ON SETS OF ALMOST DISJOINT SUBSETS OF A SET

By
P. ERDÖS (Budapest), member of the Academy, A. HAJNAL (Budapest)
and E. C. MILNER (Reading, Engiand)

1. Introduction

The cardinal power of a set A is denoted by $|A|$. Two sets A_{1}, A_{2} are said to e almost disjoint if

$$
\left|A_{1} \cap A_{2}\right|<\left|A_{i}\right| \quad(i=1,2) .
$$

I e call B a transversal of the disjoint non-empty sets $A_{v}(v \in M)$ if $B \subset \bigcup_{v \in M} A_{v}$ and B intersects each $A_{v}(v \in M)$ in a singleton.

An old and well known theorem of W. Sierpinski is that an infinite set of power \mathbf{m} contains more than \mathbf{m} subsets of power \mathbf{m} which are pairwise almost disjoint and A. ARSKI obtained various generalizations and extensions of this in [1] and [2]. It is easy to see that Sierpinski's result is equivalent to the following statement: If $A_{v}(v \in M)$ are \mathbf{m} disjoint sets of power \mathbf{m}, then there are more than \mathbf{m} almost disjoint transversals of the A_{v}. In $\S 3$ we prove some new results which are analogous to this formulation of Sierpinski's theorem.

Ne will denote the following statement by \mathscr{H} : There are \aleph_{2} almost disjoint transversals of \aleph_{1} disjoint denumerable sets. In view of recent axiomatic results \mathscr{H} is independent of the usual axioms of set theory and the generalized continuum hypothesis. In $\S 4$ we show that \mathscr{H} implies a certain unsolved problem of [3].

In $\S 5$ we consider another question about sets of almost disjoint subsets of a set which was raised by F. S. Cater [4].

2. Notation

Ca ital letters always denote sets and \mathscr{F} denotes a set whose members are sets. We writ $\cup \mathscr{F}$ to denote the union of all the members of \mathscr{F}. The set-theoretic difference of A and B is $A-B$. Bold lower case latin letters denote cardinals and greek letters denote ordinal numbers. If S is a well-ordered set of type α, then the cardinal of α is the same as the cardinal of S and is denoted by $|\alpha|$. The smallest ordinal number v ith cardinal \mathbf{m} is denoted by $\omega(\mathbf{m})$. As is customary we write ω_{α} instead of $\omega\left(\aleph_{\alpha}\right)$ nd ω instead of ω_{0}. The set of ordinal numbers $\{v: \alpha \leqq v<\beta\}$ is denoted by $[\alpha, \beta)$. . he obliterator sign ^ written above any symbol indicates that that symbol is to be disregarded. For example, we sometimes write $A_{0} \cup \ldots \cup \hat{A}_{2}$ instead of $\bigcup_{v<\lambda} A_{v}$.

The smallest cardinal greater than \mathbf{m} is called the successor of \mathbf{m} and is denoted by \mathbf{m}^{+}. If \mathbf{a} is not a successor cardinal (i. e. $\mathbf{a} \neq \mathbf{b}^{+}$for any \mathbf{b}), then \mathbf{a} is called a limit cardinal. The cofinality cardinal of \mathbf{a}, denoted by \mathbf{a}^{\prime}, is the smallest cardinal \mathbf{m} which is such that a can be expressed as the sum of \mathbf{m} cardinals each less than \mathbf{a}. In the
notation of Tarski, $\mathbf{\aleph}_{\alpha}^{\prime}=\mathbf{N}_{\mathrm{cf}(\alpha)}$. \mathbf{a} is regular if $\mathbf{a}^{\prime}=\mathbf{a}$ and singular if $\mathbf{a}^{\prime}<\mathbf{a}$. A cardinal is inaccessible if it is a regular limit number. It is not known if there are inaccessible cardinals greater than \aleph_{0} but the assumption that there are not is known to be consistent with the axioms of set theory.

If B is a set of ordinal numbers we call β a limit point of B if β is the limit of an increasing sequence of members of $B . B$ is closed in A if all the limit points of B which are in A are also in $B . B$ is a cofinal subset of $[0, \lambda)$ if for any $v<\lambda$ there is $\beta \in B$ such that $v \leqq \beta<\lambda . B$ is a band in $[0, \lambda)$ if it is a closed cofinal subset. If S is a set of ordinal numbers and f is an ordinal-valued function on S such that $f(v)<v$ for all arguments $v(\neq 0)$ in S, then f is called a regressive function on S. A stationary value of such a function is an ordinal number Θ such that $|\{v: v \in S, f(v)=\Theta\}|=|S|$. A well known result of Alexandroff and Urysohn is that, if \mathbf{m} is a regular cardinal greater than \aleph_{0}, then any regressive function on $[0, \omega(\mathbf{m}))$ has a stationary value. A more general theorem of W. Neumer [5] is the following: Let $\mathbf{m}=\mathbf{m}^{\prime}>\aleph_{0}$ and let S be a subset of $[0, \omega(\mathbf{m})$) of power \mathbf{m}. Then every regressive function on S has a stationary value if and only if the complement $[0, \omega(\mathbf{m}))-S$ contains no band of $[0, \omega(\mathbf{m}))$. A set satisfying this condition is said to be stationary.

The theorem of Sierpinski stated in § 1 does not depend for its proof on the generalized continuum hypothesis (g. c. h.) that $2^{\mathbb{N}_{\alpha}}=\mathbf{N}_{\alpha+1}$ - in fact, not even the axiom of choice is required in the case $\mathbf{m}=\aleph_{0}$. In this paper we always assume the axiom of choice and sometimes we use the g.c. h. or some weaker hypothesis, but we always indicate when this hypothesis is employed.

3. Transversals of disjoint sets

Theorem 1. Let $A_{v}\left(v<\omega_{\alpha+1}\right)$ be $\aleph_{\alpha+1}$ disjoint sets each of power \aleph_{α}. Then there is a set, \mathscr{F}, of transversals of the A_{v} such that $|\mathscr{F}|=\aleph_{\alpha+1}$ and

$$
\begin{equation*}
\left|F \cap F^{\prime}\right|<\mathfrak{N}_{\alpha} \quad\left(F \neq F^{\prime} ; \quad F, F^{\prime} \in \mathscr{F}\right) \tag{1}
\end{equation*}
$$

Proof. We can assume that $A_{v}=\left\{\xi_{v \mu}: \mu \leqq \max \left\{v, \omega_{\alpha}\right\}\right\} \quad\left(v<\omega_{\alpha+1}\right)$. Let $\lambda<\omega_{\alpha+1}$ and suppose the transversals F_{ρ} have already been defined for $\varrho<\lambda$. Put $\pi=\min \left\{\lambda, \omega_{\alpha}\right\}$ and let f be a $1-1$ map of $[0, \pi)$ onto $[0, \lambda)$. If $\varrho<\omega_{\alpha}$, then $T_{\varrho}=A_{f(\rho)}-$ $-\bigcup_{\sigma<e} F_{f(\sigma)} \neq \emptyset$ and we can choose $x_{f(\varrho)} \in T_{\varrho}$. Now put

$$
F_{\lambda}=\left\{x_{f(e)}: \varrho<\pi\right\} \cup\left\{\xi_{v \lambda}: v \in\left[\lambda, \omega_{\alpha+1}\right)\right\} .
$$

This defines F_{λ} for $\lambda<\omega_{\alpha+1}$ by induction. It is clear from the construction that F_{λ} is a transversal of the A_{v}. Also, if $\mu<\lambda<\omega_{\alpha+1}$ then $\mu=f(\varrho)$ for some $\varrho<\pi$ and

$$
F_{\lambda} \cap F_{\mu} \subset\left\{x_{f(0)}, \ldots, x_{f(\varphi)}\right\},
$$

i. e. $\left|F_{\lambda} \cap F_{\mu}\right|<\aleph_{\alpha}$. Thus the set $\mathscr{F}=\left\{F_{\lambda}: \lambda<\omega_{\alpha+1}\right\}$ has the properties described.
A. TARSKI [1] proved: If \mathscr{F} is a set of subsets of a set of power \mathbf{m} and if $\left|F \cap F^{\prime}\right|<p$ for distinct members $F, F^{\prime} \in \mathscr{F}$, then $|\mathscr{F}| \leqq \mathbf{m}^{\mathrm{p}}$. It follows from this and the g. c. h. that if \mathscr{F} is any set of transversals of $\aleph_{\alpha+1}$ sets of power \aleph_{α} such that (1) holds, then $|\mathscr{F}| \leqq \mathbb{N}_{\alpha+1}^{N}=\aleph_{\alpha+1}$. In this sense Theorem 1 is the best possible result. The total number of different transversals of the A_{v} is $\aleph_{\alpha}^{N_{\alpha+1}} \geqq \aleph_{\alpha+2}$.

Our next theorem has some relevance to problem \mathscr{H}.
Theorem 2. Let $A_{v}\left(v<\omega_{\alpha+1}\right)$ be $\mathbb{N}_{\alpha+1}$ disjoint sets of power \aleph_{α}. Then there is a maximal set, \mathscr{F}, of $\aleph_{\alpha+1}$ almost disjoint transversals of the A_{v}, i.e. if B is any transversal of the A_{v}, then there is some $F \in \mathscr{F}$ such that $|F \cap B|=\aleph_{\alpha+1}$.

Proof. Since $\left|A_{v}\right|=\aleph_{\alpha}$ we can assume that

$$
A_{v}=\left\{\xi_{v \mu}: \mu<\max \left\{v, \omega_{\alpha}\right\}\right\} \quad\left(v<\omega_{\alpha+1}\right) .
$$

For $\lambda<\omega_{\alpha+1}$ put

$$
F_{\lambda}=\left\{\xi_{v 0}: v \leqq \lambda\right\} \cup\left\{\xi_{v \lambda}: \lambda<v<\omega_{\alpha+1}\right\} .
$$

Then $\mathscr{F}=\left\{F_{\lambda}: \lambda<\omega_{\alpha+1}\right\}$ is a maximal set of almost disjoint transversals of the A_{v}. To see this consider any transversal B. By the definition of the F_{i}, we have that

$$
A_{v} \subset \bigcup_{\lambda<v} F_{\lambda} \quad \text { if } \quad v \in S=\left[\omega_{\alpha}, \omega_{\alpha+1}\right) .
$$

Therefore, for each $v \in S$, there is $f(v)<v$ such that

$$
B \cap F_{f(v)} \cap A_{v} \neq 0 .
$$

Since f is regressive on S, there is $\gamma<\omega_{\alpha+1}$ such that $N_{\gamma}=\{v: v \in S, f(v)=\gamma\}$ has power $\aleph_{\alpha+1}$. Since the A_{v} are disjoint it follows that $\left|B \cap F_{\gamma}\right| \geqq\left|N_{\gamma}\right|=\aleph_{\alpha+1}$.

The remaining theorems in this section are concerned with almost disjoint transversals of sets A_{v} which do not necessarily have the same power. Let $\lambda=\omega\left(\mathbf{m}^{\prime}\right)$ and let $A_{0}, \ldots, \hat{A}_{\lambda}$ be \mathbf{m}^{\prime} disjoint sets which satisfy

$$
\begin{equation*}
0<\left|A_{0}\right| \leqq\left|A_{1}\right| \leqq \ldots \leqq\left|\hat{A}_{\lambda}\right| \leqq \mathrm{m}=\lim _{v<\lambda}\left|A_{v}\right| . \tag{2}
\end{equation*}
$$

By Kőnig's theorem, the total number of transversals is

$$
\left|A_{0}\right| \cdot\left|A_{1}\right| \ldots\left|\hat{A_{\lambda}}\right|>\left|A_{0} \cup A_{1} \cup \ldots \cup \hat{A}_{\lambda}\right|=\mathbf{m} .
$$

In Theorem 3 we show that there are \mathbf{m}^{+}almost disjoint transversals if $\mathbf{m}^{\prime}=\aleph_{0}$. The corresponding statement in the case $\mathbf{m}^{\prime}>\mathbb{N}_{0}$ is not true. In this case the existence or non-existence of \mathbf{m}^{+}almost disjoint transversals depends upon whether or not some extra condition on the cardinals $\left|A_{v}\right|(v<i)$ is satisfied (Theorems 5, 6).

Theorem 3. Let $\mathbf{m}^{\prime}=\aleph_{0}$ and let $A_{v}(v<\omega)$ be \aleph_{0} disjoint sets which satisfy the condition (2). Then there are \mathbf{m}^{+}almost disjoint transversals of the A_{v}.

Proof. There are cardinals $\mathbf{m}_{v}<\mathbf{m}(v<\omega)$ such that

$$
1 \leqq \mathbf{m}_{0} \leqq \mathbf{m}_{1} \leqq \ldots<\mathbf{m}=\mathbf{m}_{0}+\mathbf{m}_{1}+\ldots
$$

If $\theta<\omega$, then by (2) there is $v_{\theta}<\omega$ such that

$$
\begin{equation*}
\left|A_{v}\right|>\mathbf{m}_{0}+\ldots+\hat{\mathbf{m}}_{\theta}=\mathbf{n}_{\theta} \quad\left(v_{\theta} \leqq v<\omega\right), \tag{3}
\end{equation*}
$$

and we can assume that $0=v_{0}<v_{1}<\ldots$.
We shall define \mathbf{m}^{+}almost disjoint transversals $F_{\mu}\left(\mu<\omega\left(\mathbf{m}^{+}\right)\right)$by induction. Let $\mu<\omega\left(\mathbf{m}^{+}\right)$and suppose that we have already defined the transversals $F_{\varrho}(\varrho<\mu)$.

Since $|\mu| \leqq \mathbf{m}$, we may write

$$
\left\{F_{0}, \ldots, \hat{F}_{\mu}\right\}=\mathscr{F}_{0} \cup \mathscr{F}_{1} \cup \ldots \cup \hat{\mathscr{F}}_{\omega}
$$

where $\left|\mathscr{F}_{v}\right| \leqq \mathbf{m}_{v}(v<\omega)$. By (3) there is

$$
x_{v} \in A_{v}-\bigcup_{\varphi<\theta} \cup \mathscr{F}_{\varphi} \quad\left(v_{\theta} \leqq v<v_{\theta+1} ; \quad \theta<\omega\right) .
$$

Then $F_{\mu}=\left\{x_{v}: v<\omega\right\}$ is a transversal which intersects each $F_{\varrho}(\varrho<\mu)$ in a finite set. This completes the proof.

Assuming the hypothesis (4) (which is true if $m=\Omega_{0}$ and is implied by the g. c. h . if $\mathbf{m}>\mathbb{N}_{0}$), the next theorem shows that, if $\mathbf{m}^{\prime}=\mathbb{N}_{0}$ then no set of \mathbf{m} almost disjoint transversals of denumerably many disjoint sets is maximal. Theorem 3 can easily be deduced from this. We cannot prove Theorem 4 without the hypothesis (4).

Theorem 4. Suppose that $\mathbf{m}^{\prime}=\aleph_{0}$ and

$$
\begin{equation*}
2^{\mathrm{n}}<\mathbf{m} \text { if } \mathbf{n}<\mathbf{m} . \tag{4}
\end{equation*}
$$

Let \mathscr{F} be any set of power \mathbf{m} of almost disjoint transversals of \aleph_{0} disjoint sets $A_{v}(v<\omega)$. Then \mathscr{F} is not maximal, i. e. there is a transversal which is almost disjoint from each member of \mathscr{F}.

Proof. If $\theta<\omega$ we will show that there is $v_{\theta}<\omega$ such that (3) holds. Suppose this is false. Then there is an infinite set $I \subset[0, \omega)$ such that

$$
\begin{equation*}
\left|A_{v}\right| \leqq \mathbf{n}_{\theta} \quad(v \in I) . \tag{5}
\end{equation*}
$$

Case $1 . \mathbf{m}=\mathbf{N}_{0}$. Then n_{θ} is finite. Let \mathscr{F}^{*} be a subset of $\mathbf{n}_{\theta+1}$ members of \mathscr{F}. Since \mathscr{F}^{*} is a finite set of almost disjoint transversals, there is $\pi<\omega$ such that

$$
F \cap A_{v} \neq F^{\prime} \cap A_{v}
$$

if $\pi \leqq \nu<\omega$ and F, F^{\prime} are different members of \mathscr{F}^{*}. There is $\gamma \in I$ such that $\gamma>\pi$ and we have the contradiction that

$$
\left|A_{\gamma}\right| \geqq\left|A_{\gamma} \cap \cup \mathscr{F} *\right|>\mathbf{n}_{\theta} .
$$

Case 2. $\mathbf{m}>\aleph_{0}$. Since $\mathbf{n}_{\theta}<\mathbf{m}$, it follows from (4) and (5) that the total number of distinct transversals of the sets $A_{v}(v \in I)$ is at most $\mathbf{n}_{\theta}^{\mathrm{NO}_{0}} \leqq 2^{\mathrm{n}^{\mathrm{o}} \mathrm{N}_{0}}<\mathbf{m}$. Therefore, there are distinct members $F, F^{\prime} \in \mathscr{F}$ such that $F \cap A_{v}=F^{\prime} \cap A_{v}(v \in I)$ and this contradicts the fact that the members of \mathscr{F} are almost disjoint. The theorem now follows by precisely the same argument used in the last paragraph of the proof of Theorem 3.

There is no analogue of Theorem 4 for cardinals not cofinal with \aleph_{0}. For example, if $A_{v}=\left\{\xi_{v \mu}: \mu<\omega_{v}\right\}\left(v<\omega_{1}\right)$ and

$$
F_{\sigma}=\left\{\xi_{v 0}: v \leqq \varrho\right\} \cup\left\{\xi_{v \sigma}: \varrho<v<\omega_{1}\right\} \quad\left(\omega_{e} \leqq \sigma<\omega_{e+1} ; \quad \varrho<\omega_{1}\right),
$$

then there is a maximal set of almost disjoint transversals, \mathscr{F}, which contains the set $\left\{F_{\sigma}: \omega \leqq \sigma<\omega_{\omega_{1}}\right\}$, i. e. $|\mathscr{F}| \geqq \aleph_{\omega_{1}}$. The sets $A_{v}\left(v<\omega_{1}\right)$ do not have the pro-
perty $\mathscr{P}\left(\aleph_{1}\right)$ defined below and so, by Theorem 6 and the g. c. h., $|\mathscr{F}| \leqq \mathbb{N}_{\omega_{1}}$. On the other hand, if $\left|B_{v}\right|=\aleph_{v+1}\left(v<\omega_{1}\right)$, then the sets B_{v} do have the property $\mathscr{P}\left(\aleph_{1}\right)$ and therefore, by Theorem 5, there is a set of $\aleph_{\omega_{1}+1}$ almost disjoint transversals of the B_{v}.

A set of cardinal numbers $M=\left\{\mathbf{m}_{0}, \ldots, \mathbf{m}_{\lambda}\right\}_{<}{ }^{*}$ is closed if it contains the limits of all increasing sequences in M, i. e. if ϱ is a limit number and $v_{\sigma}<\lambda(\sigma<\varrho)$, then

$$
\lim _{\sigma<Q} \mathbf{m}_{v_{\sigma}}=\mathbf{m}_{v},
$$

where $v=\lim _{\sigma<e} v_{\sigma}$. We prove the following simple lemma.
Lemma. Let \mathbf{m} be a limit cardinal not cofinal with \aleph_{0}, let $\lambda=\omega\left(\mathbf{m}^{\prime}\right)$ and let $\left\{\mathbf{m}_{0}, \ldots, \hat{\mathbf{m}}_{\lambda}, \mathbf{m}\right\}_{<}$and $\left\{\mathbf{n}_{0}, \ldots, \hat{\mathbf{n}}_{\lambda}, \mathbf{m}\right\}_{<}$be closed sets of cardinals. Then

$$
B=\left\{v: v<\lambda, \quad \mathbf{m}_{v}=\mathbf{n}_{v}\right\}
$$

is a band in $[0, \lambda)$.
Proof. It is clear that B is closed in $[0, \lambda)$. Suppose there is $v_{0}<\lambda$ such that $\mathbf{m}_{v} \neq \mathbf{n}_{v}$ for $v>v_{0}$. There are ordinals $v_{\varrho}<\lambda(\varrho<\omega)$ such that $v_{0}<v_{1}<v_{2}<\ldots$ and

$$
\mathbf{m}_{v_{0}}<\mathbf{n}_{v_{1}}<\mathbf{m}_{v_{2}}<\mathbf{n}_{v_{3}}<\ldots .
$$

If $v=\lim _{\rho<\omega} v_{e}$, then $v<\lambda$ since $\mathbf{m}^{\prime}>\boldsymbol{N}_{0}$ and

$$
\mathbf{m}_{v}=\lim _{\varrho<\omega} \mathbf{m}_{v_{e}}=\lim _{\varrho<\omega} \mathbf{n}_{v_{\boldsymbol{e}}}=\mathbf{n}_{v} .
$$

This contradiction proves that B is cofinal, and hence a band, in $[0, \lambda)$.
Let \mathbf{m} be any limit cardinal and let $\lambda=\omega\left(\mathbf{m}^{\prime}\right)$. Then there are cardinals $\mathbf{m}_{0}, \ldots, \hat{\mathbf{m}}_{\lambda}$ such that

$$
\mathbf{m}_{0}<\mathbf{m}_{1}<\ldots<\hat{\mathbf{m}}_{\lambda}<\mathbf{m}=\lim _{v<\lambda} \mathbf{m}_{v}
$$

and we can assume that the set $\left\{\mathbf{m}_{0}, \ldots, \hat{\mathbf{m}}_{\lambda}, \mathbf{m}\right\}_{<}$is closed (if not, the closure of the set also contains \mathbf{m}^{\prime} cardinals). Let $A_{v}(v<\lambda)$ be \mathbf{m}^{\prime} disjoint sets. We say that these sets have the property $\mathscr{P}(\mathbf{m})$ if (2) holds and the set

$$
C=\left\{v: 1 \leqq v<\lambda, \quad\left|A_{v}\right| \leqq \mathbf{m}_{v}\right\}
$$

is non-stationary in $[0, \lambda)$. This definition of $\mathscr{P}(\mathbf{m})$ does not depend upon the particular choice of the $\mathbf{m}_{v}(v<\lambda)$. For suppose that $\left\{\mathbf{n}_{0}, \ldots, \hat{\mathbf{n}}_{\lambda}, \mathbf{m}\right\}_{<}$is another closed set of cardinals and

$$
C^{\prime}=\left\{v: 1 \leqq v<\lambda, \quad\left|A_{v}\right| \leqq \mathbf{n}_{v}\right\} .
$$

If C is stationary then so is C^{\prime} since $C^{\prime} \supset C \cap B$, where B is the set defined in the lemma, and the intersection of a stationary set and a band is also stationary.** Conversely, C is stationary if C^{\prime} is.

[^0]Theorem 5. Let \mathbf{m} be any limit cardinal not cofinal with $\mathbf{\aleph}_{0}$ and let $\lambda=\omega\left(\mathbf{m}^{\prime}\right)$. If the disjoint sets $A_{v}(v<\lambda)$ have the property $\mathscr{P}(\mathbf{m})$, then there are \mathbf{m}^{+}almost disjoint transversals of the A_{v}.

Proof. Since $C=\left\{v: v<\lambda,\left|A_{v}\right| \leqq \mathbf{m}_{v}\right\}$ is non-stationary, there is a band $\left\{v_{0}, v_{1}, \ldots, \hat{v}_{\lambda}\right\}_{<}$in the complement $[0, \lambda)-C$. We can assume that $v_{0}=0$. Then, if $\mu<\lambda$, there is $\varrho(\mu)<\lambda$ such that

$$
v_{\varrho(\mu)} \leqq \mu<v_{\varrho(\mu)+1} .
$$

Let $\theta<\omega\left(\mathbf{m}^{+}\right)$and suppose the transversals $F_{\varphi}(\varphi<\theta)$ of the A_{v} have already been defined. Since $|\theta| \leqq \mathbf{m}$, we may write

$$
\left\{F_{0}, \ldots, \hat{F}_{\theta}\right\}=\mathscr{F}_{0} \cup \ldots \cup \hat{\mathscr{F}}_{\lambda},
$$

where $\left|\mathscr{F}_{v}\right| \leqq \mathbf{m}_{v}(v<\lambda)$. If $\mu<\lambda$, then

$$
\left|A_{\mu}\right| \geqq\left|A_{v_{e(\mu}(\mu)}\right|>\mathbf{m}_{v_{e(\mu)}}
$$

since $v_{e(\mu)} \ddagger C$. Also,

$$
A_{\mu} \cap \bigcup_{v<v_{e}(\mu)} \cup \mathscr{F}_{v}\left|\leqq\left|v_{e(\mu)}\right| \cdot \mathbf{m}_{v_{v(\mu)}}=\mathbf{m}_{v_{e(\mu)}} .\right.
$$

Therefore, we can choose

$$
x_{\mu} \in A_{\mu}-\bigcup_{v<v_{\ell(\mu)}} \cup \mathscr{F}_{v} \quad(\mu<\lambda) .
$$

Then $F_{\theta}=\left\{x_{0}, \ldots, \hat{x}_{\lambda}\right\}$ is a transversal of the A_{v}. If $\varphi<\theta$, then there is $\sigma<\lambda$ such that $F_{\varphi} \in \mathscr{F}_{\sigma}$ and, by the definition of F_{θ},

$$
F_{\theta} \cap F_{\varphi} \subset\left\{x_{\mu}: \mu<v_{e(\sigma)+1}\right\} .
$$

Therefore, F_{θ} is almost disjoint from all the sets $F_{\varphi}(\varphi<\theta)$. Theorem 5 now follows by induction.

The next theorem shows that (if we assume (6) which is weaker than the g.c. h.) the condition $\mathscr{P}(\mathbf{m})$ in Theorem 5 is a necessary one for the existence of \mathbf{m}^{+}almost disjoint transversals in the case when \mathbf{m} is a singular limit number. We do not know if a similar result holds for inaccessible cardinals.

Theorem 6. Let $\mathbf{m}>\mathbf{m}^{\prime}>\aleph_{0}$ and suppose that

$$
\begin{equation*}
\mathbf{n}^{\mathbf{m}^{\prime}}<\mathbf{m}^{+} \quad(\mathbf{n}<\mathbf{m}) . \tag{6}
\end{equation*}
$$

Let $\lambda=\omega\left(\mathrm{m}^{\prime}\right)$ and suppose that the disjoint sets $A_{v}(v<\lambda)$ satisfy (2) but do not have the property $\mathscr{P}(\mathbf{m})$. Then any set of almost disjoint transversals of the A_{v} has power less than or equal to \mathbf{m}.

Proof. We will assume that \mathscr{F} is a set of \mathbf{m}^{+}almost disjoint transversals of the A_{v} and deduce a contradiction.

By hypothesis, the set $C=\left\{v: 1 \leqq v<\lambda,\left|A_{v}\right| \leqq \mathbf{m}_{v}\right\}$ is stationary in $[0, \lambda)$. Therefore L, the set of limit ordinals in C, is also stationary. For each $v \in L$ we can assume

$$
A_{v} \subset\left\{(v, \varrho): \varrho<\omega\left(\mathbf{m}_{v}\right)\right\} .
$$

If $F \in \mathscr{F}$ and $v \in L$, then there is $\varrho(F, v)<\omega\left(\mathbf{m}_{v}\right)$ such that

$$
(v, \varrho(F, v)) \in F .
$$

Since v is a limit ordinal less than λ and $\left\{\mathbf{m}_{0}, \ldots, \hat{\mathbf{m}}_{\lambda}, \mathbf{m}\right\}_{<}$is closed, there is $f_{F}(v)<v$ such that

$$
|\varrho(F, v)|<\mathbf{m}_{f_{F}(v)} .
$$

Since f_{F} is regressive on the stationary set L, there are $\theta_{F}<\lambda$ and $N_{F} \subset L$ such that $\left|N_{\boldsymbol{F}}\right|=\mathbf{m}^{\prime}$ and

$$
f_{F}(v)=\theta_{F} \quad\left(v \in N_{F}\right) .
$$

It follows from (6) that there are $\theta<\lambda, N \subset L$ and $\mathscr{F}^{*} \subset \mathscr{F}$ such that $\left|\mathscr{F}^{*}\right|=\mathbf{m}^{+}$and

$$
\theta_{F}=\theta, \quad N_{F}=N \quad\left(F \in \mathscr{F}^{*}\right) .
$$

Put

$$
A_{v}^{*}=A_{v} \cap\left\{(v, \sigma): \sigma<\omega\left(\mathbf{m}_{0}\right)\right\} \quad(v \in N) .
$$

Then each $F \in \mathscr{F}^{*}$ meets each $A_{v}^{*}(v \in N)$ in a singleton. By (6) the number of distinct transversals of the $A_{v}^{*}(v \in N)$ is at most $\mathbf{m}_{9}^{m^{\prime}}<\mathbf{m}^{+}$. Therefore, there are distinct members $F, F^{\prime} \in \mathscr{F}^{*}$ such that

$$
F \cap A_{v}^{*}=F^{\prime} \cap A_{v}^{*} \quad(v \in N) .
$$

This is a contradiction since $|N|=\mathbf{m}^{\prime}$ and the members of \mathscr{F} are pairwise almost disjoint.

4. A deduction from \mathscr{H}

One of the unsolved problems mentioned in [3] is to to prove or disprove the following statement. $\mathscr{S}:$ Let S be a set of power \aleph_{2} and let E be the set of all unordered distinct pairs in $S .^{*}$ Then there is a partition of E

$$
\begin{equation*}
E=E_{0} \cup \ldots \cup \hat{E}_{\omega_{1}} \tag{7}
\end{equation*}
$$

into \aleph_{1} disjoint sets $E_{v}\left(v<\omega_{1}\right)$ such that for every subset $S^{\prime} \subset S$ of power \aleph_{1}

$$
\begin{equation*}
\left|\left\{v: v<\omega_{1}, \quad E^{\prime} \cap E_{v} \neq \emptyset\right\}\right|=\aleph_{1}, \tag{8}
\end{equation*}
$$

where E^{\prime} is the set of all pairs in S^{\prime}.
Let $A_{v}\left(v<\omega_{1}\right)$ be \aleph_{1} disjoint denumerable sets. Assuming that \mathscr{H} is true, we take S to be a set of \aleph_{2} almost disjoint transversals of the A_{v}. If F, F^{\prime} are distinct elements of S, then there is $\varrho_{F F^{\prime}}<\omega_{1}$ such that

$$
F \cap A_{v} \neq F^{\prime} \cap A_{v} \quad\left(\varrho_{F F^{\prime}} \leqq v<\omega_{1}\right) .
$$

If E is the set of all unordered pairs of S, put

$$
E_{v}=E \cap\left\{\left\{F, F^{\prime}\right\}: \varrho_{F F^{\prime}}=v\right\} \quad\left(v<\omega_{1}\right) .
$$

[^1]Then (7) holds and $E_{\mu} \cap E_{v}=\emptyset\left(\mu<v<\omega_{1}\right)$. Let S^{\prime} be any subset of S of power \aleph_{1} and let E^{\prime} be the set of pairs in S^{\prime}. If (8) is false, then there is $\varrho<\omega_{1}$ such that

$$
E^{\prime} \subset E_{0} \cup \ldots \cup \hat{E}_{e},
$$

i. e. $\varrho_{F F^{\prime}}<\varrho$ for all distinct pairs $\left\{F, F^{\prime}\right\} \subset S^{\prime}$. This implies that different members of S^{\prime} meet A_{ϱ} in different points, and therefore $\left|A_{\ell}\right| \geqq\left|S^{\prime}\right|=\aleph_{1}$. This contradiction proves that \mathscr{H} implies \mathscr{S}.

We do not know if \mathscr{S} also implies \mathscr{H}.

5. A problem of F. S. Cater

F. S. CATER [4] noted the following extension of Sierpinski's theorem. If \mathbf{m} is a regular cardinal and $|S|=\mathbf{m}$, then there is a set, \mathscr{F}, of almost disjoint subsets of power \mathbf{m} of S such that $|\mathscr{F}|>\mathbf{m}$ and, in addition,
(9) if $\mathscr{F}^{\prime} \subset \mathscr{F}$ and $\left|\mathscr{F}^{\prime}\right|=\mathbf{m}$, then there is $F \in \mathscr{F}-\mathscr{F}^{\prime}$ such that $\left|F \cap \cup \mathscr{F}^{\prime}\right|=\mathbf{m}$.

If \mathscr{F} is any maximal set of almost disjoint subsets of power \mathbf{m} of S and $|\mathscr{F}|>\mathbf{m}$, then it can easily be seen that (9) follows if m is regular. The $\mathrm{g} . \mathrm{c} . \mathrm{h}$. is not used in the proof just outlined but it only works for regular \mathbf{m}. Cater asked if the result is true for singular numbers. We will show (Theorem 8) with the aid of the g. c. h. that Cater's result holds for arbitrary $\mathbf{m} \geqq \aleph_{0}$ and that (9) can be replaced by the stronger condition
(10) if $\mathscr{F}^{\prime} \subset \mathscr{F}$ and $\left|\mathscr{F}^{\prime}\right|=\mathbf{m}$, then there is $F \in \mathscr{F}-\mathscr{F}^{\prime}$ such that $F \subset \cup \mathscr{F}^{\prime}$.

We cannot prove this result without the g. c. h. even in the case of regular \mathbf{m}.
We call B a weak transversal of the \mathbf{m} disjoint sets $A_{v}(v \in M)$ if

$$
B \subset \bigcup_{v \in M} A_{v}, \quad|B|=\mathbf{m} \quad \text { and } \quad\left|B \cap A_{v}\right| \leqq 1 \quad(v \in M) .
$$

The next theorem shows that Theorem 4 can be extended to arbitrary cardinals if we consider weak transversals instead of transversals.

Theorem 7. Suppose that \mathbf{m} is an infinite cardinal and that*

$$
\begin{equation*}
\mathbf{n}^{\mathbf{m}^{\prime}}<\mathbf{m} \text { if } \mathbf{m}^{\prime}<\mathbf{n}<\mathbf{m} . \tag{11}
\end{equation*}
$$

If \mathscr{F} is any set of almost disjoint weak transversals of \mathbf{m}^{\prime} disjoint sets $A_{v}\left(v<\omega\left(\mathbf{m}^{\prime}\right)\right)$ such that $|\mathscr{F}|=\mathbf{m}$, then \mathscr{F} is not maximal.

Proof. Put $\lambda=\omega\left(\mathbf{m}^{\prime}\right)$.
Case 1. $\mathbf{m}=\mathbf{m}^{\prime}$. Let $\mathscr{F}=\left\{F_{0}, \ldots, \hat{F}_{\lambda}\right\}$. Let $\varrho<\lambda$ and suppose that $v_{\sigma}<\lambda$ and $x_{\sigma} \in A_{v_{\sigma}}$ have been defined for $\sigma<\varrho$. Let $N=[0, \lambda)-\left\{v_{0}, \ldots, \hat{v}_{e}\right\}$. If

$$
A_{v} \subset F_{0} \cup \ldots \cup \hat{F}_{e} \quad \text { for all } \quad v \in N \text {, }
$$

* (11) is satisfied vacuously if \mathbf{m} is regular.
then $\left|F_{\varrho} \cap F_{\sigma}\right|=\mathbf{m}$ for some $\sigma<\varrho$ since $\mathbf{m}=\mathbf{m}^{\prime}$ and $\mid F_{\varrho}\left\lceil\left|\bigcup_{v \in N} A_{v}\right|=\mathbf{m}\right.$. This contradiction shows that there is $v_{e} \in N$ such that $A_{v e} \nsubseteq F_{0} \cup \ldots \cup \hat{F}_{e}$ and we can choose $x_{Q} \in A_{v_{Q}}-F_{0} \cup \ldots \cup \hat{F}_{Q}$. The set $\left\{x_{Q}: \varrho<\lambda\right\}$ defined by induction is a weak transversal of the A_{v} which is almost disjoint from all the members of \mathscr{F}.

Case 2. $\mathbf{m}>\mathbf{m}^{\prime}$. Let $\mathscr{F}=\mathscr{F}_{0} \cup \ldots \cup \hat{\mathscr{F}}_{\lambda}$, where $\left|\mathscr{F}_{v}\right|=\mathbf{m}_{v}<\mathbf{m} \quad(v<\lambda)$. Put $\mathscr{F}_{v}^{*}=\mathscr{F}_{0} \cup \ldots \cup \hat{\mathscr{F}}_{v}(v<\lambda)$ and let

$$
N_{v}=\left\{\mu: \mu<\lambda, \text { 雾 } A_{\mu} \sqsubset \cup \mathscr{F}_{v}^{*}\right\} \quad(v<\lambda) \text {. }
$$

If $\left|N_{v}\right|<\mathbf{m}^{\prime}$ for some $v<\lambda$, then there is $\theta<\lambda$ such that $A_{\mu} \subset \cup \mathscr{F}_{v}^{*}(\mu \in[\theta, \lambda))$. Therefore, $\left|A_{\mu}\right| \leqq \mathbf{m}_{0}+\ldots+\hat{\mathbf{m}}_{v}=\mathbf{n}_{v}<\mathbf{m}$ and the number of distinct weak transversals of the $A_{\mu}(\mu \in[\theta, \lambda))$ is at most $2^{\mathrm{m}^{\prime}} \cdot \mathbf{n}_{v}^{\mathrm{m}^{\prime}}<\mathbf{m}$. Therefore, there are distinct elements $F, F^{\prime} \in \mathscr{F}$ which meet in a common weak transversal of the $A_{\mu}(\mu \in[\theta, \lambda))$. This contradiction proves that

$$
\left|N_{v}\right|=\mathbf{m}^{\prime} \quad(v<\lambda)
$$

Let $\varrho<\lambda$ and suppose $v_{\sigma}<\lambda$ and $x_{\sigma} \in A_{v_{\sigma}}$ have been defined for $\sigma<\varrho$. Then we can choose $v_{Q} \in N_{e}-\left\{v_{0}, \ldots, \hat{v}_{e}\right\}$ and $x_{Q} \in A_{v_{e}}-\cup \mathscr{F}_{e}^{*}$. The set $B=\left\{x_{\varrho}: \varrho<\lambda\right\}$ is a weak transversal of the $A_{v}(v<\lambda)$. Also, if $F \in \mathscr{F}_{\gamma}$, then $B \cap F \subset\left\{x_{0}, \ldots, x_{\gamma}\right\}$, i. e. B is almost disjoint from all members of \mathscr{F}. This completes the proof of Theorem 7.

Theorem 8. Let $\mathbf{m} \geqq \aleph_{0}$ and assume that

$$
2^{\mathrm{m}}=\mathbf{m}^{+} \text {and } \mathbf{n}^{\mathrm{m}^{\prime}}<\mathbf{m}^{+} \text {if } \mathbf{m}^{\prime}<\mathbf{n}<\mathbf{m} .
$$

Let $|S|=\mathbf{m} \geqq \mathbf{p} \geqq \mathbf{p}^{\prime}=\mathbf{m}^{\prime}$. Then there is a set, \mathscr{F}, of almost disjoint subsets of S each of power \mathbf{p} such that $|\mathscr{F}|=\mathbf{m}^{+}$and (10) holds.

Proof. Throughout the proof we write $\lambda=\omega\left(\mathbf{m}^{\prime}\right), \alpha=\omega(\mathbf{m})$ and $\beta=\omega\left(\mathbf{m}^{+}\right)$.
Case 1. $\mathbf{p}=\mathbf{m}^{\prime}$. The number of distinct subsets of $[0, \beta)$ of power \mathbf{m} is $\left(\mathbf{m}^{+}\right)^{\mathrm{m}}=$ $=2^{\mathrm{m} \cdot \mathrm{m}}=\mathbf{m}^{+}$and we assume that these are the sets $N_{0}, \ldots, \hat{N}_{\beta}$. Let $A_{v}(v<\lambda)$ be \mathbf{m}^{\prime} disjoint subsets of S of power \mathbf{m}. Also, let $F_{0}, \ldots, \hat{F}_{\alpha}$ be any \mathbf{m} mutually disjoint transversals of the A_{v}.

Let $\theta \in[\alpha, \beta)$. Suppose that we have already defined ordinals $\tau_{\varphi}<\beta$ for $\alpha \leqq \varphi<\beta$ and also the weak transversals of the $A_{v}(v<\lambda) F_{0}, \ldots, \hat{F}_{\theta}$ which are pairwise almost disjoint. Since $[0, \theta)$ contains $\mathbf{m}^{\mathbf{m}}=\mathbf{m}^{+}$subsets of power \mathbf{m}, we can choose τ_{θ} to be the least ordinal $\tau<\beta$ such that $\tau \neq \tau_{\varphi}(\varphi<\theta)$ and such that $N_{\tau} \subset[0, \theta)$. Put $\mathscr{F}_{0}=\left\{F_{\varrho}: \varrho \in N_{\tau_{\theta}}\right\}, A_{v}^{*}=A_{v} \cap \cup \mathscr{F}_{\theta}(v<\lambda)$ and let $F_{Q}^{*}=F_{Q} \cap \cup A_{v}^{*}(\varrho<\theta)$. Now put $\mathscr{F}_{\theta}^{*}=\left\{F_{Q}^{*}: \varrho<\theta,\left|F_{Q}^{*}\right|=\mathbf{m}^{\prime}\right\}$. Then \mathscr{F}_{θ}^{*} is a set of almost disjoint weak transversals of the $A_{v}^{*}(v<\lambda)$ and $\left|\mathscr{F}_{\theta}^{*}\right|=\mathbf{m}$ since $\mathscr{F}_{\theta} \subset \mathscr{F}_{\theta}^{*}$. By Theorem 7 there is a weak transversal F_{θ} of the A_{v}^{*} which is almost disjoint from each member of $\mathscr{F}_{\theta}{ }^{*}$. Since

$$
\begin{equation*}
F_{\theta} \subset \bigcup \mathscr{F}_{\theta}=\bigcup_{e \in N_{\tau_{\theta}}} F_{e} \tag{12}
\end{equation*}
$$

it follows that F_{θ} is also almost disjoint from each $F_{\varphi}(\varphi<\theta)$. This defines F_{θ} and τ_{θ} for $\alpha \leqq \theta<\beta$. By the construction, it is clear that $\mathscr{F}=\left\{F_{\theta}: \theta<\beta\right\}$ is a set of m^{+}almost disjoint weak transversals of the $A_{v}(v<\lambda)$.

In order to complete the proof in this case we only need to observe that as θ ranges from α to β so τ_{θ} assumes all ordinal values less than β. If this were not the case there is a least $\varrho<\beta$ such that $\tau_{\theta} \neq \varrho(\alpha \leqq \theta<\beta)$. There is $\pi<\beta$ such that $N_{e} \subset[0, \pi)$ and the definition of τ_{θ} implies that $\tau_{\theta}<\varrho$ for $\pi \leqq \theta<\beta$. But this is impossible since $\tau_{\theta} \neq \tau_{\varphi}$ if $\theta \neq \varphi$. It follows that if \mathscr{F}^{\prime} is any subset of \mathscr{F} of power \mathbf{m}, then there is some $\theta \in[\alpha, \beta)$ such that $\mathscr{F}^{\prime}=\left\{F_{Q}: \varrho \in N_{\tau_{\theta}}\right\}$, i. e. $\mathscr{F}^{\prime}=\mathscr{F}_{\theta}$ and (10) follows from (12) and the fact that $\theta \notin N_{\tau_{\theta}}$.

Case 2. $\mathbf{p}>\mathbf{m}^{\prime}$. There are cardinals $\mathbf{p}_{v}(v<\lambda)$ such that $\mathbf{p}_{0}<\mathbf{p}_{1}<\ldots<\hat{\mathbf{p}}_{i}<\mathbf{p}=$ $=\lim _{v<\lambda} \mathbf{p}_{v}$. The result in this case easily follows from the last case if we replace each element of $A_{\mathrm{v}}(v<\lambda)$ by a subset of S of cardinal \mathbf{p}_{v}. Since the weak transversals meet \mathbf{m}^{\prime} different A_{v} they will, in this case, be subsets of S of power \mathbf{p}.
(Received 8 May 1967)

References

[1] A. Tarski, Sur la decomposition des ensembles en sous-ensembles presque disjoints, Fund. Math., 12 (1928), pp. 188-205.
[2] A. Tarski, Sur la decomposition des ensembles en sous-ensembles presque disjoints, Fund. Math., 14 (1929), pp. 205-215.
[3] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hung., 16 (1965), pp. 93-196.
[4] F. S. Cater, Advanced problem 5370, American M. M., 73 (1966), p. 311.
[5] W. Neumer, Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Z., 54 (1951), pp. 254-261.
[6] H. Bachmann, Transfinite Zahlen (Springer-Verlag, Berlin, 1955).

[^0]: * The symbol $\left\{\mathbf{m}_{0}, \ldots, \mathbf{m}_{\lambda}\right\}<$ indicates that $\mathbf{m}_{0}<\mathbf{m}_{1}<\ldots<\mathbf{m}_{\lambda}$.
 ** See H. Bachmann [6] page 41.

[^1]: * i. e. (S, E) is a complete graph.

