ON RANDOM MATRICES II

by
P. ERDŐS and A. RÉNYI

§ 0. Introduction

This paper is a continuation of our paper [1]. Let $\mathscr{M}(n)$ denote the set of all n by n zero-one matrices; let us denote the elements of a matrix $M_{n} \in \mathscr{M}(n)$ by $\varepsilon_{j k}$ $(1 \leqq j \leqq n ; 1 \leqq k \leqq n)$. Let p denote an arbitrary permutation $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of the integers $(1,2, \ldots, n)$ and Π_{n} the set of all $n!$ such permutations. Let us put for each $p \in \Pi_{n}$

$$
\begin{equation*}
\varepsilon(p)=\varepsilon_{1 p_{1}} \cdot \varepsilon_{2 p_{2}} \ldots \varepsilon_{n p_{n}} . \tag{0.1}
\end{equation*}
$$

Thus the permanent perm $\left(M_{n}\right)$ of M_{n} can be written in the form

$$
\begin{equation*}
\operatorname{perm}\left(M_{n}\right)=\sum_{p \in \Lambda_{n}} \varepsilon(p) \tag{0.2}
\end{equation*}
$$

Thus each $\varepsilon(p)\left(p \in \Pi_{n}\right)$ is a term of the expansion of perm $\left(M_{n}\right)$.
Let us call two permutations $p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$ and $p^{\prime \prime}=\left(p_{1}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right)$ ($p^{\prime} \in \Pi_{n}, p^{\prime \prime} \in \Pi_{n}$) disjoint if $p_{k}^{\prime} \neq p_{k}^{\prime \prime}$ for $k=1,2, \ldots, n$. Let now define (for each $\left.M_{n} \in \mathscr{M}(n)\right) v=v\left(M_{n}\right)$ as the largest number of pairwise disjoint permutations $p^{(1)}, \ldots, p^{(v)}$ such that $\varepsilon\left(p^{(i)}\right)=1(i=1,2, \ldots, v)$. Clearly

$$
\begin{equation*}
\operatorname{perm}\left(M_{n}\right) \geqq v\left(M_{n}\right) \tag{0.3}
\end{equation*}
$$

thus $v\left(M_{n}\right) \geqq 1$ is equivalent to perm $\left(M_{n}\right)>0$.
Let us denote by $\mathscr{M}(n, N)$ the set of those n by n zero-one matrices, among the n^{2} elements of which exactly N elements are equal to 1 and the remaining $n^{2}-N$ to $0\left(0<N<n^{2}\right)$. Let us choose at random a matrix $M_{n, N}$ from the set $\mathscr{M}(n, N)$ with uniform distribution, i.e. so that each of the $\binom{n^{2}}{N}$ elements of $\mathscr{M}(n, N)$ has the same probability $\binom{n^{2}}{N}^{-1}$ to be chosen.

Let us denote by $P(n, N, r)$ the probability of the event

$$
v\left(M_{n, N}\right) \geqq r \quad(r=1,2, \ldots) .
$$

Clearly $P(n, N, 1)$ is the probability of the event $\operatorname{perm}\left(M_{n, N}\right)>0$.
In [1] we have shown that if

$$
\begin{equation*}
N_{1}(n)=n \log n+c n+o(n) \tag{0.4}
\end{equation*}
$$

where c is any fixed real number, one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(n, N_{1}(n), 1\right)=e^{-2 e^{-c}} . \tag{0.5}
\end{equation*}
$$

This implies that if $\omega(n)$ tends arbitrarily slowly to $+\infty$ for $n \rightarrow+\infty$ and

$$
\begin{equation*}
N_{1}^{*}(n)=n \log n+\omega(n) n \tag{0.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(n, N_{1}^{*}(n), 1\right)=1 . \tag{0.7}
\end{equation*}
$$

In the present paper we shall extend this result, and prove the following
Theorem 1. For any fixed natural number r, if

$$
\begin{equation*}
N_{r}^{*}(n)=n \log n+(r-1) n \log \log n+n \omega(n) \tag{0.8}
\end{equation*}
$$

where $\omega(n)$ tends arbitrarily slowly to $+\infty$ for $n \rightarrow+\infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \mathrm{P}\left(n, N_{r}^{*}(n), r\right)=1 \tag{0.9}
\end{equation*}
$$

Clearly (0.7) is the special case $r=1$ of (0.9). (0.5) can be generalized in a similar way (see Theorem 2). Evidently, the interesting case is when $\omega(n)$ tends slower to $+\infty$ than $\log \log n$.

The method of the proof of Theorem 1 and 2 follows the same pattern as that in [1].

In $\S 2$ we formulate - similarly as in [1] - an analogous result for random zero-one matrices with independent elements, while in $\S 3$ we add some remarks and mention some related open problems.

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this \S Theorem 1. We suppose $r \geqq 2$ as the theorem was proved for $r=1$ in [1].

Suppose that M is an n by n zero-one matrix belonging to the set $\mathscr{M}\left(n, N_{r}^{*}(n)\right)$ where $N_{r}^{*}(n)$ is defined by (0.8), and suppose that $v(M) \leqq r-1$.

Clearly we can delete from each row and column of such a matrix $r-1$ suitably selected ones so that the permanent of the remaining matrix M^{\prime} should be equal to 0 . As regards the matrix M^{\prime} we distinguish two cases: either the deletion can be made so that M^{\prime} contains a row or a column which consists of zeros only, or not. Let us denote by $Q_{1}(n, r)$ the probability of the first case, and by $Q_{2}(n, r)$ the probability of the second case. Clearly if a row (column) of M^{\prime} consists of zeros only, the corresponding row (column) of M contains at most $r-1$ ones. Conversely, if M contains such a row or column, then clearly $v(M) \leqq r-1$. Thus $Q_{1}(n, r)$ is equal to the probability of the event that in M there is at least one row or column which contains at most $r-1$ ones. Thus we have

$$
\begin{equation*}
Q_{1}(n, r) \leqq 2 n \sum_{j=0}^{r-1}\binom{n}{j} \frac{\binom{n^{2}-n}{N_{r}(n)-j}}{\binom{n^{2}}{N_{r}(n)}}=O\left(e^{-\omega(n)}\right)=o(1) . \tag{1.1}
\end{equation*}
$$

Let us pass now to the second case. Let k be the least number such that one can find in M^{\prime} either k columns and $n-k-1$ rows, or k rows and $n-k-1$ columns, which contain all the ones of M^{\prime}; according to the theorem of Frobenius (see [2] and [3]) as perm $\left(M^{\prime}\right)=0$, such a k exists, and $1 \leqq k \leqq\left[\frac{n-1}{2}\right]$ because the case $k=0$ has already been taken into account (this was our first case). We may suppose that all ones of M^{\prime} are covered by k columns and $n-k-1$ rows (the probability of the other case when the ones of M^{\prime} are covered by k rows and $n-k-1$ columns being the same by symmetry). It follows - as in [1] - that M^{\prime} contains a submatrix C^{\prime} consisting of $k+1$ rows and k columns, such that each column of C^{\prime} contains at least two ones. Let C be the copresponding submatrix of M. It follows that

$$
\begin{equation*}
Q_{2}(n, r) \leqq 2 \sum_{k=1}^{\left[\frac{n-}{2}\right]} q_{k} \tag{1.2}
\end{equation*}
$$

where $q_{k}\left(1 \leqq k \leqq\left[\frac{n-1}{2}\right]\right)$ is the probability of the event that M contains a $k+1$ by k submatrix C such that each column of C contain at least two ones, and the submatrix D of M formed by the same rows as C and by those columns which do not intersect C, contains at most $r-1$ ones in each row. Evidently

$$
\begin{equation*}
q_{k} \leqq\binom{ n}{k}\binom{n}{k+1}\binom{k+1}{2} \sum_{j=0}^{k} \frac{\binom{(k+1)(r-1)(n-k)}{j}\binom{n(n-k-1)+k(k-1)}{N_{r}^{*}-2 k-j}}{\binom{n^{2}}{N_{r}^{*}}} . \tag{1.3}
\end{equation*}
$$

It follows from (1.2) and by an asymptotic evaluation of the expression at the right hand side of (1.3) that

$$
\begin{equation*}
Q_{2}(n, r)=o(1) . \tag{1.4}
\end{equation*}
$$

As

$$
\begin{equation*}
1-\mathrm{P}\left(n, N_{r}^{*}(n), r\right)=Q_{1}(n, r)+Q_{2}(n, r) \tag{1.5}
\end{equation*}
$$

it follows in view of (1.1) and (1.4) that (0.9) holds. Thus Theorem 1 is proved.
By the same method we can prove the following result, which generalizes (0.5) for $\mathrm{r} \geqq 2$.

Theorem 2. If

$$
\begin{equation*}
N_{r}(n)=n \log n+(r-1) n \log \log n+c n+o(n) \tag{1.6}
\end{equation*}
$$

where $r \geqq 1$ is an integer and c is any real number, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} P\left(n, N_{r}(n), r\right)=e^{-\frac{2 e^{-c}}{(r-1)!}} . \tag{1.7}
\end{equation*}
$$

§ 2. Random zero-one matrices with independent elements

Similarly as in [1] let us consider now random n by n matrices $M=\left(\varepsilon_{i j}\right)$ ($1 \leqq i, j \leqq n$) such that the $\varepsilon_{i j}$ are independent random variables which take on the values 1 and 0 with probabilities p_{n} and ($1-p_{n}$). It can be shown that the following result is valid:

Theorem 3. For any fixed natural number r, put

$$
\begin{equation*}
p_{n}=\frac{\log n+(r-1) \log \log n+\omega(n)}{n} \tag{2.1}
\end{equation*}
$$

where $\omega(n)$ tends arbitrarily slowly to $+\infty$ and let M be an n by n random matrix the elements of which are independent random variables, taking on the values 1 and 0 with probability p_{n} and $1-p_{n}$ respectively. Then the probability of $v(M) \geqq r$ tends to 1 for $n \rightarrow+\infty$.

Note that the special case $r=1$ of Theorem 3 is contained in Theorem 2 of our previous paper [1].

As the idea of the proof is essentially the same as that of (0.9), and the computation even somewhat simpler, we omit the proof of Theorem 3. Theorem 3 can be sharpened in the same way as Theorem 2 sharpens Theorem 1.

§ 3. Remarks and open problems

Let us put

$$
\begin{equation*}
\mu(n, k)=\min _{\substack{M_{n}\left(M_{n}\right)=k \\ M_{n} \in M(n)}}\left(\operatorname{perm}\left(M_{n}\right)\right) . \tag{3.1}
\end{equation*}
$$

Clearly $\mu(n, 1)=1$ and $\mu(n, 2)=2$; however,for $k \geqq 3$ the question concerning the value of $\mu(n, k)$ is open. We have clearly $\mu(k, k)=k$! and

$$
\begin{equation*}
\mu(k, k-1)=k!\left(\frac{1}{2!}-\frac{1}{3!}+\ldots+\frac{(-1)^{k}}{k!}\right) \tag{3.2}
\end{equation*}
$$

but the value of $\mu(n, k)$ for $n \geqq k+2$ is not known. Clearly for determining $\mu(n, k)$ it is sufficient to consider those matrices M_{n} which contain exactly k ones in each row and in each column. As each such matrix is the sum of k disjoint permutation matrices, i.e. for such a matrix we have $v\left(M_{n}\right)=k$, thus the problem of determining $\mu(n, k)$ is the same as the problem raised by Ryser (see [7], p. 77) concerning the minimum of the permanent of n by n zero-one matrices having exactly k ones in each row and each column. Of course for particular values of n and k one can determine $\mu(n, k)$ (e.g. $\mu(5,3)=12$), but what would be of real interest is the asymptotic behaviour of $\mu(n, k)$ for fixed $k \geqq 3$ and $n \rightarrow+\infty$.

Let us put

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sqrt[n]{\mu(n, k)}=\mu_{k} \tag{3.3}
\end{equation*}
$$

It seems likely that $\mu_{k}>1$ for $k \geqq 3$. One reason for this conjecture is that if the conjecture of Van der Waerden is true, we have

$$
\begin{equation*}
\mu(n, k) \geqq \frac{k^{n} n!}{n^{n}} \geqq\left(\frac{k}{e}\right)^{n} \tag{3.4}
\end{equation*}
$$

i.e. $\mu_{k} \geqq \frac{k}{e}>1$ for $k \geqq 3$. We guess that μ_{k} is even larger than $\frac{k}{e}$.

If in particular M_{n} is the matrix defined by $\varepsilon_{j, j}=\varepsilon_{j, j+1}=\varepsilon_{j, j-1}=1$ (we put $\varepsilon_{j, m}=\varepsilon_{j, m-n}$ for $\left.m>n\right)$ and $\varepsilon_{j l}=0$ if $|l-j| \geqq 2$, then it can be easily shown that perm $\left(M_{n}\right)=L_{n}+2$ where L_{n} is the n-th Lucas number, i.e. the n-th term of the Fibonacci-type sequence

$$
\begin{equation*}
1,3,4,7,11,18, \ldots \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{L_{n}}=\frac{\sqrt{5}+1}{2}>\frac{3}{e} \tag{3.6}
\end{equation*}
$$

As regards $\mu(n, k)$, at present it is known only that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \mu(n, 3)=+\infty . \tag{3.7}
\end{equation*}
$$

This was conjectured by Marshall Hall and proved by R. Sinkhorn [8]. As a matter of fact, Sinkhorn proved $\mu(n, 3) \geqq n$ for all $n \geqq 3$. Of course (3.7) implies $\lim \mu(n, k)=+\infty$ for $k=4,5, \ldots$ too.

An interesting open problem is the following: evaluate asymptotically $\mathrm{P}(n, n \log n+(r-1) n \log \log n, r)$ if r is not constant, but increases together with n.

There is a striking analogy between Theorem 1 and the following well known result (see e.g. [4]): If $N_{r}^{*}(n)$ balls are placed at random into n urns, and $N_{r}^{*}(n)$ is given by (0.8) (with $\omega(n) \rightarrow+\infty)$ then the probability of each urn containing at least r balls, tends to 1 for $n \rightarrow+\infty$. The relation between this problem and that of $\S 1$ is made clear by the following remark. If we interpret the rows (columns) of M as urns and the ones as balls, then there are n urns, and each of the $N_{r}^{*}(n)$ ",balls" falls with the same probability $1 / n$ in any of the ,,urns".

In another paper ([5]) we have proved the following theorem (Theorem 1 of [5]): a random graph $\Gamma(n, N)$ with n vertices where n is even and $N=\frac{1}{2} n \log n+n \omega(n)$ edges where $\omega(n) \rightarrow+\infty$ for $n \rightarrow+\infty$, contains a factor of degree one with probability tending to 1 for $n \rightarrow+\infty$.

Theorem 1 of the present paper suggests the following problem: does a random graph $\Gamma(n, N)$ where n is even and

$$
N=\frac{1}{2} n \log n+\frac{r-1}{2} n \log \log n+\omega(n) n
$$

where $\omega(n) \rightarrow+\infty$, contain at least r disjoint factors of degree one with probability tending to 1 for $n \rightarrow \infty$? To prove this, besides the method of [5] the results of [6] have to be used.

REFERENCES

[1] Erdős, P. and Rényi A.: On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1964) 455-461.
[2] Frobenius, G.: Über zerlegbare Determinanten, Sitzungsberichte der Berliner Akademie, 1917, 274-277.
[3] König, D.: Graphok és matrixok, Mat. Fiz. Lapok 38 (1931) 116-119.
[4] Erdős, P. and Rényi, A.: On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 215-220.
[5] Erdős, P. and Rény1, A.: On the existence of a factor of degree one of a connected random graphs, Acta Math. Acad. Sci. Hungar. 17 (1966) 359-368.
[6] Erdös, P. and Rényi, A.: On the strength of connectedness of random graphs, Acta Math. Acad. Sci. Hungar. 12 (1961) 261-267.
[7] Ryser, H. J.: Combinatorial mathematics, Carus Math. Monographs, No. 14. Wiley, 1965. [8] Sinkhorn, R.: Concerning a conjecture of Marshall Hall (in print).

Mathematical Institute of the Hungarian Academy of Sciences, Budapest
(Received March 12, 1968.)

