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ON SOME APPLICATIONS OF GRAPH THEORY TO NUMBER
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P. ERDŐS

Let a1 < . . . < ak < n be a sequence of integers no one of which divides

any other ; then it is easy to see that [1] max k = [n
2

	 11
. On the other hand,

I proved [2] by a combination of number theoretic
)
and graph theoretic

methods that, if we assume a1 I ajak i0 k), then (7T(n) denotes the
number of primes < n.)

7r(n)+c ln2/3 /(log n) 2 < max k <7T(n)+r2n2 / 3/(log n) 2 . . . (1)

Further, if we only assume that the products aiaj are all distinct, then [2]

7r(n)+C3n3/4/(log n) 3/2 < max k < 7T(n) +C4n 314	(2)

In the present paper we prove that the lower estimation in (2) is sharp
(apart from the value of the absolute constant c 3 ) . In fact we prove the
following

THEOREM . Assume that a 1 < . . . < ak < n is a sequence of integers for
which the products ajal are all distinct . Then

1r(n)+C3n 3 /4 /(log n) 3/ 2 < max k < w(n)+c5n 3 /4 /(log n)3/2 . (3)
The proof of (3) will be similar to that of (2) and will use elementary

results from number theory and graph theory. Before we prove our
Theorem we would like to discuss a few related results . An old conjecture
of Turin and myself states as follows : Let b1 < . . . be an infinite sequence
of integers . Denote by f (n) the number of solutions of n = bi+b5 . Then, if
f (n) > 0 for all n > no , lim sup f (n) = oo . Probably the above conclusion

n- oo
also follows if we only assume that bk < c ek 2 for all k . These conjectures
are not yet settled and are probably quite deep . It is perhaps surprising
that the multiplicative analogies of these conjectures have been settled . In
fact I proved the following results [3] : Let a 1 < . . . be an infinite sequence .
Denote by g(n) the number of solutions of n = aia j . Then, if g(n) > 0 for all
n > n o , we have lim sup g(n) = oo . In fact the following stronger result holds :

n-> co
Assume that a 3 < . . . < ak < n, n sufficiently large and

k > (1+e)n(log log n)1-1/(l-1) ! log n .

Then for some m, g(m) > 21 . The proof of these results uses combinatorial
arguments on generalized graphs and is not quite simple .
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Let finally a l < . . . < ak < n and assume that all the products 17aáí are
distinct . Then it is easy to see that mag k = ir(n) . If we only assume that

k
the products H a5g , Ei = 0 or 1 are all distinct, then [4]

i=1

7T(n) +c7n1 J2/log n < max k < 7r(n)+c8n1 / 2 / log n .

If we assume that all the products ai l . . . air (for fixed r) are all distinct,
we probably have

n1/2 1+v

	

7L112 1+y
ir(n)+cs(log

n)

	

< max k < 7T(n) +clo(ln n)

	

(4)

Unfortunately I can prove (4) only if r = 2 . (Then (4) becomes (3) .)
For r = 3 I can prove the right side of (4), in view of the incompleteness of
this result I suppress the proof .

Now we prove our Theorem. The lower bound in (3) has already been
proved in [2] by Miss E. Klein and myself; thus it suffices to prove the
upper bound in (3) . The method will be a refinement of the one used in [2] .
We need two lemmas .

LEMMA 1 . Every integer m < n can be written in the form

m = uv, v < u

	

(5)

where u is either a prime or is < n2/3 and v < n 2/3 .

The lemma is known [2] .
LEMMA 2 . Let G be a graph having tl vertices xl , . . . , xtl and C(G) edges .

Assume that each edge of G is incident to one of the vertices xi, 1 < i < t2 < ti,
and that G contains no rectangle (i .e . no circuit of four edges) . Then

C(G) < íl+í1 [ t 112
L2

	

2~ -1 -t2 (1-F
[t1/2~

	

1

	

(6)
1

	

1

Denote by v(xj ) the number of xi, 1 < i < t2i joined to x1. By our as-
sumption we have

tl
C(G) < -E v(xj ) .

	

(7)
i=i

Now we split the vertices of G into two classes . In the first class are the
vertices for which

v (xj) < [1~2]+1
= l

	

(8)
tl

and in the second class are the vertices with v(xj) > l > l . We evidently
have by (8)

, 'V(xj) < í1(1-F [t1j21~

	

(9)
Lr

	

J1

where in E' the summation is extended over the xp of the first class .
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Let now xj 1	xj, be the vertices of the second class. It is easy to
see that

=1 (v(2Y))
<

(2)
.

To prove (10) observe that since G has no rectangle no two xj, can be joined

to the same two xi's, 1 < i < t2 . One can clearly form
(
V(
2
Xr)

)
pairs from the

xi's, 1 < i < t2 i which are joined to xj, and these -1 (v(2xj,)) pairs are all dis-

tinct. Since there are (2) pairs formed from the xi's, 1 < i < t2, (10) clearly
follows .

From (10) and v(xj,) > l we have

=1

(/" t

	

\1 -1
v(XJ,) < L (2) < t2

(1+ L
t1121) .

	

. . ( 11)
/1

(6) follows from (9) and (11), hence Lemma 2 is proved .
Now we can prove our Theorem . Let a l < . . . < ak < n be a sequence

of integers for which the products aiay are all distinct . We can assume that
none of the a's are squares since the number of squares < n is [n 1 /2 ] which can
be absorbed in the error term in (3) . Put

ai = uivi, vi < ui,

	

(12)

where vi and vi satisfy Lemma 1 and vi is minimal . Now we associate
with our sequence al < . . . < ak < n a graph G having 7r (n)+n 21 3-a(n2 / 3 ) ver-
tices and k edges . The vertices of our graph are the integers < n2/3 and the
primes < n . Each ai we represent in the form (12) and we make correspond
to it the edge joining the vertices ui and vi . The fact that the products aiaf
are all distinct implies that G has no rectangle. For, if the edges al = alvl,
a2 = alv2i a3 = a2v2 and a4 = a2v1 would form a rectangle, we would have

alai = a2a4 = u1a2v1v2 .

Using Lemma 2 we now estimate k from above . We split the a's into
three classes . In the first class are the a's for which vi < n11 3 . In the second
class are the a's for which

n1/3 < vi < nl/2210 io g io g "

and in the third class are the a's for which

n1 /2

210 log log " < vi < n 1 /2 .
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Consider now the subgraph of G corresponding to the a's of the first
class . We apply Lemma 2 . We have here

tl = 7T(n) + [n2/3] -ir(n 213), 12 =[n 1/3]

	

(13)

Thus by (6) the number of a's of the first class is less than

,r(n)+2n2/3 .

	

(14)

(14) follows from the fact that by (13) [t 2/ti/2] = 0 .

The a's of the second class we split into several subclasses . Put
[10 log log n] = L . In the r-th subclass are the a's for which

n1/2

	

nl/2
2"+L < Ví 2 1'+L-1

If a¢ is in the r-th subclass, we have from (15)

ui < 2r+Ln1/2.

	

( 16)

Now we again apply Lemma 2 . By (15) and (16) we have
nl/2

t 1 < 2r+Lnl/2, t2 < 2r+ 2

	

(17)

Hence from (17) and (6) the number of a's of the r-th subclass is less than

2r+Lnl/2+4(21+Ln1/2)1/2 2
r+L2 1 < n2/3-}-ón3/4/2(L+r)/2 .

	

(18)

To prove (18) observe that t l < 2L+rnl/2 < n2/ 3 since otherwise at would
have belonged to the first class .

The total number of subclasses of the second class is clearly less than
log n/log 2 . Thus from (18) the number of a's of the second class is less than
(L = [10 log log n])

n2/3

	

/
l og2

n
+8n3 2(L+,)/2 - o(n3/4/(log n)3/2) .

	

(19)
r=0

To estimate the number of integers of the third class we need
LEMMA 3 . Let p, < . . . < p s < n be a sequence of primes . Then the

number of integers m < n which are not divisible by any of the pi is less than
S (

	

1
c 11n H

i=1

	

pi,

Lemma 3 follows immediately by Bruns method and is well known .
(See eg . [5] .)

Further, we will need the following classical result of Mertens .

c12/log n < 17
\ 1- 1, <

c13/log n.

	

(20)
p<n

	

pp
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The a's of the third class we again divide into subclasses . In the r-th
subclass are the a's for which

nl/ 2

	

n1/2

2r < Vi < 2r-1 •

	

(21)

Now we use for the first time the minimality property of vi . vi cannot
have a prime factor p < n l /7 . For, if vi = pv1, p < n1/7, then (since by (21)

ul < 2rnl/2 < 210 log log n n1/2)

al = vi . pui and pui < n2/3

	

(22)

or the representation (22) satisfies Lemma i which contradicts the minimality
property of vi .

Thus by Lemma 3 and (20) the number of possible choices for the vj
belonging to the a's of the r-th subclass is less than

n1/2

	

/

	

1 p

	

nl/2
Cll 2r_1

p < n,/7\
H i 1- - < C14

2r
	 leg

n
.

	

(23)

Let us next estimate the number of possible choices of the u4 which
belong to the a's of the r-th subclass . These ui cannot have a prime factor
in the interval (2 2r+ 2 , nl/ 7 ) . To see this assume p ( ua, 22r+2 < p < nl/ 7 . From

nl/2
(21) and v$ < vi we have

2r
< ul < 2r+lnl/2, Put now

al =
ul

P
.pvl .

From (21) we evidently have

pv¢ < n2/3,
p

< va

which contradicts the minimality property of v3 .

Hence by Lemma 3 and (20) the number of possible choices of the vi
belonging to the a's of the r-th subclass is less than

12
172r+lnl/2 22r}2

	

<

n1/7
1-

p
< C 15r 2r 1	

g n
.

	

. . (24)

Now we apply Lemma 2 . From (24) and (23) we have here
n1í 2

	

nl/2
t1 < C16r 2r log n ' t2 < C14 2r log n '

thus from Lemma 2 we have that the number of a's of the r-th subclass is
less than

r 1/2

	

n3/4

	

rl/2
c15r 2 n /log n~-c18 (log n)

3/2 2r/2 .

	

(25)

From (25) we obtain that the number of a's of the third class is less than
C1704/(Jog n)3 /2 .

	

(26)
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(14), (19) and (26) imply the upper bound in (3) and hence the proof of our
Theorem is complete .
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