PROBLEMS

1. Is it true that there is an absolute constant c so that every graph of m edges contains a subgraph of $\mathrm{cm}^{3 / 4}$ edges which does not contain a rectangle (i.e. a circuit of four edges)? The complete graph of $\binom{n}{2}=m$ edges shows that this conjecture if true is certainly best possible.

Let us now assume that our graph has n vertices and m edges and the valence of each vertex is less than $c_{1} \frac{m}{n}$. Then our graph contains perhaps a subgraph of $c_{2}(m n)^{1 / 2}$ edges which does not contain a rectangle. The order of magnitude $(m n)^{1 / 2}$ if true is certainly best possible.
B. BOLLOBAS and P. ERDÓS
2. Trivially every $3 k$ chromatic graph contains k_{1} odd vertex independent circuits. Perhaps every $3 k-1$ chromatic critical graph having more than $n_{0}(k)$ vertices contains k odd vertex independent circuits. In particular, is it true that every 5 -chromatic critical graph having sufficiently many vertices contains two odd vertex independent circuits? Gallal showed that this is false for 4 -chromatic graphs.

Lovasz in trying to prove this made the following conjecture: Let G be a k-chromatic graph which does not contain a complete k-gon and let $a>1$ and $b>1$ be arbitrary positive integers satisfying $a+b=k+1$. Then we can split the vertices of G into two classes so that the graph spanned by the vertices of the first class has chromatic number $\geq a$ and the graph spanned by the vertices of the second class has chromatic number $\geq b$.

By taking $a=3$ we obtain from Lovisz's conjecture that every graph of chromatio number $3 k-1$ which does not contain a complete ($3 k-1$)-gon contains k vertex-independent odd circuits.

Lovisz further remarks that even the following special case ($a=2$) does not seem to be easy to prove. Every k-chromatic graph Q which does not contain a complete k-gon contains two vertices, x_{1} and x_{2}, which are joined by an edge so that $G-x_{1}-x_{2}$ has chromatic number $\geq k-1$.
3. Let G be a graph of n vertices. Assume that for every $m \leq n$ every subgraph spanned by m vertices of G contains an independent set having at least $\frac{m-k}{2}$ vertices. Is it then true that G has chromatic number $\leq k+2$? The complete $(k+2)$-gon shows that this conjecture if true is certainly best possible.

The conjecture is trivial for $k=0$ but seems to present difficulties already for $k=1$.
P. ERDÓS and A. HAJNAL
4. Is it true that in any finite connected graph there exists a vertex such that every longest simple path of the graph contains this vertex?

Added in prof: H. Walther proved that the answer to the above question is negative. His construction will apper in the J. Combinatorial Theory.
5. A distancial generalization of Menger's theorem. Let Q be a finite connected graph with the vertex set $V(G), x, y, z$ will denote vertices of G. If G^{\prime} is a subgraph of G, then $x \in G^{\prime}$ means $x \in V\left(G^{\prime}\right)$. For any $x, y \in G$ the distance of x and y (in G) will be denoted by $d(x, y)$. If P_{1} and P_{2} are simple paths of G and $z \in G$, then let

$$
d\left(P_{1}, P_{2}\right)=\min _{x \in P_{1}, y \in P_{2}} d(x, y) \text { and } d\left(z, P_{1}\right)=\min _{x \in P_{1}} d(z, x) .
$$

Let A and B be two fixed disjoint subsets of $V(G)$. A path which has one endpoint in A and the other in B and has no other vertex in common with $A \cup B$ will be called an $A B$-path. S will denote the set of all simple $A B$ paths of G.

The simplest case of Menger's theorem states that if $d\left(P_{1}, P_{2}\right)=0$ for every $P_{1}, P_{\mathrm{z}} \in S$, then there exists an $x \in G$ with $d(x, P)=0$ for every $P \in S$.

Suppose now that $d\left(P_{1}, P_{2}\right) \leq 1$ for every $P_{1}, P_{2} \in S$. Then in the special case in which $A \cup B=V(G)$ and G contains only $A B$-edges (i.e. G is a bipartite graph) there exists an $x \in G$ with $d(x, \dot{P}) \leq 1$ for every $P \in S$. However, in the general case there does not exist such an x. Is it true that in any case there exists an $x \in G$ for which

$$
d(x, P) \leq 2 \text { for every } P \in S ?
$$

6. B. Bollobis and L. Pósa proved that in any finite undirected graph G in which any two circuits have a vertex in common there are three vertices so that every circuit of G pathes through one of these vertices. Let C be the class of all finite directed graphs in which any two directed circuits have a vertex in common. Does there exist a fixed natural number k so that in any $G \in C$ there are at most k vertices for which any directed circuit of G pathes through one of these vertices?

T. GALLAI

