
1 6 loc, 2
(1 .4)

	

exp 1(1 +o (1))

	

°- -1 n log n

* Here and in what follows the o and 0-signs refer to n---.
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ON SOME PROBLEMS
OF A STATISTICAL GROUP-THEORY. IV

By,
P . ERDŐS and P. TURÁN (Budapest) . members of the Academy

1 . In this paper we shall continue the statistical investigation of S n , the symmetric
group of n letters. Let P be a generic element of S n , and O(P) its order . In the first
paper of this series (see [1]) we proved that the relation"

(1 . 1)

	

log 0(P) = l 1 +0(1)J log' n

holds in S, apart from o(n!) P's . This was refined in [2] to a „logarithmic-Gaussian"
distribution. The interest of these results is clearly shown by the theorem of
E. LANDAU (see [3]) according to which

max log O(P)
(1 .2)

	

lim PES,,

n- -

	

1'n log n

These theorems can obviously be reformulated in terms of the orders of all cyclic
subgroups of S,, . In this setting it is natural to raise the same question for the
pairwise nonisomorphic cyclic subgroups of Sn . So we have two problems .

I. What is the maximum number of the pairwise nonisomorphic cyclic sub-
groups of Sn ?

II. Does there exist a „sharp almost all theorem" for their order too?
These problems are in turn equivalent to the problems, how many d' erent

values can O(P) assume and whether or not these values show a behaviour ana-
logous to (1 . 1). We shall answer these problems by the following two theorems .

THEOREM I . The number W(n) of different i -alues of O(P) in S„ is

~,

	

1n log log n
(1 .3)

	

exp
27,

'

	

O _6
11091

	

l
loge

	

)l'

THEOREM II . ,Ahnost all" of die possible different O(P)-r -aiues ((vith o(W(n))
exceptions at most) are of the form

13
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414 P . ERDŐS AND P. TURÁN

These theorems seem to us of interest for more than one reason . Comparing
(1 . 3) with the „exact" interval for O(P) furnished by (1 . 2) it turned out that W(n)
is very small* and hence there must be „very big" intervals within

(1 .5)

	

1 : 1 -_ x -_ exp t(1+o(1))}Inlogn} dafM,

containing no O(P)-values ; this means the nonexistence of certain cyclic subgroups
in Sn . The explicit determination of such intervals seems to us to be of interest .

Since V6 log 2-0,5404 the value in (1 . 4) is „essentially"
7E

Mo,s4o4

which is very large compared to the value (1 . 1) which is „essentially" only

exp {2(log log M) 2 } .

This fact gives obviously an interest to the problem for which in is the number of
P's with O(P)=n1 maximal and what is the value of this maximum .

For the study of the distribution of the O(P)-values it is of interest to study
mean-values of O(P) . We have found that

(1 .6)

	

M, (n) def
1

	

O(P) < exp c in! PES„

where c, - and later czi c 3 , . . . - stand for positive numerical, explicitely calcul-
able constants .** Owing to (1 .2) and the quick increase of the function exp (Vx log x)
one had the guess for a much larger M,(n)-value . Since we do not have at present
an asymptotically exact formula for M,(n) we shall postpone the treatment of this
problem to another occasion .

2. The statistical point of view leads to transparent laws in different sort of
questions too. Such questions are e .g. the study of conjugacy-classes and commuta-
bility of elements of Sn . So - denoting the total number of conjugacy classes of
Sn by V(n) - we assert the

THEOREM 111 . The elements P of S„ - with exception of the elements of o(V(n))
conjugacy-classes - are commutable exactly, with

(2 . 1)

	

exp j(1 +0(1)) 46 J`n log' n }

P's

	

l

	

JJJ
.
As an application of this theorem DR . J . WNEs has communicated us orally

the following remarkable theorem .

* A trivial upper bound for W(n) is the number of divisors of W . But this is

	

2-

27

	

n

	

n
(n)-7 ( )

	

<p~n

=

	

z which is much bigger than the expression in (1 .3) .

	

2

** If some constant depends on certain parameters, this will be always explicitely stated .
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O\ SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . IV 415

For all P's - with exception of the elements of o(V(n)) conjugacy classes -
the „general commutator-equation"

(2.2)

	

XYX- 1 y-1 =P (X, YE S„)
has

(2.3)

	

exp (1 I o (l)) 2

solutions

	

1
6 Vn log 2 n7

.
DR. DÉNES intends to publish his proof elsewhere .
For the „special commutator equation"

(2.4)

	

XYX- 'Y-I =E (E unitelemest)

the number of solutions* is the number of commutable pairs in S„ . As to this we
found with VERA T . Sós that this number is

(2.5)

	

n ! p(n),

p(n) being the number of partitions of n . More generally we assert the

THEOREM IV . The number of coraamutable (a, b) pairs (with the convention of
the footnote) from an arbitrary group G of order N is Nk where k stands for the number
of conjugacy classes in G .

We shall deduce two corollaries from it .

COROLLARY I . In an arbitrary group of order N the number of commutable
pairs (with the above convention) is at least" N log log N. By other words a finite
group cannot be „too non-commutative" .

Taking into account the Hardy-Ramanujan asymptotical formula

Vn(2.6)

	

p(n) -~ -
1
-exp

2n
- n

4ny1 3

	

y6

for the number of partition of n one can see from (2 . 5) at once that Corollary I will
no more be true if N log log N is replaced by

I/ [	N exp A/ l
Jog

N'

	

A> ?6
1,6

.

Nevertheless it would be of interest to improve the lower bound in Corollary 1
or even determine the minimum number of conjugacy classes in groups of order N .
The second corollary which is an immediate consequence of (2 . 6) (and (2 . 5)) is the

COROLLARY 11 . The probability that a random pair (P,, P,) of S„ commute
tends with ] .In rapidly to 0 .

* (X, Y) and (Y, X) are counted as different solutions if X Y.
** The logarithm is meant here with the base I

13
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416 P . ERDŐS AND P. TURÁN

Since Theorem IV and its Corollary I are not of statistical nature we postpone
their proofs to Appendix 1 . For the same reason we postpone the solution of the
following group theoretical extremal problem to Appendix 11 :

Determine all „least commutable" P's, i .e. the P's which commute with the
minimal number of P's of S,, .

The solution is given by the

THEOREM V. The P's tit1th the required minimum property are exactly those
whose canonical cycle-decomposition consists of tii •o cycles with the length 1 and
(n -1) respectireh •, if only n --6 .

3. We shall also deal statistically with a different sort of questions . All groups
G of order n can be embedded into S,, ; but it is an important longstanding question
to determine for each G the minimal g such that G can be embedded into Sg .
Here one can hope a simple law for g in a statistical sense only. What we can do
at present is to present such a law for commutative groups with order
Denoting the total number of such groups by G(n) this is given by

THEOREM VI . tf

	

so that

(3 . 1)

	

lim log OW = 0
log X

then all commutative groups of order --n, with the exception of o(G(n)) such groups
at most, can be embedded into S, with

(3.2) l . n
~ (~r)

We shall also show that the theorem is best-possible in the sense that choosing

L der [n1-ó]

with an arbitrary small 6 ::-0, we show that more than c,(á)G(n) Abelian groups
of order --n are not embeddable into SL .

The theorems as well as the proofs of this paper are directly or indirectly
connected with partition-problems, even with some which would be considered
by nonarithmeticians in themselves rather weird and artificial . By this connection
the partition-problems cannot be considered anymore to be an isolated playground
for arithmeticians, since the search of analogous statistical laws for other ,big -
groups will systematically lead to such problems . Part of the partition problems
revelant here are of the type that for what kind of partitions is it true that ,alinost
all" of them consist of 0(n)(1 -i-o(1)) summands, (P(n) depending on the type
of partitions under consideration . Such results for some special kind of partitions
has been found by ERDŐS and LEHNER (see [4]) ; the method used here for another
special type of partitions seems to be extendable to a general class of partition-
problems. However, in this paper we shall confine ourselves to the case we actu-
ally need here .

4. Now we turn to the proofs of our assertions. For the proof of Theorem I
we shall need some lemmata .

A,ta RLatbematine A~rdemiae Sci~iui~runr H ;niZmiare rq, r96,f



(4.3)

LENUNIA L If for x > 0

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . IV

f(x) = II (1 + e - qx)
q prime

then we hare* for x-- +0

7 2

	

1 log log 1
logf(x) =

	

1 +0 -Y -

	

1 .

12x log -

	

X log 2 -
x

	

x
For the proof we write

logf(x)
_f

log (1 +e --)d7-, (r) = xJ' 1+(e)=r
dr

o

	

o

where R(r) denotes the number of primes not exceeding r. Hence

vl~g r
(4.1)

	

logf(x) = x	f +e -

	

f1
Lirxr

(IF +0(1) x	
1+e-xr

(11- +0(l) .

2

	

2

Splitting the second integral into

x-- x -1 log'-x - t

f + f

	

+

	

f
2

	

x -,i,

	

x- tlog~x - ~

one can easily see that this is

O l r exp - 2 1, log
X

and also

(4.2)

	

logf(x) = log +e xr)
dr+0 x exp -Z loglog

2

Splitting the remaining integral into

x -1 109 -10 x' 1

	

lox - tlogx -1
f

	

+

	

f

	

+

	

f
2

	

x - tlog - rox - l

	

lox- tlogx - i

the first and third integrals in (4 . 3) are evidently

0	
10 111 I

	

'
X 10910 -

X

* The asymptotic part of this lemma is implicitely contained in the paper of HARDY and RA-
MAxUJAN [5], p . 130 . For our aims however the remainder term is quite essential, whereas the paper
of Hardy and Ramanujan contains no remainder term at all .

417
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replacing in the second log r by log 1 the error isx

Hence

1

	

log log x
logf(x)=	1 ~log(1+e-xr)dr+O	 1 ,

log a

	

x loge z

from which Lemma I follows at once .

5. Further we shall need the

LEMMA II. If for x > 0

F(x) = U (l+e-qx+e-q2x+e-q'x+ . . .)
q prime

then we for x-+0

~2

	

log log I
log F(x) _	+ O	

12x log 1..

	

,x loge 1
x

	

x
For the proof we write

e42x e qlx+log F(x) = log f(x) + .f log	1 +e-qx

	

+ 1 .
q

Hence

P. ERDŐS AND P. TURÁN

~log F(x)-logf(x)I

	

Slog{1+e-g2x+e-
q

. .} C

exp (-q",Y) _ (1-e—) S e-nx

	

1) =
q v=2

	

n=0

	

q,vqv-n, V=-=

0= (x) yn e-ilx = O 1-in 0

	

yx

which, together with Lemma I proves Lemma II .

6. The proof of Theorem I will easily be completed connecting Lemma 11 with the

LEMMA 111. Let for x >0 be

h(x) _

	

ane-"'

	

a7, ~ 0
n=0
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and for x--+0 with numerical positive A

A

	

log log zlog h(x) =	1 1+0	1x log

	

log - -
x

	

x

(6.1)

Then
l

	

N

	

y N log log N
„-Y „ = exp 1 ' 2A log N + 0 ---log	

N
	 ~~

For the proof let

(6.2)

	

x o =	
yNlogN

7 positive constant, to be determined . Then

2Al / N (

	

loglog N
(6.3)

	

log h(x o) _

	

Y loo
N j 1+ O	tog N

Hence

exp -)
log N

1 S,̀

	

_~ n
_nxo h(xo )

g

eXp 2AfN
(l + O

flog logNll
l )

	

log N

	

l log

	

))1N
i . e .

4
2A ~ Nl	l,Nlog logNSN _ exp A
1 Y log N+O	logslz N

Choosing
(6 .4)
we got already

(6.5)

	

SN -- exp 2 ~% r2 A
toN + O V

l og 3,12

N
jg

	

g

which is the second part of Lemma III (slightly stronger) . Further if 6 = 6(N) --0
will be determined later, we write

(6.6)

	

exp t V 2A
log N l l + O

rllogNIII h(xo) _I

	

g

	

g

ná(1-ó)N (1-ó)N2~n-~(1+ó)N (1+S)N<n-100N

nx def

	

S3 S4+ Z a,,e- o-S1+s2+ + .

n>100N

* The Tauberian theorem differs again from that of HARDY-RAMANU.IAN (I .e . [5]) containing
in hypothesis as well as in assertion remainder terms, which is quite essential for our later aims . Be-

ides in formula (5 .281) 1 . c. the factor 2n seems to be replaced by 2n
.
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As to S4 (6. 5) gives easily

(6.7) S4
< J

exp {y5-A 121
100N

For S3 we get
r

	

~

(6.8)

	

S3 - 100N exp c3 1
Iolog 1 N

cxp
Y/

1
5 N

Y maaw 2j y
--YN

Since for all sufficiently large N's

(6.8) gives

(6.9)

i

As to Si (6 . 5) gives

Hence choosing

(6.11)

P . ERDŐS AND P. TURÁN

	 Y 	+ c2 Y lo lo Y
dy = 0(1) .

109 Y }IN log N

	

log3'
2 Y

max

	

y y Y = lIN 12 y'l + 8 - (1 + 6)}
y~~ (j+6)N

	

yN

S2

	

d2
=VN 1-4 +0(83) <} N 1-5

(	 [1_62 1+0 VNlog logN
S3 ~ exp t"',

2A
logN5(
	

log3 ! 2 N }Il
N exp i c3 V N log log

Nl exp S 1 2A max 2 Y -	Y	~~ .
111

	

log N j

	

l

	

y--(1-s )N

	

r lo9Y VNlogN

One can easily see that the last maximum is

(6.10)

	

log N

	

1-6 -(1-6)j+0(log~ /N,g

log N 11- 4
	+0(63) }

+0[109
N] ' l1 5

V
logN + c4 log N3/2

log log N
log N

(6 . 6), (6 . 7), (6 . 9), (6 . 10) and (6. 11) give for all sufficiently large N's

2
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and a fortiori

and - replacingN by N -
1+8

ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY . IV

1- a)N
log _N

	

`~

	

a"
(I-ti)N<m~(1+ó)N

1 /1

	

_N

	

VN log logN
> exp '/ 2A log N - c6 log 3 / 2 N -

S_ti. > exp l 2A	-c7 l/ N-N-d-c6 l
~N log logN

V

	

log 11

	

Y logog N

which completes the proof of Lemma 111 .

7. Now we can turn to the proof of Theorem 1 . Let

(7.1)

	

N=p1 22 . . .P 7 ",

	

2~p1<p2< . . .<pr

be an O(P)-value ; the canonical cycle-decomposition of this P should consist of
my cycles of length n, (v =1, 2, . . ., k) i .e .

(7.2)

	

1 ni < n2 . . . < n k ,

(7.3)

	

my

	

1,

	

v =1, 2, . . ., k,
k

(7 .4)

		

n1 yn„ = n
v=1

so that
(7.5)

	

O(P)=[n1, n2, . . ., nk]=N.

Since each pa- is a factor of some nj and

(7 .6)

	

ni +n2 -_n 1 n2 forinteger n 1 --2, n2 --2
we have

k
(7.7)

	

P1+pz' + . . . +PY"-_n1+n2 + . . . +nk ~- - mjnj =n,
j=1

p1<p2 - .—<pr •

421

Hence to each such O(P)-value we make correspond uniquely a set of powerss
of distinct primes with the sum --n .

But conversely, having any sum of prime-powers

(7.8)

	

qi'+q62 + . . .+qfn
with
(7.9)

	

2-- q1 < q2 < . . . < qi, q, primes
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the number ga'gf2 . . . qi t is the order of a P, ; such a P, is furnished by
any permutations of S„ consisting of l cycles with cycle-lengths q a, , q z2 , , q a,
respectively and

further cycles of length 1. Hence the different O(P)-values are the g a1ga2 . . .ge,-
numbers extended to all systems satisfying (7 . 8)-(7 . 9). Hence W(n) is identical
with the number of solutions of (7 . 8)-(7 . 9) .

Now the number of solutions of (7 . 8)-(7 . 9) is evidently S a„ where for
v

x :-0

G a e-vx = F(x) = il (1+e-qX { e- g 2X+e - q'x } . . .) .

v= O

	

q prime

Application of Lemma 11 and III completes the proof of Theorem I .
Owing to the grouptheoretical connection it would be desirable to obtain

better approximations to W(n) than the one given by our Theorem L The Tauberian
theorems of Ingham (see INGHAM [6]) would certainly lead to a better result but
the verification of its assumptions would be much more laborious than the way
we have chosen . The same holds on the saddle point technique of ROTH-SzEKERES
(see [7]) .

8. For the proof of Theorem II we shall need two further lemmata .

LEMMA IV . For x -- + 0 ive have

q prim

For the proof we write

Analogously as in Lemma I this is

1
1

	

d~.

	

log log-
I

	

log 2

	

log log x
xr L +O	+Q

log 1

	

e

	

1

	

x loge
1-

	

x log i

	

x loge1x°

	

x

	

x

	

x

indeed .

P . ERDŐS AND P . TORÁN

n -

	

qI,
j=1

1

	

log 2
1 + Oeqx 1

	

x log
X

1

	

_

	

dir(r)

9 e qx + 1

	

exr+ 1
0

X log2
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9. The next lemma is the crucial one . Let us consider all solutions of the system
(7 . 8)-(7 . 9) . Then we assert that the number of summands follows a rather strong
statistical law. More exactly we assert the

LEMMA V. For almost all* solutions of the system (7 . 8)-(7 . 9) the inequality

21/6

		

)Z
(9 . 1)

	

1= - rlog 21 ,,
log 71

+O (j~n log -0,73 11 )
r

holds .

For the proof we define
(9 .2)

	

S

	

1
p1 1 +Py 2 + . . .+P n~

	

n
P,<P2< . . .<P,n

Then we have for x ::- 0, y real

(9 .3)

	

G(y,x)def ~: A j ,l.e-P>'-,:Y=

	

{1 e-I'-qx+e-i'-q lx + . . .}
N .

	

gprime

and we have to investigate
(9.4)

µ_m

	

µ-n,
,•= n

where m=m(n) will be determined later . Writing G(y, x) in the form

j

(e -y -1)(e -qx +e-'1+edef(9 .s)

	

G(y, x) = F(x) II 1 +		z -	 } o F(x)G,(y, x) ;
gprime

	

I+e- qx +e -q x + . . .)
putting

(9.6)

	

x I 7,
J'I = 1 , i ( 71) -0

j,'6n log n

to be determined, we get
(9 .7)

	

Snm -- (F(xl)ellx, ) (G o () , , , x,)e n'yi) .

For the first factor on the right Lemma II gives the upper bound

2n f n

	

~n log log n
(9 .8)

	

exp
1/6

	

log
n

	 +O	log3/z	n

	

} .

The second factor in (9 . 7) is owing to (9 . 5)

* i .e . with o(W(n)) exceptions at most, with the notation of Theorem I .

423

(1 - e-y,)e-gx,

	

yI

	

1
exp my, - ~ - _--

	

- z

	

= exp Yi m - 1 -

	

+
9Prime 1 t2 qxi+e-q xl+ . . .

	

2 qpr„n Eqx, +1

~

	

1

	

1
+

	

2 gPrime [eq x l + 1

	

egxt + 1 + e~g - 9 Z )xi ~ e(4-g')xt -1- . . .

	

.
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The last sum being

e(q-q2)x, + e ( q- g 3)xi + . . .

q ,me

	

(egx, + 1)y

	

q

P . ERDŐS AND P. TURÁN

the last factor in (9. 7) has the upper bound

expy, m- 1- ,1
!~

	

-1 - -

	

g )1 q prime eqx, + l + O(n log n)

Using Lemma IV this is in turn
(

(9.9)

	

- exp y l Sm - 1 -
y, 2 y6 log 2

l

	

2

	

n

This together with (9 . 7) and (9. 8) gives

27r I n

	

}fin log log n
S,,,n ` eXp

~ V log n
+C7 logs/ 2 n +

+Y,Im-
2 y61og 2 -

	

n-- + Y2, 2)6log2
l

	

7t

	

log n J

	

2

	

rr
Now choosing

2 Y61og 2 l / n

	

~n
~~~ - - 7r

	

Y log n

	

logo,? 3 n '

all sufficiently large n's

27r

	

n

	

1

	

)fin
S„,,, ~ exp

IV6

	

log n 2 logO ,99 n

(10.1)

i . e .
(10.2)

10. We shall need also an upper bound for

S

	

defm,n -

	

A111, = ú Hun
µ_M

	

µ,M
v=n

exp -qv
2

=0

	

- = 0(nlogn) 1 1 4

yx1

	 n +0 [1/n log logn
1log n

	

log 3/2 n l

n
gno1

v 1 = jog-0,26 n

M=M(n) to be determined later . First let us observe that for v--n and µ

pi '+pz2 + . . . +p µ" > f Z> n
1--1~3vn

A,,
M=µ=3}i n

in

We apply Cauchy's coefficient-estimation with

ti
-

x1

	

j 6n log n'
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to be determined for A,.;, ; this gives, using (9 . 5), (9 . 7) and (9 . 8) again

2~~/r

	

O
n

	

Vn log log n
(10.3)

	

A µ v ` exp I}'6 Y log n + ( log3
2	 - - }

11

e-qx, + e-q'x,
.exp _/Ily, +(

	

-1)

The second factor in (10 .3) cannot exceed

exp IyI, {-Ei+(i+í3'I	 1		l
1) .~ ql	 ~ 1

	

0(n log n) í /4
q prime e

	

i

	

,

Using again Lemma IV this is

exp

	

1

	

~-2j61og2 /F n

	

2

	

n
y'I

	

Ei

	

~- log n

	

es1'I

	

log n

and thus from (10 . 2) and (10 . 3)

( 10.4)

	

S* _ ex
i

-- ~,		g

2n

	

n

	

} n to low n

y6
N,,,

	

p

	

11 log-71 +e9 - log -3 ~- n +

we get

(10.7)

216log2~~	n
+~)"I -M+		lo n +c$YI

lo g-n

_ 216 log 2

	

17

	

112
-

~~

	

log-11 r log° 73n'

exp
J26

	 9 -

	

}, i : lO"_0'99ní
*l -h i' lo n

	

2

Since from Theorem I we have
í 2z it- n

	

n loo lo- nW(7í)

	

exp h,6 log n -CI0

	

log e
,-u

-log -0, - 6a:

this, (9 . 11) and (10 . 7) prove Lemma V .

11. Now we can turn to the proof of Theorem 11 .
As told all O(P)-values are the numbers

RP'
qP2 . . . qfi~

1 +e -qx,

Actor A1üO~enmtica Academiae Scient
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satisfying (7 . 8)-(7 . 9). Owing to Lemma V with of W(n)) exceptions also*

(11.2)

	

1=
2j~61og2

	

n_+O(jn log-0 . 73 n)
7

	

log n

is satisfied . But we have always

(ll . 3)

	

11

	

q91 qzz . . . qf'

	

[qfll' +. . . F qR` ~`

	

[_n J~
1

	

Z

Now using (11 . 2) we have on one hand

V'6 log 2
(11 .4)

	

Z! > exp (I log l-l) ~ exp ~--
7C

-- (1- 0(1)) ~n log n

and on the other hand

which prove Theorem 11 .

12 . Next we turn to Theorem 111. Let - as in Theorem IV - p(n) stand for
the number of the partitions of n ; we characterise the partitions with the numbers
in,, n v in section 7. According to the classical asymptotic formula of HARDY and
RAMANUJAN (see [5]) we have

(12.1)

	

p(n) _ (1 +0(1))	1	exp
21r

4n 11 3

	

[V6
Let us denote by

(12.2)

P . ERDŐS AND P. TURÁN

1

	

(

	

~6 log 2	l
Z = exp I l

log
j

	

exp	~- (1 +o (1)) yíllogn}

lr1 ~ Ít2, . . .,

the partitions of n and define the ,partition-function" h(7r,) by

(12.3)

	

m1n 1 + . . .+niknk

n1 1 + . . . + Ink
Then we need the

LEMMA VI . For almost all partitions, i.e. lvith o(p(n)) exceptions at most, for
n >n0 the inequality
(12.4)

	

h(rr,) -- yn log' n

holds (the right side could be replaced by c 1 , J "n log n) .

For the proof of this lemma we consider first the set II of the -,T,-partitions
with
(12.5) max mj nj > 1,/n log2 n .

j=1, 2, . . .,k

* The remainder term was of course only for Lemma V of vital importance .
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Fixing mj and n, let II~mJ> "-> be the corresponding subset of R and ;17i the
cardinality of 17 . Then

I~(mI'" ~~

	

p(n-mjnj) p(n-In log2 n)
and from (12 . 1)

(1+00))	
I	

exp

	

-1n-1' nlog2n
4(n-)/nlog2n)1'3

	

y6

<(1+0(1)) 1-- exp~27I/n (1-log2 /nll =p(n)(I+o(1))exp1--71 log2nj .
4ny3

	

1/6

	

21"n JJ`111}

	

16

Since I]= U 11(mj,nJ) and nij, nj has at most n values, we get
in j, nJ

1171 < p(n)2n3 exp

	

.-Z log2 n = 0(p(n)) .
y' 6

Hence with exception of o(p(n)) 1r,,'s at most the inequality

(12.6)

	

max ni jnj -- I n loge n
J

holds . For these partitions we have
zMj

h(1r,) max m n j j		~n loge n
I

J
indeed .

We shall need also the following theorem of ERDős-LLHNER (see [4]) .
With the notation of section 7 for all but o(p(n)) partitions the inequality

(12.7)

	

j(n7I + . . . + "?k) - z6 Vn log n -- w(n)) n
i

	

7E

holds, if only w(x)l- for x-- .
/ _

Le. almost all partitions consist of (I+ 0(1)) 26 }/n log n summands .

13. Now we can prove Theorem III as follows . Let us consider the conjugacy-
classes of Sn ; as well known Pi and P2 belong to the same class if and only if the
cycles of their canonical cycle decomposition are pairwise identical in their number
as well to their respective length . Hence a conjugacy-class 9t is determined by the
common
(13. 1)

	

(ni, 112, . . ., nk ; mI, 1712, . . ., Ink)

numbers of their P's . Thus first of all

(13.2)

	

V (n) = p(n) .
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i .e . the number of the conjugacy-classes of S n equals to the number of partitions
of n . Secondly the number of P's in the class 9( is

(13 .3)

	

77!
in,! 77121 . . . Ink ! nil" nz'2 . . . 17 ink'

owing to Cauchy's formula (see e .g . RIORDAN [8]) . Fixing Po in the class % let the
centralises of P o be C(P O ) . As well-known there is a one-to-one correspondence
between the conjugates of P o and the cosecs of C(P,) in Sn . Hence, with the notation
of section 12 we have

S" !(13.4)

	

!'f(! _

	

_. -
C(PO )'

and thus the number of P's commutable with P o is owing to (13 . 3)

(13.5)

	

~C(PJ! = III,! In'! . . . In k! ni' 111112 . . . n'k

for all P o's of the class 2( .
Now we remark that

(m

	

777

	

. . . + Ink)

	

771

	

777

	

m t

	

1

	

nt

	

ink

(13 .6)

	

i +- a +

	

!

	

~~ -~ ~ -!- . . . +--mk)!

	

1

	

1
C(Po)

	

In 1 ! In"! . . . 171k!

	

Il l

	

71-

	

nk

1

	

1

	

ill I+ . . .+ink

	

k

	

m,+ . . .+Ink1

	

1

	

~ ( 1+1o~~)nt,+ . . .+nik

[n,

	

n,

	

n k

	

- -,

Hence
m, + . . . + mk

(771 1 ~-

	

777k)!

	

In I

	

+ Ink
(13.7)

	

~C(Po)I ' (l +log n)n ;,+ . .+mk

	

2e log n
So far we made no restrictions on the conjugacy class ?T. Now we take into

consideration Lemma V1, (12 .7) and (13 .2) ; these give that with exception of
the P's of

0( V(17)) = O (1J (17))

conjugacy-classes in the remaining set 17, of conjugacy-classes, both inequalities

(12 . 4) and (12. 7) hold . Hence for P o `17, (12. 7) and (13. 7) give (using also the

inequality P >- 1 )e
(

	

h

lV:J1

0 - 00 )) t -y 17 log n
2

	

6
IC(P O )' > 50

	

> exp l(1 -0(1))
4r

17 log' n(,

lcta blatbematico elcadem :ne Scicr.(iarunr H~nrgmiare w, ;,69

which gives the first half of Theorem 111 .
On the other hand (13 .5) gives (using the inequality 1!ál` for all P o 's)

171

	

77

	

. . .1

	

,2

	

;n,+ . . .+ Ink
.

	

~ +
C(

	

-~-77 ; 77k
IPO) -_ (771 1 771) 'n : (171, 77 2 )"1 -' . . . (Ink ilk)
	 k

nn:
1171+ . . . -i- In k



Now restricting Po to 11 1 we may apply (12. 4) and (12. 7) ; thus

jC(Po)i

	

(Y11 10g2 11)(t+a(I)) zn Y» losn = exp I(1 ! 0(1)) 46 j n log e
ni

,

which completes the proof of Theorem 111 .
As a by-product we notice the following

COROLLARY . All conjugacy-classes of S„, withh o(p(n)) exceptions at most,
contain
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n! exp -(l+o(1))
46

}~n log
2 n

Fs.

14. Next we turn to theorem V1 . We shall need the well-known theorem of
ERDós-SzEKERES* (see [9]) .

Denoting the number of pairwise nonisomorphic Abelian groups of order
n1 by k(m) we have

(14 . l)

	

Y k(1n) = A o n(1 +0(1)),

	

Aa = á(2)C(3) . . . ,

((s) is the Riemann zeta function .
Taking this in account we have only to prove that (3 . 2) is satisfied for all but

o(n) Abelian groups of order

	

n .
We shall need the remark (which follows at once from the fundamental theorem

of finite Abelian groups) that

(14.2)

	

k(tn l mz)=k(m,)k(m z) if (in,, mz)=1 .

We shall denote by z(m) the maximal prime-power divisor of In and let us
fix a t (n) with property (3 . 1). Let M be the set of integers n1 not exceeding n with
the property

(14.3)

	

z(m) >
n

2i (n) .
We shall need the

LEMMA V111 . The inequality
U

	

k(1n) = o(n)

holds.

Let

Then we have

z (In) = q
11

2~(n)

m = gxm l ,

	

(g", m 1) = t

* Their theorem furnishes also a remainder-term . However here - in contrary to the previous
discussions - it is immaterial . Even > O(n) is enough .

14
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and hence - using also that k(q")=p(x) and (14. 1) -

U =

	

k(9")

	

k(n7,)

	

p(a) f k (nn,) = 0(n) Z p(a) .
n

	

n

	

n

	

n	<q1,n mi q)=1

	

~q"_n m15-

	

- -q--n q"2~/,(n) ~ -

	

- q .n

	

2 .P ( n )

	

-

	

qa

	

2(n)-
z(m,)<ga

(14.4)
The contribution of 7 =1 is o(n) owing to

(14.5)

Since roughly

and

the contribution of a--2 is

P . ERDŐS AND P . TURÁN

q
= 0(1) .

n
=q=n2~(n)

x < 2 log n

p(x) < ce2V" < ce4ylogn

(14 .6)

	

< p (n e4 ylog n )

	

N7

	

N_

	

M-7 <
2~a~21ogn

		

nm> 2 4~
(n)

< Q(ne4Vlogn)

	

n
0(n) loge = o(n),

which completes the proof of lemma Vill .
Owing to this lemma it is enough to restrict ourselves to Abelian groups of

order m n with the property
17

(14.7)

	

z(m) = 2~(n)

15 . Let m be such an integer and let

(15 . 1)

	

m = a, a2 . . . ak (=q#' q#2 . . . qp )

be any decomposition of m into prime-powers . Let us consider

(15.2)

	

D(m)=ai+a2+ . . .+ak .

Since an easy induction gives for integers b; _2

b, +b 2 + . . . +b, -:~blb2 . . .b,
we get
(15 .3)

	

D(m) - qfl' + q#2 + . . . + qfs .

Since only at most one of the qa' can exceed Yn, we get from (14 . 7)

(15 .4)

	

D(m) - 20(n) +s~n

	

20(n)+Vn
log n =

iG(n)]
1.
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,Now take for n>c12 any commutative group G of order m-n with (14 .7)
of type (a,, a z , . . ., ak ) . But then forming the permutations of a,+ . . .+ ak ~- l
elements
(12 . . .a1)v"(a, + 1, a l +2, . . ., a l +a,)v2 . . .(a, + . . . +ak_ I + 1, . . ., a l + az + . . . +ak ) vk

1 ~ V1 --a,, I _ V2 -_ a2, . . ., l ~ Vk ~ ak

these form a group G* isomorphic to G which is a subgroup of S, indeed .
In order to prove that the theorem is no more true for S[ „ t-s l with an

arbitrarily small numerical positive 6 we have only to remark that for a prime q
the group G, the order of which is divisible by q, cannot be embedded into S, with
d < q further that the number of integers - n divisible by aq::-n'_' is

and finally (14 . 1) .

APPENDIX I

As told we are going to give the proof of Theorem IV and its corollaries in
this Appendix . Let us consider a fixed conjugacy-class Qi of G containing ~Qj j

elements ; let 7 be one of its elements and C(a) its centralises, containing j C(x)j

elements . Hence a commutes in G with ( Q i - I elements, different from a . Since
i

the same holds for all elements of Qi , the total number of commutable (a, P) pairs
with 7 Q i, 7 fl is

Qi, ~
N

-1 = N-1 Qi j .

Summation for j=1, 2, . . ., k gives
k

kN- f jQj j = kN-N .
i=1

This gives the total number of commutable (a,#)-pairs with x # ; since we have
N further commutable pairs (7, 7), the proof of Theorem IV is finished .

In order to prove Corollary I we appeal to the following well-known theorem
(see [10]) .

Let 2 = x, < 7 2 < . . , be defined by the recursion

(I . 1)

	

7 v + I = 7í72 . . . 7 Y, + l .

If for a fixed v and positive integers x l , x,, . . ., xv

n > /dog 11
b
-o(n)

nl - O-q-n q

(1 .2)

then

(1 .3)

14*

1

	

1

	

1
x,

	

x 2

	

x v

1

	

1

	

1

	

1
1-

x,

	

x2

	

xv

	

7v+i - l
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Next we apply the following reasoning of LANDAU (see [11]) . With the above
Q;'s we have

ViI=1
and hence

and for 2 -- j -- k

	

~Q,! _ --
N
-- .

	

(y, positive integers)

But then (I . 2) is fulfilled and (I . 3) is applicable with v=k-1 . This gives

(1.4)

Now from (1 . 1)

22kak

	

.
Hence (I.4) gives

22k ::-N or k ::-IoglogN

which together with Theorem IV proves Corollary I indeed .

APPENDIX 11

1 . Now we prove Theorem V. According to (13. 5) the number of elements
with which a fixed P o E S„ is commutable depends only upon the conjugacy class
to which Po belongs ; the extremal class is a class Q=Q(n,, n 2i . . ., nk ; n1,, 1n 2 , . . .,ink )
for which
(lI . I)

	

M) def
11111 11221 . . . Ynkl 117" n2` 2 . . . nk k

is minimal under the restrictions (7 .2)-(7.3)-(7.4) . Hence we have to show
that the minimum is (n-1) and the only extremal class Qo corresponds to

(11 .2)

	

k=2, m1 =n1 2 =1, n,=1, n 2 =(n-1).

First we remark that for

(I1 .3)

	

k~-- 4,

	

1 a,<a2< . . .'<ak
the inequality
(11.4)

	

a,a2a3 . . .ak--a,+a2+ . . .+ak+14

holds. Namely the expression

1

	

1

	

1

	

1
a, az a3 a, a, aa , a, a3 a, a2 a 3 a4

P . ERDŐS AND P . TURÁN

1+ 1 + . . .+-1-1-
.

Y i

	

.Y'2

	

Yk- i

1- 1- 1- a 1 1 , 1 - C* ak ~ N+1 .
k

a,. +l = a? - a,.+l < az
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attains its maximum for aI = l , a z = 2, a3 = 3, a4 =4, which is 5/12 . Hence

lj a1 a2 a3 +
. .
.fa2 3a- a4 + 12 .

433

Thus

a, az a3 a4 ~-- al+az+a3+a4+14
lI

2 3
1
14 ' al +a,+a3 +a4 +14

i .e . (11 . 4) holds for k=4. If it holds for k--k

	

t

o

al a2 . . .ako ~_: a, +a2+ . . .+ako+14

then multiplying by ako+I(> 2)

a, a 2 . . . ako+i='a, + . . .+ako +l4ako+I =

_ (a l +a2 + . .-+ako+I )+13ako+I >al +a2 + . . .+ako+I +14

which proves (11 . 4) . One can see quite analogously that for

(11 .5)

	

k~--- 3,

	

2-a,<a2< . . .<ak
the inequality
(11 .6)

	

ala2 . . .a k ~-- a l +a2 + . . .+ak +14
holds .

For k =1 we have
f(Q)=n>n-1 =f(Qo)

i .e . this class cannot be extremal . Putting aside temporarily the case k = 2 we suppose

(11 .7)

	

k 3
and hence
(11 . 8)

	

nk y 3 .

Let now Q*(n, . . ., nk ; r

	

, in,*) be an extremal-class . We assert that

(11 .9)

	

n~ ' 3--my = 1,

i .e . a cycle-length _ 3 can occur at most once in an extremal-class . For if not,
let n the longest cycle-length with m,'2 . This implies that if the cycle-length
m,n; occurs at all in Q* and =n,* then

(11 .10)

	

177; = 1 .

Then we consider the class Q I which comes from Q* contracting all cycles with
length n, into a single cycle (of length m,n,) . In the case (11 . 10)

I1 . 11

	

f(Q')	21(m'r~.i)2	 _ _	2	 < I(11 . 11)

	

f(Q*)

	

11(m; nJ)mj 1(n,)m

	

(m,- 1)1(n,)mj -I
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and in the case when the cycle-length m n; does not occur in Q*

f(Qi) __ 1!(m,n;)(11.12)

	

< 1
f(Q * )

	

mi!(n;)"'~

	

(

	

-1)!(n,*•)"'1-i

i.e . Q* could not be an extremal class . Hence (11 . 9) is proved .
Next we assert that

(1I . 13)

	

n; = I -7)1 = 1

i .e . the cycle-length ni =1 can occur in an extremal-class at most once. Obviously
we may suppose
(11 . 14)

Supposing
mi - 2

we consider the class Q z which arises from Q* taking away one cycle of length 1
and replacing the cycle with length nk by one of length (nk + 1) . Then owing to
(R. 14) and (11.9) we have

f(Q2)

		

(1n*-1)!lm*-'1!(nk+1)	Ilk*+l

	

4 1_		 C

	

< I
f(Q*)

	

1921 ! 1'"i . ] I nk

	

nk • mi

	

3 2

and thus Q* could be an extremal-class . Hence (II . 13) is proved .
(11. 11) and (II . 13) give at the same time that the cycle-length 2 can occur

at most twice in an extremal-class and it could occur twice only if Q* has (exactly)
one cycle of length 4 . If Q* has no cycle with length 8, then replacing Q* by Q3 which
contains a cycle of length 8, taking off the two cycles of length 2 and the one with
length 4 we get

(11 . 15)

	

f(Q3) _

	

1 18'
1 ;f(Q*) 2!2 ~ . 1!4'

if Q* has (exactly) one cycle of length 8 then

(lI . 16)

	

.Í(Q3)

	

2! 82

	

< 1 .
f(Q * )

	

2!22 .1!4 .1!8'

Thus the cycle-length 2 can occur at most once too, i .e .

m1=n92= . . .=119k=1
and
(11.17)

	

f(Q*) = ni n2 . . . 19k
with

(3~)nk n-1 .

1

n; +n2 I . . . + 19k = n,

	

k

	

3

(II. 18)

	

1

	

ni < n2 < . . . < nk .

If k ~4 then (11 . 4), (11 . 17) and (11 . 18) give

f(Q* ) ' 19 + 14 >Í(Q,)
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i .e . we may suppose
(11 . 19)

	

k=3.
(11. 5) gives at once that in this case

f(Q*) ~--- 2 (n - 3) > (n -1),
i .e. Q* cannot be extremal .

For the case k=2 the above reasoning can be repeated and gives that for
Q * 0 Qo .f(Q * ) >.f(Qo) which completes the proof .

(Received 11 September 1967)
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