$ for all $1 \leqslant l \leqslant k-r$. Further
since n satisfies (9) we evidently have

$$
\begin{equation*}
\prod_{i=1}^{r} p_{i}^{a_{i}}<(\log x)^{2 \log \log x}=T_{2} \tag{11}
\end{equation*}
$$

If (8) fails to hold for every $r<j \leqslant k$ we have from (11)

$$
\begin{equation*}
p_{r+1}<T_{1} T_{2}, \quad p_{r+2}<T_{1}^{2} T_{2}^{2} \tag{12}
\end{equation*}
$$

and by induction with respect to i (using (11) and (12))

$$
\begin{equation*}
p_{r+i}<\left(T_{1} T_{2}\right)^{2^{i-1}} \tag{13}
\end{equation*}
$$

Hence finally from (13) and (9) by a simple calculation ($\exp z=e^{z}$)

$$
\begin{equation*}
p_{k}<\left(T_{1} T_{2}\right)^{2^{k-1}}<\exp \left(2^{(1+1 / 10) \log \log x} \log 2 \cdot \log T_{1} T_{2}\right)<x^{1 /(\log \log x)^{2}} \tag{14}
\end{equation*}
$$

From (14), (11) and (9) we obtain

$$
n<T_{2} p_{k}^{2 \log \log x}<x^{1 / 2}
$$

which contradicts (10) and hence Lemma 3 is proved.
Now we are ready to prove the upper bound in (7). Let $n_{1}<\ldots<n_{r}$ $\leqslant x$ be a sequence of integers which satisfies (5) for all $d \geqslant 1$. Assume that

$$
\begin{equation*}
r \geqslant x /(\log x)^{c_{3}} \tag{15}
\end{equation*}
$$

We shall show that (15) leads to a contradiction. First of all if (15) holds then by Lemma 3 we can assume that for at least $r / 2 n_{i}$'s there is a d_{i} so that $d_{i} \mid n_{i}$ and all prime factors of n_{i} / d_{i} are greater than $d_{i}(\log x)^{10}$. If d_{i} has these properties we say that d_{i} corresponds to n_{i}. Now we prove the simple but crucial

Lemma 4. There is at least one d which corresponds to at least $x / d(\log x)^{5}$ values of n_{i}.

From (15) and what we just stated it follows that at least one $d_{i}\left(1 \leqslant d_{i} \leqslant x\right)$ corresponds to more than $r / 2>x / 2(\log x)^{c_{3}} n_{i}$'s. Thus if our lemma would be false we would have

$$
\frac{x}{2(\log x)^{c_{3}}}<\frac{r}{2} \leqslant \frac{x}{(\log x)^{5}} \sum_{d=1}^{x} \frac{1}{d}=o\left(\frac{x}{\log x}\right)
$$

an evident contradiction for $c_{3}<1$, which proves Lemma 4.
Let now d be an integer which satisfies Lemma 4 and let $n_{1}<\ldots<n_{s}$ $\leqslant x, s>x / d(\log x)^{5}$ be the $n ' s$ to which d corresponds. Put

$$
\begin{equation*}
n_{i}=d v_{i}, \quad 1 \leqslant i \leqslant s, \quad v_{i} \leqslant \frac{x}{d}, \quad s>\frac{x}{d(\log x)^{5}} \tag{16}
\end{equation*}
$$

where all prime factors of v_{i} are greater than $d(\log x)^{10}$. Let $v_{i_{1}}, \ldots, v_{i_{l}}$ be a maximal set of v 's which are pairwise relatively prime. We evidently have by (5)

$$
\begin{equation*}
d \geqslant g_{N}(d) \geqslant t \tag{17}
\end{equation*}
$$

since $\left(n_{i_{1}}, n_{i_{j_{2}}}\right)=d, 1 \leqslant j_{1}<j_{2} \leqslant t$. Now we show that (16) and (17) contradict each other and this will complete the proof of the upper bound in (7).

Let $q_{1}<\ldots<q_{z}$ be the set of prime factors of $\prod_{r=1}^{t} v_{i_{r}}$. Clearly

$$
\begin{equation*}
z<t \log x \tag{18}
\end{equation*}
$$

since every $m \leqslant x$ has fewer than $\log x$ distinct prime factors. The maximality property of $v_{i_{1}}, \ldots, v_{i_{i}}$ implies that every v is divisible by at least one of the q 's. Thus by $(16),(18)$ and $q_{1}>d(\log x)^{10}$ we evidently have

$$
\frac{x}{d(\log x)^{5}}<s<\frac{x}{d} \sum_{i=1}^{x} \frac{1}{q_{i}}<\frac{x}{d} \cdot \frac{t \log x}{q_{1}}<\frac{x}{d} \cdot \frac{t}{d(\log x)^{9}},
$$

or $t>d(\log x)^{4}$ which contradicts (17) and completes our proof. Thus as stated previously Theorem 1 is also proved.

To complete the proof of Theorem 2 we outline the proof of the lower bound in (7), leaving many of the details to the reader. Let n be squarefree, pat $n=p_{1} \ldots p_{k}, p_{1}<\ldots<p_{k}$. Denote by N the set of all integers n for which

$$
\begin{equation*}
p_{i}<\prod_{j=1}^{i-1} p_{j}, \quad p_{1}=3, \quad p_{2}=5 \tag{19}
\end{equation*}
$$

holds for every prime factor $p_{i}, i \geqslant 3$.
Now we show that the sequence N satisfies (5) for every $d \geqslant 1$.
To see this let $n_{i_{1}}<\ldots<n_{i_{s}}, s=g_{N}(d)$ be a maximal set of n 's the greatest common divisor of any two of which is d. Write now $n_{i_{j}}=d v_{j}$. By (19) each v_{j} must have a prime factor less than d and since we must have $\left(v_{j_{1}}, v_{j_{2}}\right)=1,1 \leqslant j_{1}<j_{2} \leqslant 8$, we clearly have

$$
s=g_{N}(d) \leqslant \pi(d)<d
$$

which proves that the sequence N satisfies (5) for every $d \geqslant 1$. To complete the proof of Theorem 2 we only have to show that for sufficiently large $c_{2}\left(n_{i} \in N\right.$ satisfies (19))

$$
\begin{equation*}
N(x)=\sum_{n_{i} \leqslant x} 1>\frac{x}{(\log x)^{c_{2}}} \tag{20}
\end{equation*}
$$

We only outline the proof of (20). Let $x^{1 / 2}<a_{1}<\ldots<a_{k}<x^{3 / 4}$ be the sequence of squarefree integers $\equiv 0(\bmod 3,5,7,11)$ so that if
p_{i} and $p_{i_{+1}}$ are two consecutive prime factors of $a_{i}, p_{i+1}>11$, then $p_{i+1}<p_{i}^{5 / 4}$. It is immediate that the a 's satisfy (19) and it is not hard to prove that

$$
\begin{equation*}
\sum_{j=1}^{k} \frac{1}{a_{j}}>\frac{1}{(\log x)^{c_{4}}} \tag{21}
\end{equation*}
$$

It is immediate that the integers of the form

$$
\begin{equation*}
a_{i} p, \quad p<x / a_{j}, \quad\left(p, a_{j}\right)=1, \tag{22}
\end{equation*}
$$

also satisfy (19). From (21) we obtain that the number of integers of the form (22) is less than ($v\left(a_{j}\right)$ denotes the number of prime factors of a_{j})

$$
\begin{equation*}
\frac{1}{\log x} \sum_{j=1}^{k}\left(\pi\left(\frac{x}{a_{j}}\right)-v\left(a_{j}\right)\right)>\frac{x}{(\log x)^{\sigma_{3}}} . \tag{23}
\end{equation*}
$$

The factor $1 / \log x$ in (23) comes from the fact that an integer $n \leqslant x$ can be represented in the form $a_{j} p$ at most $\nu(n)<\log x$ times. (23) clearly implies (20), and thus the proof of Theorem 2 is complete.

References

[1] N. G. de Bruijn, On the number of positive integers $<x$ and free of prime factors $>y$, Nederl. Acad. Wetensch. Proc. Ser. A. (Indag. Math.) 54 (1951), pp. 54-60.
[2] This result was first proved by L. Mirsky and D. Neuman, see P. Erdös, Egy kongruenciarendszerekrōl szotó problémáról, Mat. Lapok 3 (1952), pp. 122-128, see also S. K. Stein, Unions of arithmetic sequences, Math. Annalen 134 (1958-59), pp. 289-294.
[3] P. Erdös, Számelméleti megjegyzések IV, Mat. Lapok 13 (1962), pp. 241-243.
[4] S. Ramanujan, Collected papers (1927), pp. 262-275.

