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§ 1. Introduction . Notations

In our paper [1.] using a special set-theoretical construction assuming
the generalized continuum hypothesis (G.C.H . in what follows) we proved
that the topological product of J~k discrete topological spaces of power J~ o
is not k-compact for every k < co . Since then several related or equivalent
problems were independently discussed in the literature . General results
of A . TARSKI, P. HANF and H. J. KIESLER made it possible to prove that
(assuming G.C.H .) a similar result holds for a very extensive class of cardi-
nals tZ, (see e .g . [2], [3], [4]) . J. MYCIELSKI proved without assuming G .C.H .
that the result holds for every 1~ x less than the first weakly inaccessible car-
dinal > t~ o .

On the other hand in [1] we stated several problems depending on a
parameter t~a of the type that a positive answer for them would imply the
corresponding incompactness result, but the general method for obtaining
the incompactness results does not work for them . One of them. i s the fol-
lowing :

Does there exist a graph . of t~, vertices such that-0 has chromatic num-
ber > t~, but all subgraphs Oy- ' of P spanned by less than tZ, vertices have
chromatic number

	

?
As far as we know, the general methods mentioned above do not help to

solve this problem, and all nontrivial instances of the problem are unsolved
for 1~x > t~ i .

In this paper (using G.C .H.) we are going to give a partial solution of this
problem for ~a < t~o . In fact we prove a more general theorem (see Theorem
2) which gives information on the problem involved without using G.C.H .

We obtain our result by using a rather special partition theorem . This will
be proved in § 2 . In § 3 we prove the main result already mentioned and we
are going to define universal graphs Prs « , H O which for every regular t~ a
have the property that they contain all graphs Pj of t~ « vertices such that
every subgraph ' of spanned by less than K vertices has chromatic
number at most t~ o . We will discuss some special properties of these
graphs as well. In § 4 we deal with some partition problems related to
the one considered in § 2 .

In what follows we are going to use the notations introduced in our paper
[6] . These are mostly the usual notations of set-theory . We mention that
ordinals are defined so that each ordinal ~ is the set of all smaller ordinals .
The cardinal t~g is identified with w e .
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§ 2. A special partition problem

FINITION 2.1 . Let y be a cardinal 2, and let k be an integer. A se-
quence e = <h, He>, < y of type y of uniform set-systems X e with
r (Hf) = k is said to be a k-partition of type y of the set h if'

_9 [h] = U He .

Let P be a graph and let < be an ordering of the set g . We say that
a path 91 ~(x o , . . ., x,) C 46 is an increasing path of length i ( with respect to
ordering < ) if x o < . . < x, . We are going to generalize the concept
of an increasing path for more general set-systems .

FINITION 2 .2 . Let

	

_ <h, H> be a uniform set-system, with ,, (H) =k,
1 < k < w . Let < be an ordering of the set h. A subsystem 95 C_
is said to be an increasing path of length i (i > 1) if -0 _ <p, P> and the
following conditions hold

p - {xo, . . . . xi+k-2},

	

xo < . . . < xt+k-2

P = {xj, xj+1, . . . . xj+k-7}}j<i 2

FINITION 2.3 . To have a brief notation. we write 0 -> [i] Y~, to denotethat the following statement is true .
Let h be a set and < an ordering of it, type h ( <) = O . Let further
Pe, ~ < y be a k-partition of type y of h . Then there exists a ~ < y and

an increasing path of length i such that c e . As usual O -+# [i]Y
denotes the negation of the statement .

FINITION 2.4 . Let y be an infinite cardinal . We put

expo (y) = y, exp,+, (y) = 2ex pi t,/> .

We need the following
L MMA 1 . (A . TARSKI) 3 Let y be an infinite cardinal, CAI = y. Then there

exists a set f e_ .yy[A] such that 2% and B C for an arbitrary
pair B 5-C -f.

Using this we prove
L MMA 2 . Let y > w, 1 < k < w. Then there exists a function f (~ o , . . ., ~k_1)

of k variables defined for $, < exp k _ 1(y), i < k - 1 with, (2(f) c y satisfying
the condition

ana

whenever
f(~o ,

	

, ~k-1) +f(i1 , * ' ' , Sk)

~t

	

~i+1

	

for

	

i < k .

1 A uniform set-system 7° consists of sets A for which I A j = x(H) .

2 This changes slightly the definition given in 2 . 13 [61 where in the special case k = 2
such a path was said of length i-{-1 .

3 See [7] .
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PROOF . For k = 1 the theorem is trivial . Let k = 2 . Let be a system
of subsets of y satisfying Lemma 1, and let g exp,(y> be a one-to-one
mapping of exp l(y) onto .

For an arbitrary pair $o ~1 < exp l(y) put f ( o , 1) = min (g(~ 0) `g ($1)) •
f satisfies the requirement since if ~o / $1, ~1 / ~2 < expl(y) then

f(so, 1) g( 1) and A( 1, $2) g(~1) 4 .
Let now k > 2 and assume that Lemma 2 is true for 1 _< k' < Ie .
Then there exist functions g, h satisfying the following conditions :

(1) g($,„ S1) is defined for áo, 1 < exp 1- 1(y) .
~~(g) C expk-2(Y) and for ~o

	

v ~1 7- $2 < eXpk_1(Y) we have
g($0 , $ 1) / W1 + $2)

(2) h(?),,, . . ., ?)k-2) is defined for 77 i < expk- 2 (y), i < k - 1,
(k(h) C y and for qi ,q t+1 , i < k - 1, nt < expk - 2 (y) we have

h(?Io , . . . , lik--2) / h(i7 1 , . . . ,

We define a function f( o ,	ák_1 ) for $< < exp 1- 1 (y ), i < k by the
stipulation

f(~0 , * * " ~k-i) = h(g(~0, S1), • • •, g(~k-2, ~k-1)J'
Then by (1) and (2) f is defined whenever ~j < expk-,(y) for i < k and
(!2(f) C y, Assume now that ~o , . . ., ~k is a sequence of k -F- 1-ordinals less
than expk- 1 (y) such that ~j $,+1 for i < k. Then by (1) ?j; = g($„ ~;+1)
i < k is a sequence of k ordinals less than exp k - .2 (y) such that ?j j nr+1 for
i<k-1 .

Hence by (2) we have

f (~0 , . . . , ~ k-1) = h(7í 0 , . . . , 7Ík-2)

	

h(?h , . . . nk-1) = f(~l , . . . , $k)

We prove
TH OR M 1 . Let y co, kZ 1, i 2 . Then- 0 -> [i]k holds if f 10 > expk_ 1 (y) .
PROOF . Assume J01>expk- 1(y).Then byTheorem 39 of [13] we know, that

if type h(< ) = 0, hence I h I > expk_1(y) then for an arbitrary k-partition
£, < y of type y of h there exists a $ < y and a subset h' C h, jh'I = y+

such that 9jh'] C Ye, hence by efinition 2.3 . we have 0 _ [ i]k .
Assume 101 = exp k_ 1(y) . It is sufficient to prove 0 -+- [2]k .
Let typ h(<) = O and let g hexpk- 1 (y) be a one-to-one mapping of h

onto exp k- 1(y) . Let f be a function satisfying the requirements of Lemma 2 .
We define a k-partition tee , ~ < y of type y of h as follows. Let X

-9 1, [h], x = {x 0 , . ., xk_lI

xi<x;+, for i<k-1 .
Put X H6 iff f(y(xo) , . . . , g(xk-,)) _ ~ .

4 Note that case k = 2 of Lemma 2 and Lemma 1 are in fact equivalent .
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It follows from Lemma 2 and efinition 2 .2 . that jig contains no increas-
ing path of length 2 .

In § 4 we will give an independent proof of case k = 2 of the positive part
of Theorem 1 . There we will also discuss the case of finite y's, (see Theorem 5
and Problem 8) .

3. Proof of the main result

TH OR M 2 . Let y w, 1 < k < w. There exists a graph - _ <g, G)
satisfying the following conditions (a), (b), (c) :

(a) a(U) = g = eXpi,1(Y)+
(b) Chr(Ci) > y
(e) for every g' C y 1 g' < exp k_ 1 (y)

Chr( (g')) < 7 .
PROOF. Put exp k _ 1(y) + = a, g = [a] .
Let X, Y be two elements of 9k[x] = g .

X - {$J i<k, Y = 1 2iili<k> ~i < $i+1 < a, 7Íi < r7i+i < a
for i<k-1 .
Put {X, Y} G iff ~i+i =,qi for i < k - 1 .
Then e satisfies the requirements of the theorem .
Put gT =,k[z] for z < a . Then gT C_ g. Let gg , ~ < y be a sequence of type y

of subsets of gT such that gT = U gg . Then the statement that P(gg) con-
tams no edge is equivalent to the statement that the set-system <-C, gg> con-
tains no increasing path of length 2 . Hence by Theorem 1 Chr(G(,T)) y
holds iff -r < a . Considering that a being regular g' Cg, Ig'I < expk_,(y)
implies that g' C gT for some z < a and taking into account that
g" = g, this implies that condition (b) and (c) both hold . (a) is true since
1-9J-11 = a .
Note that the graph defined in the proof of Theorem 2 was already used

by the authors for other purposes, see e .g. [9] Theorems 6 and 7 .
COROLLARY 1 . Assume G .C.H. Then for every ~ and for every 1 < k < w

there exists a graph a with 7(j) = cue+k and of chromatic number a )g+v
all whose subgraphs spanned by a set of vertices of power at most co g+ k_ 1 have
chromatic number < cog.
Assume a(P) = coo and Chr (ACj(g')) = co for every g' c_ g, !y'l < co y, .

Then we obviously have Chr (CU) = co. Hence the simplest unsolved problem
we have here is
PROBL M 1, . Assume G.C.H . oes there exist a graph q with a(CJ)= co.,,

such that Chr(A~J (y')) < w for each g' C g, jg'J < w. but Chr(-(1) > w?
R MARK . In view of the results formulated in [3] and the above remark

one may conjecture that there is a positive answer for Problem 1 if we re-
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place ct),, +i by a regular a, and assume G.C.H. and a C o , [uw l , a) C Cl where
C o , C l are the classes of cardinals defined in [2] . Or it is quite conceivable
that one can prove with a refinement of the method of [5] and without
assuming G .C.H. that the same result holds for every regular a less than the
first weakly inaccessible cardinal > co, but we did not succeed in proving
these .

There is a problem of another type which remains open .
PROBL M 2. Assume G .C.H . oes there exist a graph P with a(j)

Chr (P) = w2 such that for every g' C g, Ig' I < co, we have
Chr(Pj(g')) < (o ?

This should be compared with Theorem 1 .1 .3 and Problem 1,1 .4. of [6] .
Note that Corollary l, gives us a graph with a(6) = 0)2 , Chr(P) = co l

satisfying the last condition . It is possible that the answer for Problem 2
is positive even if we replace w2 by a regular a, and we assume that a is not
too large .

On p. 88 we prove an implication relevant to Problem 2 .
For every infinite cardinal a and for every y we define a graph (",Y as

follows .
FINITION 3.1 . Put

Let f / h "y .
Put ff , h } = G" Y iff there is a ~ < a such that
1)

	

f( ) h(~) for every

	

< < a .

-0a,Y - <ga,Y, G",Y>

For every {f, h} G" Y put " Y (f, h) for the least ~ satisfying (1) .

FINITION 3.2. The graph q is said to have property P(a, y) if each sub-
graph of q spanned by a set of vertices of power less than a has chromatic
number at most y .

We prove
I'x OR M 3 . (A) : Assume a w. Then P" Y has property P(cf(a), y) .

(B) : Assume a(P)= a and Pj- has property P(a, y), y - 2 . Then there is a
P.' C q" ,Y such that 4 and P' are isomorphic .

PROOF OF PART (A) . Let

	

g'l < cf(a) .
Put A = {~ < a : ~ _ " Y(f, h) for some f, h g', {f, h} G",Y}. ThenI A I < cf (a) hence there is a ~, < a such that ~ < ~ 0 for every ~ A . Put
g,, _ {f g' : f(~ 0) = 271 for q < y . Then g,,, rl < y is a partition of type y
of y'. Assume f, h g,, for some q < y . Then f (~,) = h($ ,) _ q hence { f , h }
G",Y by the definition of A. It follows that Chr (P" ,y (g')) < y, hence

possesses property P(a, y) .

PROOF of PART (B) . Assume that P satisfies the conditions of part (B)
of our theorem and y > co . We may assume g = a . By the assumption that
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-P has property P(a, y), for each ~ < a we have Chr (I (~)) < y . Let ge ,,
0 <i7<y be a disjoint partition of type y of such that the graphs U(,y ')
~ < a, o < < y have no edges . Forr every < a let fC be the element of
g« y = «y defined by the following stipulation .

( 1 )

	

fc() _ 0
if $ < ~
if

	

<

	

and ~ ge ,~ .

It is obvious that ~1P

	

~2 < a implies f,,

	

fc, .
Assume now that {S 1, ~2 } G then ~1 gg, t, ~2 q 6 n , implies ?/1 y%2

for ~ > max(~ 1 , ~ 2 ), hence {f C , f c2 } G«y by (l ) . Put (~' _ fig', G'),
where g' _ { fb : ~ < a }, G' _ { {f~" f c, } : {~ 1, S2 } G} Then P' C P«,y
and -P' is isomorphic to í . In cases 2 <y < co a slight modification of this
proof gives the result . We omit the details .
By a theorem of P . R ŐS and N. G . BRUIJN [10] each graph 4

possessing property P(a, y) for some finite y, has chromatic number at most
y. As a corollary of part A of Theorem 3 we have
COROLLARY 2 . Chr ( «,y ) = y for every finite y and for every a .
Theorem 3 shows that the determination of Chr (L « y ) would be decisive

to answer the problem formulated in the introduction . Considering that
each graph has property P(y+, y) for every y, the relevant cases are those
where a > y+ . As a corollary of Theorems 2 and 3 we have Chr (,U ,,,,, ,, )

ooe+i provided G .C.H. holds. The simplest unsolved problem is
PROBL M 3. Assume G .C.H. Is Chr ( (~« _,w ) = co l ? Or = co:, or = (t) .;

The following problem seems to be strongly related to Problem 3 .
PROBL M 4 . Assume G.C .H . oes there exist a subset c_ w_ 0 1 satis-

fying the following conditions I l = w3 and for every pair f g there
is a $(f, g) < co, such that f (~)

	

g(~) for every ~ < < co,
Problem 4 is well known and the answer to it is affirmative provided t1w

same is true for the special case = I of the general KuR PA problem, i.e .
if there exists a famiIy (7, 1 ( /fI = w6+2, (7 C 9(coe+1) such that for every
< wC+2, (f ~ 2 = {F n Q : F ~} has cardinal at most o) e .
(The special case ~ = 0 is usually known as KUR PA's problem) .
It has been proved recently that a positive answer to these problems is

-onsistent with the usual axiom systems of set theory . We cannot give
the exact reference .

We will outline the proof of the following
TH OR M 4 . Assume G.C.H . and assume that there exists a set satisfying

the conditions of Problem 4 . Then Chr

	

a-) 2 .
PROOF. We prove that

	

contains a subgraph Cj' homomorphic to
the graph P = <g, G> defined by the stipulations g = 9 Jo)J, if x =
{~,, ~1}, y = {,o , q1} , $, < ~1 and qo < q, ~j, qi < tea , then {x, y}
G iff ~1 =
P is the graph constructed for the proof of Theorem 2 in case k = 2,

a = Q) 3 , y = co l . By Theorem 2 we have Chr(q) = co t .
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Let of be a set satisfying the conditions of Problem 4 .
Let T be one-to-one mapping of W3 onto

	

By case y = w, k = 2 of
Theorem I there exists a function

	

defined for ~o ; X71 < wl with
,1?(f) (-- co such that

( 1 )

	

f( 1Io, Ill) l A%, 112) for no

	

171, Ill

	

X12 •

We define a function zp on g as follows . Let { 1, S2{ $1 < ~2 < w 3 be an
arbitrary element of g = 9 ,[o) ,] .

Let 2p({~ 1 , ~2{) _ V be the element of w=w defined by the stipulation

V(~) = f(me,(~), 9'6z(á)) for

	

< co t .

Te, and Te, are elements of

	

, hence q (~), T 62 (á) are ordinals < co l
for < w2 . Thus y)(~) < w for ~ < w2 and V) wzw = g w2 ,w : Let now

{{gyp, ~1{, 1~1 , ~2JJ

	

SO < ~1 < $2

be an edge of 0. Put y)({ o , 1 {) = V, V({~ 1 ~,,{) _ 7p l . By the definition of
there is an ordinal ~o < co t, such that 996,0)

	

Tej) and (PLP 'Z TL (S)
for ~ o < < Q) 2 . Hence by (1) y o (s)

	

y9 1 (á) for ~O < S < Q)2 .
Itfollows that if {x, y{ is an edge of P then {&), y)(y) { is an edge of
Hence if 0' is the subgraph of WZ, ~ spanned by y9(g) then Chr(C%)<

Chr (Aq') . It results that Ch r (002,1)) > J2*
It is obvious that using the general form of KUR PA's problem a more

general result can be formulated . Since we do not know if the assumption
of a positive solution of KUR, PA's problem is really necessary we did not
bother to formulate the general statement .

We mention that it would be more natural to use the special case = a
of KUR PA's problem (instead of the case = 1) for the proof of Theorem
4 but we did not succeed in doing this .

§ 4. Results and problems related to the special partition problem of § 2 .

FINITION 4.1 . The ordered pair Aq* _ < g, G*> is said to be a directed
graph if G* is a subset of g X g not containing pairs of the form <x, x> . If q-1-
is a directed graph, we denote by 0 the corresponding graph <g, G> where
G = {{x, y{ : for which <xy> G* or <yx> G*} . We assume that the
reader is familiar with the concept of directed path .

We put Cbr(Q*) = Chr((i) .
Note that if 4a is a graph and < is an ordering of g, we can associate to

it a directed graph4q* by the stipulation <xy> G* iff {x, y{ G and x < y .
We need the following
L MMA 3 . Let _ <h, H> be a set-system where H consists of sets of

at least two elements . Let ~ < x be a sequence of sub-set systems cf
~Y forming an "edge-partition" of Y i .e . he = h for ~ < a and H = U H6 .

Assume further that Chr (óY £) < a6 for ~ < a. Then

	

<"
Chr(P)

	

H a~ .
~<a
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Lemma 3 is well known and it is an obvious corollary of the definition .
We omit the proof .

We will use
L MMA 4 . (Theorem of GALLAI [11]) Let * be a directed graph, k an in

teger C l . If -a* does not contain a directed path of length k then Chr (Pt*)

k.
We prove
TH OR M 5 . Let q* be a directed graph, y a cardinal > 1 (finite or infinite) .

Let i be an integer. Assume Chr(P*) > iY and let * _ ( g, G ), < y
be an edge-partition of P*, i .e .

G* = U G~* .
$<Y

Then at least one 'of the graphs Q* contains a directed path of length i .
If y is infinite then one o f the graphs P*~ contains a directed path of

length i for every i < w .

PROOF. There is a directed graph q* with chromatic number > i, (or
with chromatic number > 2 1' if y > co) . For if not then by Lemma 3

Chr( *) _< i' or Chr( *)

	

H 2Y = 2Y,
5<Y

respectively. Hence by Lemma 4 this Q~ , contains a directed path of length
i or a directed path of length i for every i < co, respectively .

asy examples show (see e .g. the graph defined in [13] that it is no longer
true even for ), > w that one of the graphs P* contains an infinite directed
path . It is also easy to see (e.g. by induction on y) that forr finite y the num-
ber i' is best possible. We omit the easy proof.

It is obvious by the remark made after the efinition 4 .1. that Theorem
5 is a generalization of case k = 2 of Theorem 1, since the chromatic number
of a complete graph is equal to its cardinality . Thus in this case the proof of
Theorem 5 gives a simple proof of the positive part of Theorem 1 not refer-
ring to the involved argument of [12] . A corresponding generalization of
Theorem 5 for uniform set-systems of x(H) 3 is no longer true . We will
give a very strong counterexample in our Theorem 7 .

First we prove a theorem which will serve as a lemma in the proof of
Theorem 7 .
TH OR M 6 . Assume G.C.H. Let a co be regular and let P - <g, G> be a

graph with a(C)t) = a+ satisfying the following condition .
(1) For every A, B c_ g JAI = a, I BI= a+ there exist a A, b B

such that {a, b{ G.
Assume further that t is an integer and A„ i < t and B are subsets of g

such that JA jJ = a for i < t and J BI = a+ .
Then there exist subsets Ai C A i for i < t and B' c_ B such that IA,~ = a

for i < t and I B' I = a satisfying the following condition .



(2) For every a U A i the set
i<t

{b B' : {a, b} ~ G}
has cardinal less than a 5 .

One can prove Theorem 6 with a ramification argument frequently applied
in [8] . However, here we need a very simple and special form of it and it
seems to be worth to give it in details .
PROOF. We may assume that the Ai are disjoint .
Let fi ax aAi be a one-to-one mapping of a X L% onto A i for i< t .
Put {fi( 77) 1,, = A i,~ for i < t, ~ < a . Then JA i,e l = a for ~ < a .
Put Ci , e = {b B: there is an rl < a for which {fi(r, rl),b} G} . By (1)

we have
(3) IB-Cl , el < a+ for every ~ < a and i < t otherwise

Ai,& B-Ci,£ do not satisfy (1) .
Put

c = n n c i, £
<a i<t

By (3) we have

(4)

	

ICI= a+

We may assume that for every < a and for every i < t {Qí74 1,, is
a disjoint partition of C C Ci , e such that
(5)

	

{{f i(~, 'q)}, b} G for every b Ci,~ q < a .

Hence
C = n n (U c,7,á

1 <a i<t 7<-

Applying the distributive law we obtain
(6)

where

Put briefly

for every

ON ciinwixrIO NUMB R OF INFINIT GRAPHS

C = U ~ .
,P t ; : a (x

- n n c¢

	

Wi,~) •<a i<t

~p = n n c4,~i,~ >
:« i<t

v U tx~a,

	

(V) =tx~.
~<a

(7) Put CI = {x C : there is a

	

U ""a, x .. , I ,,, I < a+I .
s<a

9 1

Considering that by G .C.H. and a being regular, I U t x~ a I < a we have
5̀ < a

1C l l<a .

It follows from (4) that there is an element x of C-CI .
I This should be compared with the results and problems stated for polarized par-

titions in [8] especially with Theorem 43 and Problem 12 .
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Then by (6) and (7) x T for some 9) tx"a and J ,~C I =a+ for every ~ <a .
It results that there exists a one-to-one sequence {b,}~,, satisfying
(8)

	

b L je for ~ < a .
Put B' _ {b,{t<a and Ai _ {f t(~, cp(i, ~)) : ~ < a} . Then J B'J = a since

b 6 is one-to-one . jA[j = x for i < t since f t is one-to-one . Let a A[ for
some i < t then a = f t(~, T(i, ~)) for some $ < a . Assume C > ~. Then by
(8) b C ,,rg hence by (6) b e

It follows from (5) that then {a, b C} G. Thus (2) is fulfilled and the theo-
rem is proved .
R MARK. It is easy to see from the proof that Theorem 6 remains true if t

is replaced by any cardinal y < a, but we do not need this in this paper .
FINITION 4.2. Let g be an ordered set, and let -< be an ordering of g .

In what follows if we write some X [g] in the form {x,, . . ., xk_ i J
we always assume x o < . . . < xk_ i . We will say that X, Y Yk[g] are
in similar position if a xn Y implies a = xt , a = y for some i < k .

It was shown by . MILN R (personal communication) that for every
a > of there exists a uniform set-system M' _ <h, H) with x(H) = 3,
a(cY) = a+ such that does not contain an increasing path of length 2,
and every h' < h, ~h'j = a+ contains a triplet of II . As a corollary of this
last statementwe have Chr (ZY) = a+ .

Using his idea we prove Theorem 7 .
TH OR ivi 7 . Assume G.C.H. Let k < o) and a > co, a regular .
There exists a uniform set-system X = < a+, H> with x(H) = k with the

natural ordering < qt the ordinals < a+ satisfying the following conditions
1 ., 2., 3 .

1 . For each h' c_ a+, ~h'I = a+ there is an X H, X= { o , . . ., k_i} secch
that $t h' forr i < L As a corollary of this

Chr(X) = a(Y) = a+ .
2. If X, Y H have at least two elements in common then they are in the same

position .
3 . If X ={ o , . . ., $k-1}, Y ={ri o , . . ., 71k-1} H, X 7-1Yand ~k-i = y/k-,

then x n Y = {~k_ 1 } .
PROOF . By the assumption that G .C .H. holds, ~9', [a+] has cardinal a+ .

Put ~[a+] = S .
(1) Let

	

e "'S be a one-to-one mapping of a+ onto the set S .
Put

(2) SC = {et : C c and ~ < ~j for ~ < a+ . Then IS C I < a for $ < a + .
(3) For every < a+ let {A,,,},, .,a, be a sequence of type a containing all

the elements of the set S e .
~ z [k]

(4) Let/

	

k l
be a one-to-one mapping of the set Y[k] onto the inte--

2
ger (kj . We briefly write 1(i, j) = f({i, j}) for i < j < k . As a corollary t 11'
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Theorem 17/A of [8] there exists a disjoint partition 9~,[%+] = U I
of type (2k of the set Y[a+] satisfying the following condition .

	

t<(;)
I
`

(5) If B, C C a+, BI = a, I Cj = a+ then for every l < (k there existI
`2

< a+ such that ~ o B, $ I C and {$o , ~ I } I1 .
First we define a uniform set system P' _ <a+, H'> with x(H') = k

by the following stipulation .
(6) Let X = {~ o , . . ., $k-I! Sk[a + ] . Then X H' iff for every i < j < k

{ fi t , ~j } I,, where l = f(i, j) .
Now we are going to define the uniform set-system Y _ <a+, H> with

(H) = k by the following stipulations .
(7) Let < a+ be fixed. We will define the set He of those elements X-

_ {~o , . . ., k _ I } of H for which $ k_ 1 = ~ .
We define He as a sequence

	

of elements of 91ja+], where
X 17

	

0 , . . , ák_ 1 and 99 e G a .
We define the sequence by transfinite induction on q' as follows .
Assume 71' < a and X,,,•• is defined for every n" < q' .
If there exists an q' < < a such that there is an X -9k[a+] X =
_ {~ o , . . ., ~k_, } satisfying the conditions
(8) C Ar, X n Xi•• _ { } for l7 " < q , , X then

let be the least ordinal of this kind and let X , be a k-tuple satisfying (8)
with this ~ .

If no such q exists we put q' = Te and X ,, will not be defined .
We put He

	

and II = U He, JK _ <a+, H>.

We will prove that Y satisfies the requirements of our theorem . It is
obvious that a( P) = a+ . By the definition of given in (7) and (8) JP
obviously satisfies requirement 3 . of the theorem. We will now show that
even áY' satisfies the second requirement .

(9) Assume Xo/ XI H' and iX on XI I >2. Let a,b a< b be two elements
of X o n XI . If X o = { o, . . ., sk-I} XI = { o, . . ., ák_ 1 }, then a -boo
_ ~,z b - $~o = $J', for some i~, < j o , i I < jI • We, have to prove i o = i i ,
.io = .7I •

In fact by (5) there is exactly one l < (k such that {a, b} I, . By defini-I
l2tion (6) we have f(i o , j o ) = f(i j , j j ) = l, f being one-to-one, by (4), we have

io = iv jo = it •
Considering that Y <

	

' . (9) implies that Condition 2 of our theorem
is fulfilled .

We briefly write A < B for A, B < a+ if ~ < q for every ~ A, 71 B .
Now we prove

(10) Let A c a+, IAA = a+ and let t be an integer 1 < t < k - 1 . There
exist sets At , i < t such that A t c A, A o < . . . < Af _,, ~Atj = a for i < t
which satisfy the condition :

(11) For each i < j < t and for every a At the set {b : b A ; and
{a, b } j If(t, , ) } has cardinal < a .
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We prove (10) by induction on t . For t = 1 the statement is trivial. As-
sume t > 1, and let the set Aó, . . ., Aí-,, satisfy the requirements of (10) for
t-1 . Let B be a set A t _, < B, JBI = a+, B C A • Let e _ <g, G> where
9= Aó U

	

U At-2 U B and {a, b} qG iff a A„ b B and {a, b} Ify,t_l) ,
Applying Theorem 6 for (j, Aí and B, we obtain sets A i C-- Aí for i < t-1

and a set B' c B • Put B' = A t-,. A t , i < t obviously satisfy the require-
ments. Now we prove that Y satisfies the first requirement of the theorem .
Let A g a+, IAA = a+ .
Let A l , i < k - h be sets satisfying (10) with t = k - 1, . Let ~ A and

put
(12) Bi , e _ {5 A, , {~, ~ }

	

for i < k - 1} .

Let A' _ { A : IBigl = a for every i < k - 1 } .
We prove

(1.3) ~A'I = a+,
If IA's < a+ then there. i s a ~, < a+ such that for every ~, < ~ < a + ,
A there is an i(~) < k - 1 for which ~Bi«>,61 < a . Hence there is an

A" c_ A', IA"I = a+ and an i < k - 1 such that lBi,61 < a for every ~ A"
Using G.C.H. and that a is regular then there exist a B c_ A t and an

A"' c_ A", IA"' I = a+ such that B = Bi,e for every $ A"' . But then by
(12) the sets A i - B and A"' do not satisfy (5) for II with t = f(i,Ie -1) .
Hence (13) is true .
Let now = U A i . Then I S =x, hence = _et for some < a

i<k-1
where

	

is the well ordering given in (1), hence if A tr_ i < {$} then by (2)
and (3) = A ,, for some il < a .

By (13) there is an Ak_ i < {~}, ~ A' (hence ~ A) . But briefly B i =
Bi,e for i < k -- 1 . Then IBi l = a, Bi c A t for i < k - 1 .

First we prove that there is a sequence Z e - {~o, . . ., ák_1}e<« of type a
of elements of P' such that ák_1 = for every P < a, ~, Bi for i < k - 1
and the sequence Z, _ {~ó, . . ., ~k-z} is disjointed .
We define Ze by induction on o . Assume that Z,, is defined for every

e' < e for some g < a . Put C i,e = -hi - U Ze . . Then ~Ci,,J = a for i < k -1 .
e'<e

We define Ze

	

by induction on i as follows . Assume ~e, is defined
for every j < i for some i < k - 2 . Then considering that ICi , e l = a, it
follows from (10) and (11,) that there is a ~'i Cie such that

	

~ij If(i,i )
for every j < i . Thus {~,} is defined for i < k

	

1 . Put ZQ _ {~;, . . ., Ok„} .
Considering (12) it follows from the construction that Z e X for every

2<a.
Now we prove that there is an n' <,q such that X, • _ {SQ, . . ., k- 1}and ~ ' A;' for i < k - 1 .
If this is not true for any q" < q then there is a 2 < a such that Z e is

disjoint from each X,, for ?7" < a hence 17 = ,q' is the minimal ordinal
~_ q' satisfying (8) hence the statement is true by definition (7) .

Considering that ~ A ~ ' Bi c A for i < k - 1 it follows that X,',' H,
X • c A hence X satisfies the first requirement of our theorem as well .
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R MARKS . 1 . Both Theorem 6 and Theorem 7 remain true for singular a
as well. In case of Theorem 6 the proof can be carried out by improving the
given proof using the idea of the proof of Theorem 38 of [81 . In case of Theo-
rem 7 the regularity of a was used only in reference to Theorem 6 and in
the proof of (13), where in case of singular a, Theorem 34 of [8] can be
applied. Several problems arise if we replace a+ with a limit number . We
omit the discussion of them .

2 . Both proofs make use of G .C.H. heavily . This seems to be natural in
case of Theorem 6 . On the other hand, one can hope that it can be avoided
in the proof of Theorem 7, at least in some special cases .
This problem remains open even for a = w .
3 . Theorem 7 is best possible of its kind as is shown by the following asser-

tions .
4 .1 . Let X _ <h, H> be a uniform set system with x(H) = k > 2 and

let < be an ordering of h. Assume that for X = {x,,, xk_ 1 }, Y = {y,,,
. . •, yk-1} H x; 5z y ; for some fixed i 5z j < k. Then Chr (X) < 2. As
a corollary of this if iX n Yl > 1, X, Y H implies that X and Y are in
the same position then Chr(ái) < 2 .

PROOF. Put h„ _ {a h : a x; for any X H }

h 1 = {a h :a5zxj for anyX H}.
Then h, = h,Uh l and H(hp ), H(hl ) are empty .

4.2 . Let

	

_ <a, H> be a uniform set-system with r. (H) > 3 . If there are
no X ={x, . . ., x,c_ 1 }, Y ={yo , . . ., y,c_ 1} H with x; = y, for i < k --- 2
then Chr (ZAP) < w . 4 .2 . is a corollary of Theorem 12 .1, of [6] .
Theorem 7 shows that if Xis a uniform set system with x(H)~ 3 with a

given ordering -< of h, the fact that X does not contain an increasing path
of length 2 does not give a bound for the chromatic number of 7P . However,
this fact can be proved without using G .C.H. That is why we state sep-
arately the following
TH OR M 8 . (MILN R) . For every a > w there exists a uniform set-system

X _ <a+, H> of x(.H) = 3 with the natural ordering of the ordinals < a+
s2tch that

1 . P does not contain an increasing path of length 2
2 . very A c a+, IAA = a+ contains an element of H as a subset.

We only outline the PROOF . As a corollary of Theorem 7 of [8] we have
a+ _[~ (a+, a+)2 i .e. there is a graph P = <a+, G> satisfying the conditions

(1) if A c_ a+, JAI = a+ then -((A) is not complete
(2) if A _C a+, CAI = a+ then P(A) has an edge .
We define the set system as follows. Let X

	

be an arbitrary
element of

	

'-93[a + ] X H iff {~o, ~ 1 } G, {~ 1 , ~2 } G,

	

obviously
satisfies requirement 1. Let A c_ a+, JAI = a+ . Then there are a A,
A' C A, ~A'I = a+ such. that {~., ~} G for every ~ A' for if not then
(2) is obviously false .
We may assume {$o } < A'. On the other hand by (1) there are $ 1 < 2

such that ~1, ~2 A', t~, $2} ~ G. Hence 2 is fulfilled as well .
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Note that interesting new phenomena arise if we investigate the possible
generalizations of Theorems 7 and 8 for k

	

3, in case we replace the cardi-
nal a+ by a limit cardinal f3 . Both theorems are false if /3q C o , i .e . if
(f3, P) 2 holds .

Theorem 8 remains true for every (3 Co , i .e . if fl -4- (~i, (3) 2 holds. We do
not know if the same is true for Theorem 7 for strongly inaccessible fl 's,
even if we only require conditions 1 and 2 .
Assuming G .C.H. we can discuss the case of other fl's where cl(~) is not

inaccessible using the methods of [8] . We preserve the details for a later
publication .

Another problem arises in connection with the negative part of Theorem 1 .
One could hope that if h is a set ordered by a relation < , y - co and
JhI = exp,_, (y) then there exists a k-partition He , ~ < y of type y of h such
that the set systems e not only do not contain increasing paths of length
2,'but satisfy some stronger restrictions as those imposed on 0Y in Theorem
7 . For k=2 conditions 2, 3 are not really stronger . It is obvious that for k>3
the ZY~ 's cannot satisfy condition 3 of Theorem 7 even if ~hJ > y+ . Hence
the real problem is if there is a sequence satisfying condition 2 of Theorem 7 .
This remains unsolved even in the following simplest case .

PROBL M 5 . Let h .= a, with the natural ordering of ordinals, exp l(w) < a
C exp 2,(w) . oes there exist a 3-partition tee , ~ < w of type w of h such
that for every ~ < (o X, Y X,, X n Y > 2 imply that X and Y are in the
same position?

R MARK . It is easy to see that if a = exp l(w) then such 3-partition really
exists, since by Theorem 1 there exists a 2-partition P,,, n < co of a~~~ such that

,1 does not contain an increasing path of length 2 . But then
yyyppp
01, n2, n3)'

ni , n 2 , % < w defined by the stipulation X = {~ 1 , ~2 , S3} 1)("1,n2,"3) iff
{ 1 , 2 } G,,,, {~2 , S 3 } G„ 2 and { 1 3 } G„ 3 satisfies the requirement .
We mention some other special problems which arose in connection with

Theorems 6, 7, 8 . We only formulate the simplest unsolved forms of them .
Similarly, as in the proof of Theorem 8 it is easy to see that the following

assertion is true .
4.3. Let P o,P 1 , a, be a disjoint 2-partition of w l satisfying the require-

ment
(a) Whenever A, B c_ w l , JAI _ JBI = co, then for every i < 3 there is

a {~, 77} GI such that ~ A, n B.
Then there is an X _'X3[wl ] such that,9,3[x] n GI 0 for every i < 3 .
On the other hand,using the ideas of the proofs of Theorems 6 and 7 one

can easily see that the following assertion is true .
4 .4 . Let (j, 0 , -0 1 ,q2 be a disjoint 2-partition of w l satisfying the condition
(P) Whenever A, B C wl IAJ = w, JBI = w l , then for i < 3 there are
A, I] B such that {~, 77} G, .

Then for every h =1313 there is an X -993[wl] X = }~o, ~1, ~2} such
that {~„ s j} = Gh((,,7)) for every i < j < 3. We cannot solve the following



PROBL M 6. (A) Is 4 .4 true under the weaker condition (a) of 4.3 instead
of (f) of 4.4?

(B) Are 4.3 or 4.4 true under the weaker condition
(y) For every A c (t), JA I = w i P i (A) has edges for i = 0, l, 2 .
Note that we cannot prove the existence of a partition satisfying (a), (~)

or (y) without using the continuum hypothesis . See the remark made after
the proof of Theorem 9 in [9] .

We mention a problem of different type . Theorem 7 implies (using G.C .H .)
that there is a uniform set-system-Y= <o) I ,H> with x(H) = 3 such that

(1,) Chr (H) = 0)1

	

2
(2) If h' c w ~h'j = n < o) for some h' then JH(h')J < ~4 + o(n ),

PROBL M 7 . oes the above statement remain true under the stronger
condition IH(h')'i G o(n 2 ) or even cyt 2 where c < I ?

4

Note that there is a uniform set-system J_ <a) H> with x(H) = 3 such
that Chr(,Y) = co and satisfying the condition h' C co, Jh'J = n implies
that ~H(h')J < n . /(n) where /(n) is a function tending to infinity as slowly
as we please .
Finally we mention a problem of finite type connected to Theorem 2 .

By RAMS Y's theorem we know that for every i, t, k there is a least integer
m = m(i, t, k) such that for every m' > m and for every k-partition Yi6,
~ < t of type t of m' there is a $ < t such that 4'6 contains an increasing
path of length i . Theorem 5 implies m(i, t, 2) = it .

PROBL m 8 . m(i, t, k) _ ? for k > 3 .
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