ON SOME NEW INEQUALITIES CONCERNING EXTREMAL PROPERTIES OF GRAPHS

by

P. ERDŐS

Mathematical Institute of the Hungarian Academy of Sciences Budapest, Hungary

Denote by G(n; l) a graph of n vertices and l edges. $\varkappa(G)$ will denote the chromatic number of G. $K_r(p_1, \ldots, p_r)$ denotes the complete r-chromatic graph with p_l vertices of the *i*-th colour where any two vertices of different colour are joined. $K_1(p)$ is a graph consisting of p isolated vertices. $(G:K_r(p_1,\ldots,p_r))$ is obtained from G by adjoining a $K_r(p_1,\ldots,p_r)$, and by joining every new vertex to all the vertices of G. Clearly $\varkappa(G:K_r(p_1,\ldots,p_r)) = \varkappa(G) + r.f(n; G)$ is the smallest integer so that every $G_1(n; f(n; G))$ contains G as a subgraph. The graphs G'(n) = G'(n; f(n; G) - 1) which do not contain G as a subgraph are called the extremal graphs belonging to G.

The vertices of G will be denoted by $x, x_1, \ldots, y, \ldots$, the edges will be denoted by (x, y). The valence of a vertex x of G is the number of edges incident to x. $\pi(G)$ denotes the number of vertices, $\nu(G)$ the number of edges of G. If G' is a graph and x_1, \ldots, x_k are some of the vertices of G' then $G'(x_1, \ldots, x_k)$ is the subgraph of G' spanned by x_1, \ldots, x_k . c, c_1, \ldots denote absolute constants not necessarily the same if they occur in different formulas.

In a previous paper [1] I stated without proof that

(1)
$$f(n; K_r(t, \ldots, t)) < \frac{n^2}{2} \left(1 - \frac{1}{r-1}\right) + cn^{2-1/t}$$

In the present paper I will prove that (1) is a special case of a more general theorem. A recent result of SIMONOVITS and myself states [2] $(\varkappa(G) = r)$

(2)
$$f(n;G) = \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right) + o(n^2) .$$

In this paper I will prove

THEOREM 1. Let $\varkappa(G) = 2$. Then for $n > n_0(t)$

$$f(n; (G: K_{r-2}(t, \ldots, t))) < \frac{n^2}{2} \left(1 - \frac{1}{r-1}\right) + (1 + o(1))(r-1) f\left(\left[\frac{n}{r-1}\right]; G\right) + cn.$$

(c independent of t!).

First we deduce (1) from Theorem 1. A well known result of $K \delta V ARI$ and the TURANS [5] states that

(3)
$$f(n; K_2(t, t)) < cn^{2-1/t}$$

Clearly $K_r(t, \ldots, t) = (K_2(t, t) : K_{r-2}(t, \ldots, t))$. Thus from Theorem 1 ($G = K_2(t, t)$) we immediately obtain (1). (1) is probably best possible for every r and t but I can prove this only for $t \leq 3$.

Theorem 1 immediately implies that for $n > n_0(l)$

(4)
$$f(n; K_r(t, t, l, ..., l)) - \frac{n^2}{2} \left(1 - \frac{1}{r-1}\right) < c_1(r-1) n^{2-1/t} + c_2 n.$$

where both c_1 and c_2 are independent of l. In fact perhaps for $n > n_0$ (l_1, l_2)

(5)
$$|f(n; K_r(t, t, l_1, \ldots, l_1)) - f(n; K_r(t, t, l_2, \ldots, l_2))| < cn,$$

but I am very far from being able to prove (5).

It seems likely that in contrast to (4) and (5)

$$c_l' n^{2-1/t} < \left| f(n; K_r(t, l, ..., l)) - \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right) \right| < c_l'' n^{2-1/t}$$

where $c'_l \to \infty$ and $c''_l \to \infty$ as $l \to \infty$. The upper bound follows easily from Theorem 1 and the known result

(6)
$$K_2(t, l) < c_l' n^{2-1/t}$$

((6) follows e.g. by the method of [5]), but I can not prove the lower bound.

By more complicated methods I can prove the following strengthening of Theorem 1.

THEOREM 2. Let $\varkappa(G) = r$ and put

$$f(n;G) = \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right) + h(n;G)^1$$

Let $\delta = \delta(G)$ be sufficiently small. Then for $n > n_0(G, \delta)$

$$f(n; (G: K_1([\delta n])) < \frac{n^2}{2} \left(1 - \frac{1}{r}\right) + c_1 h(n; G) + c_2 n.$$

Theorem 2 in particular implies (.(G) = 2)

$$f(n; (G: K_{r-2}(t, ..., t, [\delta n]))) < \frac{n^2}{2} \left(1 - \frac{1}{r-1}\right) + (1 + o(1)) (r-1) f\left(\left[\frac{n}{r-1}\right]; G\right) + cn.$$

We do not prove Theorem 2 in this paper.

¹ By [2] $h(n; G) = o(n^2)$.

In a recent paper [3] I proved the following sharpening of (2):

THEOREM A. Let $l = (1 + o(1)) \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right)$ and assume that G(n; l) does not contain a $K_r(t, \ldots, t)$ as a subgraph. Then there is a

(7)
$$K_{r-1}(p_1, \ldots, p_{r-1}), \sum_{i=1}^{r-1} p_i = n, p_i = (1+o(1))\frac{n}{r-1}, i = 1, \ldots, r-1$$

which differs from our G(n; l) by $o(n^2)$ edges.

The principal tool in the proof of Theorem 1 will be

THEOREM 3. Let G'(n) be any extremal graph belonging to $G(\varkappa(G) = r)$. Then the vertices x_1, \ldots, x_n of our G'(n) can be partitioned into r - 1 classes each containing $(1 + o(1)) \frac{n}{r-1}$ of the x_i so that for every $\varepsilon > 0$ all but c_{ε} of the x_i are joined to all but ε_n of the x's which do not belong to the same class as x_i .

Observe that Theorem 3 does not contain Theorem A, though the conclusion of Theorem 3 is stronger its assumption is also more stringent.

To prove Theorem 3 we need a lemma which is of independent interest.

LEMMA. Let G'(n) be one of the extremal graphs belonging to G. Then every vertex of G'(n) has valence greater than $(1 + o(1)) n \left[1 - \frac{1}{r-1}\right]$.

Assume that the lemma is not true and let y be a vertex of G'(n) whose valence is less than $(1 - \varepsilon)n\left(1 - \frac{1}{r-1}\right)$. It easily follows from Theorem A that for every k, if $n > n_0(k)$, G'(n) has k vertices x_1, \ldots, x_k each of which is joined to y_1, \ldots, y_s , $s = (1 + o(1))n\left(1 - \frac{1}{r-1}\right)$. The existence of these vertices is clear since by Theorem A all but o(n) vertices of the first colour

vertices is clear since by Theorem A an but o(n) vertices of the first colour in $K(p_1, \ldots, p_{r-1})$ are joined in our G'(n), to all but o(n) other vertices of different colours. Delete now all the edges incident to y and replace them by the edges (y, y_i) , $i = 1, \ldots, s$. The new graph has more than $G_1(n; f(n; G))$ edges and clearly can not contain G as a subgraph since if it would contain G and if k would be greater than $\pi(G)$ then the subgraph $G'(x_1, \ldots, x_k, y_1, \ldots, y_s)$ of G'(n) would also contain G as a subgraph, which contradicts our assumption. This contradiction proves our lemma.

Not to complete the proof of Theorem 3 assume for the sake of simplicity that r = 3 the case r > 3 can be settled similarly. Let

$$K_2(p_1, p_2), p_1 + p_2 = n, p_i = (1 + o(1))\frac{n}{2}, \qquad i = 1, 2$$

be the graph (7) and let $x_1, \ldots, x_{p_1}, y_1, \ldots, y_{p_2}$ be the vertices of colour one and two, respectively. By Theorem A all but $o(n^2)$ of the edges (x_i, y_j) occur in our G'(n). By our Lemma we can further assume that the valence (in G'(n) of all the x_i and y_j is $\geq (1 + o(1)) \frac{n}{2}$ and that each x is joined with at least as many y's than x's and each y is joined with at least as many x's than y's (for if say x_1 is joined to more x's than y's we put it amongst the y's). Thus, each vertex is joined with at least $(1 + o(1)) \frac{n}{4}$ vertices of the op-

posite colour.

Assume now that Theorem 3 is not true. Then we can assume that for a fixed $\varepsilon > 0$ and for every k if $n > n_0(k)$ there are vertices x_1, \ldots, x_k , $k > k_0(\varepsilon)$ each of which are joined to fewer than $(1 - \varepsilon) \frac{n}{2}$ y's. But then

by our lemma each x_i , i = 1, ..., k is joined to at least $\frac{c}{2}n$ x's. I now show

that this leads to a contradiction, since then our G'(n) will contain G as a subgraph, in fact for large enough $k > k_0(\varepsilon, t)$ it contains a $K_3(t, t, t)$ which of course contains our G if $t \ge \pi(G)$.

Applying twice the lemma on p. 185 of [4] it easily follows that if $k > k_0(\varepsilon, t)$ there are t x's say x_1, \ldots, x_t and more than η n, $\eta = \eta(\varepsilon, k, t)$ other x's and $> \eta$ n y's say x_{u_1}, \ldots, x_{u_s} ; y_1, \ldots, y_s , $s > \eta$ n so that every x_i , $i = 1, \ldots, t$ is joined to every x_{u_i} , $i = 1, \ldots, s$ and to every y_j , j = 1, \ldots s. By Theorem A all but $o(s^2)$ of the edges (x_{u_i}, y_j) occur in G'(n), hence by the theorem of Kővári and the TURÁNS [5] there are vertices say x_{u_1}, \ldots, x_{u_l} ; y_1, \ldots, y_l so that all the edges (x_{u_i}, y_j) , $1 \le i, j \le t$ occur in G'(n) but then clearly $G'(x_1, \ldots, x_l, x_{u_1}, \ldots, x_{u_l}, y_1, \ldots, y_l)$ contains a $K_3(t, t, t)$. This contradiction completes the proof of Theorem 3.

Theorem 1 follows easily from Theorem 3. Let G'_{r-2} be an extremal graph of *n* vertices with respect to $(G: K_{r-2}(t, \ldots, t))$. To prove Theorem 1 we only have to show

(8)
$$r(G'_{r-2}) < \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right) + \left(1 + o(1) \right) (r-1) f\left(\left[\frac{n}{r-1} \right]; G \right) + cn.$$

We now use Theorem 3. Let $x_1, \ldots, x_l, l < c_{\varepsilon}$ be the exceptional vertices of G'_{r-2} whose existence is permitted by Theorem 3. The other n-l vertices of G'_{r-2} can by Theorem 3 be partitioned into r-1 classes each of which has $p_i = (1 + o(1)) \frac{n}{r-1}$ vertices and each of these vertices is joined to all but εn vertices which belong to different classes. The graphs spanned by the p_i vertices of the *i*-th class can not contain G as a subgraph, for if this statement would be false let y_1, \ldots, y_m $m = \pi(G)$ be the vertices of the *i*-th class which span a graph containing G as a subgraph. By what has been just said the $y_i, i = 1, \ldots, m$ are joined to all but εn vertices of the other classes we obtain by a simple but not quite short argument that for $n > n_0$ (r, t, l) our G'_{r-2} contains a $(G : K_{r-2}(t, \ldots, t))$ which contradicts our assumption.

Thus, the number of edges which join two vertices belonging to the same class is less than

(9)
$$\sum_{i=1}^{r-1} f(p_i; G) < (1+o(1))(r-1)f\left(\left[\frac{n}{r-1}\right]; G\right).$$

In (9) we used that if $u_1 = (1 + o(1))u_2$ then

(10)
$$f(u_1; G) = (1 + o(1)) f(u_2; G),$$

the proof of (10) is easy and can be left to the reader.

The number of edges which join vertices belonging to different classes is clearly not greater than

(11)
$$\sum_{1 \le i < j \le n} p_i p_j \le {\binom{r-1}{2}} \frac{n^2}{(r-1)^2} = \frac{n^2}{2} \left(1 - \frac{1}{r-1} \right).$$

The number of edges incident to the $l < c_{\varepsilon}$ exceptional vertices is clearly less than $c_{\varepsilon}n$, hence (9) and (11) imply (8), which proves Theorem 1.

REFERENCES

- ERDŐS, P.: Extremal problems in graph theory, Theory of graphs and its Applications, Proceedings of the symposium held at Smolenice in June 1963 29-36.
- [2] ERDŐS, P. and SIMONOVITS, M.: A limit theorem in graph theory, Studia Math. Sci. Hungar. 1 (1966) 51-57.
- [3] ERDŐS, P.: Some recent results on extremal problems in graph theory, Actes des journées d'études sur la théorie des graphes, I. C. C. Dunod, 1967. 117-130.
- [4] ERDős, P.: On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183-190.
- [5] KŐVÁRI, T., SÓS, V. T. and TURÁN, P.: On a problem of K. Zarankiewicz, Coll. Math. 3 (1954) 50-57.