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The system of congruences

(1)

	

ai(modni),

	

nl < . . . < nk

is called a covering system if every integer satisfies at least one of the
congruences (1) . An old conjecture of P . Erdös states that for every
integer a there is a covering system with n l = c. Selfridge and others
settled this question for c < 8 . The general case is still unsettled and
seems difficult .

A system (1) is called disjoint if every integer satisfies at most one
of the congruences (1) . It is trivial that in a disjoint system we must
have

k
(ni, n;) > 1 and

	

Y 1/ni < 1 .
i-1

It is known that a disjoint system can never be covering [2] and that
for a disjoint system we have [3]

k
1

	

1
< 1--

i=1 ni

	

2k
.

(2) is easily seen to be best possible .
Denote by f (x) the largest value of k for which there exists a disjoint

system (1) satisfying nk < x . P . Erdös and S. Stein conjectured that
f (x) = o (x) .

The main purpose of this paper will be to prove this conjecture .
In fact, we prove the following

THEOREM 1 . For every e > 0 if x > x, (e) we have (cl , c 2 , . . . denote
suitable positive constants)

exp((logx)1/2+E) <f(x) < (logx)°1
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The proof of the lower bound we obtained with the help of S. Stein
[3] . First we outline the proof of the lower bound in (3) leaving some
details to the reader .

Let pr be the least prime greater than exp((logx) 1/2), n, < . . . < nk
are the squarefree integers not exceeding x the greatest prime factor of
which is pr . Put

nj = pit . . . pitpr,

	

pil < . . . < pi, < Pr-
Let

(4)

	

a; = 0(modpi1), a; = pis_ 1 (modpi8), 1 < s < 1,
a; =pi, (modp r )

The congruences (4) determine a; uniquely (mode;) . It is easy to
see that the system a;(mod n;), 1 < j < k, is disjoint. Clearly k equals
y1,(x/pr , p r ) where y1, (u, v) denotes the number of squarefree integers
not exceeding u all whose prime factors do not exceed v . It easily follows
from the results of de Bruijn and others [1] that for x > x,(e)

X
V1(x/pr,Pr) > exp((logx) 1 I2+E)'

which proves the lower bound in (3) .
The proof of the upper bound will be considerably more difficult .

Let N = {n, < . . . < n, < x} be an arbitrary sequence of integers . Denote
by gN(d) the largest j for which there are j n's the greatest common divisor
of any two of which is d . (gN(1) is thus the largest integer for which there
are gN (1) n's which are pairwise relatively prime .)

Now we prove the following
LEMMA 1 . Assume that the system (1) is disjoint. Then we have for

every d >, 1

(5)

	

gN(d) < d .

Assume that (5) is not satisfied for a certain d and assume that the
greatest common divisor of any two of the integers ni l , . . ., nid+1 is d.
We show that the congruences

(6)

	

ai,(modnif), 1 < j < d+1,

cannot be disjoint. To see this put ni, = dmi , 1 < j < d + 1, where any
two of the m's are relatively prime . By the box principle, there are two
integers 1 < j, < j 2 < d+1 satisfying a% - ai;2 (modd), but then the
congruences a% (mod d) and ai~2 (mod d) have a common solution, or the
system (6) is not disjoint, which proves (5) and the lemma .



Denote AN(x) = '1 . Put F(x) = maxAN(x) where the maximum
nhx

is taken over all the sequences N which satisfy (5) for every d > 1 . By
Lemma 1 we have

(6)

	

F (x) > f(x) .
Now we prove
THEOREM 2 . Let c3 > 0 be sufficiently small and

Then

(logx)°2 < F(x) < (log x)°3

Theorem 2 and Lemma 1 prove the upper bound in (3) and this
completes the proof of Theorem 1 .

It is quite possible that f(x) < x/exp(logx)°4 for some c4 > 0, but
the lower bound in (7) shows that the method used in this paper cannot
give f (x) < x/(logx) °2.

To prove Theorem 2 we need some lemmas .
LEMMA 2 . The number of integers n < x divisible by the square of a prime

p > log x is o(x/logx) .
The number of these integers is clearly less than

(7)

which proves the lemma .
k

LEMMA 3 . Put n = fj Pi", p l < . . . < pk . Let e3 > 0 be sufficiently
L=1

small. All but o (x/(logx)°3) integers n < x have a prime factor pi satisfying
3-1

(S)

	

pt > (log X)10
~pz, ((logx)1° = T 1) .

A well known theorem of Hardy and Ramanujan [4] states that
for a sufficiently small c 3 > 0 for all but o (x/(logx)°3) integers n < x
we have

k

(9)

	

Z' a i < (1 + o)loglogx .
t=1

Hence we clearly can assume that n satisfies (9) and

(10)

	

x/logx < n < x .

Denote by pr the greatest prime factor of n which is less than logx .
By Lemma 2 we can assume that arj.j = 1 for all 1 < 1 < k - r . Further
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ax)p>Iogx2:

c2 sufficiently large.
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since n satisfies (9) we evidently have
r

(11)

	

r7p24 < (logx) 21og1°gx = T2 .
tit-1i

If (8) fails to hold for every r < j < k we have from (11)

(12)

	

Pr+1 < T 1 T2f Pr+2 < Ti 2

and by induction with respect to i (using (11) and (12))

(13)

	

Pr+i < ( T1T2)2i
1

Hence finally from (13) and (9) by a simple calculation (expz = ez )
(14)

	

pk < (TIT2)2k-1 < exp(2 (1+ 111o)1°gl°gx log2 •logT1T2 ) < x iglogl°gx)2 .

From (14), (11) and (9) we obtain

n < T 21°gl°gx < x 112
2pk

which contradicts (10) and hence Lemma 3 is proved .
Now we are ready to prove the upper bound in (7) . Let n1 < . . . < nr

< x be a sequence of integers which satisfies (5) for all d > 1. Assume
that
(15)

	

r > x/(logx)`3 .
We shall show that (15) leads to a contradiction . First of all if (15) holds
then by Lemma 3 we can assume that for at least r/2 ni's there is a di
so that dil ni and all prime factors of n2/di are greater than d i (logx) 1o .

If di has these properties we say that di corresponds to ni. Now we prove
the simple but crucial

LEMMA 4 . There is at least one d which corresponds to at least x/d(logx) 5
values of ni .

From (15) and what we just stated it follows that at least one
di (1 < di < x) corresponds to more than r/2 > x12 (logx)`3 ni' s. Thus if
our lemma would be false we would have

x
x

	

r

	

x

	

1

	

x
2(logx)°3 < 2 < (logx) 5

	

d - o(logx '

an evident contradiction for c3 < 1, which proves Lemma 4 .
Let now d be an integer which satisfies Lemma 4 and let n1 < . . . < n,

x, s > xid (log x)5 be the n's to which d corresponds. Put
x

	

x
(16)

	

ni = dvi, 1 < i < s, vi < -, 8 > d(log x) 5 '
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where all prime factors of vi are greater than d(logo)10. Let vil , . . ., vie
be a maximal set of v's which are pairwise relatively prime . We evidently
have by (5)

(17)

	

d > gN(d) > t
since (nifl , nj) = d, 1 < j1 < j, < t . Now we show that (16) and (17)
contradict each other and this will complete the proof of the upper bound
in (7) .

	

a
Let q1 < . . . < qz be the set of prime factors of wir . Clearly

rsl
(18)

	

z < tlogx
since every m < x has fewer than logx distinct prime factors

. The maxi-m ality property of vi,,...,viiimplies that every v is divisible by at least
one of the q's. Thus by (16), (18) and q1 > d(logx) 1 o we evidently have

z
X

	

x

	

l

	

x tlogx X

	

t
d(logx)' < s

< d {=1 qi < d

	

q1 < d d(logx)9 '

or t > d(logx)4 which contradicts (17) and completes our proof . Thus
as stated previously Theorem 1 is also proved .

To complete the proof of Theorem 2 we outline the proof of the lower
bound in (7), leaving many of the details to the reader . Let n be square-
free, put n = Pi • . • Pk, PI < . . . < pk . Denote by N the set of all in-
tegers n for which

i-1

Pi < j)pf, pl = 3, p2 = 5,
f=1

holds for every prime factor pi, i > 3 .
Now we show that the sequence N satisfies (5) for every d > 1 .
To see this let nil < . . . < nis , s = gN(d) be a maximal set of n's

the greatest common divisor of any two of which is d. Write now ni f = dvf .
By (19) each of must have a prime factor less than d and since we must
have (vf1 , v12 ) = 1, 1 < j1 < ja < s, we clearly have

8 = gN(d) < n(d) < d
which proves that the sequence N satisfies (5) for every d > 1 . To complete
the proof of Theorem 2 we only have to show that for sufficiently large
c$ (niEN satisfies (19))

(20)

	

N(x)

	

>
x

*i<=

	

(logx)`2

We only outline the proof of (20) . Let x' 12 < a1 < . . . < ak < X3 '4

be the sequence of squarefree integers = 0(mod3, 5, 7, 11) so that if
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pi and pi+ , are two consecutive prime factors of ay, pti}1 > 11, then
p;,+1 < pq~ 4 . It is immediate that the a's satisfy (19) and it is not hard
to prove that

(23) 1

also satisfy (19) . From (21) we obtain that the number of integers of the
form (22) is less than (v(a;) denotes the number of prime factors of a1)

(--)
a;

-v(ay)) >
(logx)°3

.

The factor 1/logx in (23) comes from the fact that an integer n -<_,T can
be represented in the form aip at most v(n) < logx times . (23) clearly
implies (20), and thus the proof of Theorem 2 is complete .
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Recu par la Redaction le 16 .2.1967

k
1

	

1
(21)

>
J=1

a,

	

(1ogx)`4'

(22)

It is immediate that the integers of the form

a;p, p < x/a„ (p, a,) = 1 ,
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