INTERSECTION THEOREMS FOR SYSTEMS OF SETS (II)

P. ERDŐS and R. RADO

1. Introduction

In this paper we present the complete solution of the problem which was considered in [1], with the exception of the case in which both the given cardinal numbers are finite. The results of [1] will not be assumed. We begin by introducing some definitions. \dagger
A system $\Sigma_{1}=\left(B_{v}: v \in N\right)$ of sets B_{v}, where v ranges over the index set N, is said to contain the system $\Sigma_{0}=\left(A_{\mu}: \mu \in M\right)$ if, for $\mu_{0} \in M$, the set $A_{\mu_{0}}$ occurs in Σ_{1} at least as often as in Σ_{0}, i.e. if

$$
\left|\left\{v: v \in N ; B_{v}=A_{\mu_{0}}\right\}\right| \geqslant\left|\left\{\mu: \mu \in M ; A_{\mu}=A_{\mu_{0}}\right\}\right| \quad\left(\mu_{0} \in M\right) .
$$

If Σ_{1} contains Σ_{0} and, at the same time, Σ_{0} contains Σ_{1} then we do not distinguish between the systems Σ_{0} and Σ_{1}. The system Σ_{1} is called a ($a,<b$)-system if $|N|=a$ and $\left|B_{v}\right|<b$ for $v \in N$. The system Σ_{0} is called a $\Delta(c)$-system if $|M|=c$ and $A_{\mu_{0}} A_{\mu_{1}}=A_{\mu_{2}} A_{\mu_{3}}$ whenever $\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3} \in M ; \mu_{0} \neq \mu_{1} ; \mu_{2} \neq \mu_{3}$. The relation

$$
\begin{equation*}
a \rightarrow \Delta(b, c) \tag{1}
\end{equation*}
$$

means, by definition, that every $(a,<b)$-system contains a $\Delta(c)$-system. Clearly, (1) implies $a_{0} \rightarrow \Delta\left(b_{0}, c_{0}\right)$ whenever $a \leqslant a_{0} ; b \geqslant b_{0} ; c \geqslant c_{0}$. The logical negation of (1) is denoted by $a \rightarrow \Delta(b, c)$.

In [1] the following results were established.
Theorem I. (i) If $a, b \geqslant 1$ then

$$
\left(b^{+} b^{b} a^{b+1}\right)^{+} \rightarrow \Delta\left(b^{+}, a^{+}\right)
$$

(ii) If $a \geqslant 2 ; b \geqslant 1 ; a+b \geqslant \aleph_{0}$, then

$$
\left(a^{b}\right)^{+} \rightarrow \Delta\left(b^{+}, a^{+}\right)
$$

Theorem II. If $a, b \geqslant 1$ then $a^{b+1} \leftrightarrow \Delta\left(b^{+}, a^{+}\right)$.
Theorem III. If $1 \leqslant a, b<\mathcal{N}_{0}$ then
where

$$
\begin{gathered}
c^{+} \rightarrow \Delta\left(b^{+}, a^{+}\right) \\
c=b!a^{b+1}\left(1-\frac{1}{2!a}-\frac{2}{3!a^{2}}-\ldots-\frac{b-1}{b!a^{b-1}}\right) .
\end{gathered}
$$

R. O. Davies [4] has found a very simple proof of Theorem I (ii) $\dot{\leftarrow}$
S. Michael [3] has found, independently of [1], a proof of Theorem I (ii).

[^0]It follows from Theorem I that, given any cardinals $b, c \geqslant 1$, there always is a cardinal a such that (1) holds. We shall determine, for any given b, c such that $b+c \geqslant \aleph_{0}$, the least a such that (1) holds. We denote this cardinal by $f_{\Delta}(b, c)$. The results of [1] will not be used. Indeed, by means of lemmas 1 and 2 below we shall obtain proofs of Theorem I (ii) and of Theorem II which are simpler than those in [1]. We shall express $f_{\Delta}(b, c)$ in terms of sums or upper bounds of sequences of cardinals which in their turn are given explicitly in terms of b and c. Our result is stated as Theorem IV. We shall also give simpler expressions for $f_{\Delta}(b, c)$ which are valid when the generalized continumm hypothesis

$$
\begin{equation*}
2^{a}=a^{+} \quad\left(a \geqslant \aleph_{0}\right) \tag{H}
\end{equation*}
$$

is assumed. Our results will show that the cardinal number $f_{\Delta}(b, c)$ is always regular (disregarding the degenerate cases mentioned at the beginning of section 3). We should like to thank the referee for his helpful suggestions and for having pointed out some omissions in our original argument.

2. Lemmas

For every cardinal a we denote by $\omega(a)$ the least ordinal n whose cardinal $|n|$ equals a, i.e. the initial ordinal belonging to the cardinal a. For $a \geqslant \aleph_{0}$ we denote by a^{\prime} the least cardinal b such that a can be expressed as the sum of b cardinals less than a. If $a=a^{\prime}$ then a is called regular, and if $a>a^{\prime}$ then a is singular. All our arguments are based on the " naive set theory". Unless it is stated otherwise, small letters denote ordinals or cardinals.

Lemma 1. Let $c=c^{\prime}>b$. Suppose that $c_{0}{ }^{b_{0}}<c$ whenever $b_{0}<b$ and $c_{0}<c$. Then $c \rightarrow \Delta(b, c)$.

Proof. Let $\left(A_{v}: v \in N\right)$ be a ($c,<b$)-system which contains no $\Delta(c)$-system. Put $\sigma(M)=\Sigma(v \in M) A_{v}(M \subset N)$. We define subsets $N_{0}, \ldots, \hat{N}_{\omega(b)}$ of N. Let $\lambda_{0}<\omega(b) ; N_{0}, \ldots, \hat{N}_{\lambda_{0}} \subset N$ and assume that $\left|N_{\lambda}\right|<c\left(\lambda<\lambda_{0}\right)$. Put

$$
M=N_{0}+\ldots+\widehat{N}_{\lambda_{0}} .
$$

We then take as $N_{\lambda_{0}}$ a maximal subset of $N-M$ such that $A_{\mu} A_{v} \subset \sigma(M)$ whenever \dagger $\{\mu, v\}_{\neq} \subset N_{\lambda_{0}}$.
It follows that

$$
\begin{equation*}
A_{v} \sigma\left(N_{\lambda_{0}}\right) \not \ddagger \sigma(M) \text { for } v \in N-\left(N_{\lambda_{0}}+M\right) . \tag{2}
\end{equation*}
$$

If $\left|N_{\lambda_{0}}\right|=c$ then we obtain a contradiction. For we have \ddagger

$$
\begin{aligned}
& \left|\lambda_{0}\right|<b<c^{\prime} ; \quad|M|<c ; \\
& |\sigma(M)| \leqslant \Sigma(v \in M)\left|A_{v}\right| \leqslant|M| b<c ; \\
& \Sigma\left(b_{0}<b\right)\left|[\sigma(M)]^{b_{0}}\right|<c .
\end{aligned}
$$

It follows from $c=c^{\prime}$ that there are a set $M_{0} \subset N_{\lambda_{0}}$ and a set X such that $\left|M_{0}\right|=c$ and $A_{v} \sigma(M)=X\left(v \in M_{0}\right)$. But then $\left(A_{v}: v \in M_{0}\right)$ is a $\Delta(c)$-system which is the desired contradiction. Hence $\left|N_{\lambda_{0}}\right|<c$, and we have defined sets N_{λ} such that

[^1]$\left|N_{\lambda}\right|<c(\lambda<\omega(b))$. Then $\left|N_{0}+\ldots+\hat{N}_{\omega(b)}\right|<c$, and we can choose
$$
v_{0} \in N-\left(N_{0}+\ldots+\hat{N}_{\omega(b)}\right) .
$$

Then, using (2), we obtain the required contradiction

$$
\begin{aligned}
b>\left|A_{v_{0}}\right| \geqslant \Sigma\left(\lambda_{0}<\omega(b)\right) \mid A_{v_{0}} \sigma\left(N_{\lambda_{0}}\right)-A_{v_{0}} \sigma\left(N_{0}\right. & \left.+\ldots+\hat{N}_{\lambda_{0}}\right) \mid \\
& \geqslant \Sigma\left(\lambda_{0}<\omega(b)\right) 1=b
\end{aligned}
$$

The following version of Lemma 1, although not required in the present paper, might be of interest. In it c need not be regular, and the conclusion is weaker than that in Lemma 1.

Lemma 1A. Let $c^{\prime}>b$ and suppose that $c_{0}{ }^{b_{0}}<c$ whenever $b_{0}<b$ and $c_{0}<c$. Then $c \rightarrow \Delta\left(b, c_{0}{ }^{+}\right)$for $c_{0}<c$.

The proof is very similar to that of Lemma 1 and is omitted. R. O. Davies has found an alternative proof of Lemma 1. His method seems to yield Lemma 1A as well.

Lemma 2. Let $n=\omega(b) \geqslant 1$ and $1+c_{v}<c(v<n)$. Then

$$
\Sigma(v<n) c_{0} \ldots \hat{c}_{v} \rightarrow \Delta(b, c)
$$

Proof. Let $\left|A_{v}\right|=c_{v}(v<n)$ and $A_{\mu} A_{v}=\varnothing(\mu<v<n)$. Let $\dagger\left\{X_{\lambda}: \lambda \in L\right\}_{\neq}$be the set of all sets $X \subset A_{0}+\ldots+\widehat{A}_{n}$ such that there is $m(X)<n$ with

$$
\left|X A_{v}\right|=1(v<m(X)) ; X A_{v}=\varnothing \quad(m(X) \leqslant v<n) .
$$

Then $|L|=\Sigma(v<n) c_{0} \ldots \hat{c}_{v}$. Assume that

$$
L^{\prime} \subset L ;\left|L^{\prime}\right|=c ; X_{\lambda} X_{\mu}=X \quad\left(\{\lambda, \mu\}_{\neq} \subset L^{\prime}\right)
$$

We have to deduce a contradiction. We have $\left|X_{\lambda}\right|=\left|m\left(X_{\lambda}\right)\right|<b \quad\left(\lambda \in L^{\prime}\right)$. Let

$$
X=\left\{x_{\mu_{0}}, \ldots, \hat{x}_{\mu_{r}}\right\}_{\neq} ; \mu_{0}<\ldots<\hat{\mu}_{r}<n ; x_{\mu_{\rho}} \in A_{\mu_{\rho}} \quad(\rho<r) .
$$

The assumption $\ddagger\left\{\mu_{0}, \ldots, \hat{\mu}_{r}\right\}=[0, n)$ implies $\left|L^{\prime}\right| \leqslant 1$ which contradicts $\left|L^{\prime}\right|=c>1$. Hence there exists the ordinal

$$
\bar{\mu}=\min \left([0, n)-\left\{\mu_{0}, \ldots, \hat{\mu}_{r}\right\}\right)
$$

Case 1. There is $\rho_{0}<r$ such that $\bar{\mu} \leqslant \mu_{\rho_{0}}$. Then

$$
X_{\lambda} A_{\bar{\mu}} \neq \varnothing\left(\lambda \in L^{\prime}\right) ; \quad X_{\lambda_{0}} X_{\lambda_{1}} A_{\bar{\mu}}=\varnothing \quad\left(\left\{\lambda_{0}, \lambda_{1}\right\}_{\neq} \subset L^{\prime}\right) .
$$

Hence we obtain $\left|L^{\prime}\right| \leqslant\left|A_{\bar{\mu}}\right|=c_{\bar{\mu}}<c=\left|L^{\prime}\right|$, i.e. a contradiction.
Case 2. $\mu_{0}, \ldots, \hat{\mu}_{r}<\bar{\mu}$. Then $\left\{\mu_{0}, \ldots, \hat{\mu}_{r}\right\}=[0, r)$ and $r<n$. Then $X_{\lambda} A_{r} \neq \varnothing$ if $\lambda \in L^{\prime}$ and $X_{\lambda} \neq X ; X_{\lambda_{0}} X_{\lambda_{1}} A_{r}=\varnothing \quad\left(\left\{\lambda_{0}, \lambda_{1}\right\}_{\neq} \subset L^{\prime}\right)$. This implies

$$
\left|L^{\prime}\right| \leqslant 1+\left|A_{r}\right|=1+c_{r}<c=\left|L^{\prime}\right|,
$$

a contradiction which proves Lemma 2.

[^2]Lemma 3. For all cardinals $p, q \geqslant 1$ we have $q^{p} \rightarrow \Delta\left(p^{+}, q^{+}\right)$.
Proof. Let

$$
n=\omega(p) ;\left|A_{v}\right|=q(v<n) ; A_{\mu} A_{v}=\varnothing(\mu<v<n)
$$

Let $\left\{X_{\dot{\lambda}}: \lambda \in L\right\}_{\neq}$be the set of all $X \subset A_{0}+\ldots+\hat{A}_{n}$ such that $\left|X A_{v}\right|=1(v<n)$. Then the $\left(q^{p},<p^{+}\right)$-system $\left(X_{\lambda}: \lambda \in L\right)$ contains no $\Delta\left(q^{+}\right)$-system. For, let $\left(X_{j}: \lambda \in L^{\prime}\right)$ be a $\Delta\left(q^{+}\right)$-system, for some $L^{\prime} \subset L$. Then we can choose $\{\alpha, \beta\}_{\neq} \subset L^{\prime}$. Since $X_{\alpha} \neq X_{\beta}$ we have $N^{\prime}=\left\{v: X_{\alpha} X_{\beta} A_{v} \neq \varnothing\right\} \neq[0, n)$, and there is $v_{0} \in[0, n)-N^{\prime}$. Then $X_{;} A_{v_{0}} \neq \varnothing$ for $\lambda \in L^{\prime}$, and $X_{\lambda} X_{\mu} A_{v_{0}}=X_{\alpha} X_{\beta} A_{v_{0}}=\varnothing$ for $\{\lambda, \mu\}_{\neq} \subset L^{\prime}$, so that $\left|L^{\prime}\right| \leqslant\left|A_{v_{0}}\right|=q<q^{+}=\left|L^{\prime}\right|$ which is a contradiction.

Remark. If $q \geqslant \mathfrak{N}_{0}$ then the conclusion of Lemma 3 follows, of course, from Lemma 2.

Lemma 4. Let $x_{0}, \ldots, \hat{x}_{l}$ be cardinals, $x_{0}<\ldots<\hat{x}_{l}, l=\omega(|I|)$ and $t<|I|^{\prime}$. Then

$$
\left(\Sigma(\hat{\lambda}<l) x_{\lambda}\right)^{t} \leqslant \Sigma(\lambda<l) x_{\lambda}{ }^{2 t} .
$$

Proof. Let

$$
\left|X_{\dot{\lambda}}\right|=x_{\lambda}(\lambda<l) ; \quad X_{\lambda} X_{\mu}=\varnothing(\lambda<\mu<l) ; \quad|T|=t .
$$

Let $f \in\left(X_{0}+\ldots+\hat{X}_{l}\right)^{T}$, i.e. let f be a mapping $f: T \rightarrow X_{0}+\ldots+\hat{X}_{l}$. Then there is $\lambda_{0}(f)<l$ such that $f(T) \subset X_{0}+\ldots+\hat{X}_{\lambda_{0}(f)}$. Hence

$$
\left(\sum_{\lambda} x_{\lambda}\right)^{t} \leqslant \sum_{\lambda}\left(x_{0}+\ldots+\hat{x}_{\lambda}\right)^{t} \leqslant \Sigma\left(|\lambda| x_{\lambda}\right)^{t} \leqslant \Sigma\left(x_{\lambda}^{2}\right)^{t} .
$$

Lemma 5. Let $a \geqslant \aleph_{0} ; n=\omega(a) ; m=\omega\left(a^{\prime}\right)$. Let $x_{0}, \ldots, \hat{x}_{n}$ be cardinals such that $x_{0} \leqslant \ldots \leqslant \hat{x}_{n}$. Then there are an ordinal k and ordinals $v_{0}<\ldots<\hat{v}_{k}<n$ such that either
or

$$
\begin{array}{lll}
k=m & \text { and } & x_{v_{0}}<\ldots<\hat{x}_{v_{m}} \\
k=n & \text { and } & x_{v_{0}}=\ldots=\hat{x}_{v_{n}} . \tag{4}
\end{array}
$$

Proof. For $\mu, v<n$ put $\mu \equiv v$ whenever $x_{\mu}=x_{v}$. Let the equivalence classes of the relation $\mu \equiv v$ be $N_{0}, \ldots, \hat{N}_{p}$, where p is an ordinal, $1 \leqslant p \leqslant n$. We can number the N_{π} in such a way that whenever $r<s<p ; \mu \in N_{r} ; v \in N_{s}$, then $\mu<v$ and $x_{\mu}<x_{v}$. If $p \geqslant m$ then we can choose $v_{\lambda} \in N_{\lambda}$ for $\lambda<m$, and (3) holds. Now let $p<m$. Then there is $\pi<p$ such that $\left|N_{\pi}\right|=a$. Then, if $\dagger N_{\pi}=\left\{v_{0}, \ldots, \hat{v}_{n}\right\}_{<}$, we have (4).

Lemma 6. Let: $a^{\prime}>b^{\prime} ; b=b^{-}$, and suppose that $a \rightarrow \Delta\left(b_{0}, c\right)$ for all $b_{0}<b$. Then $a \rightarrow \Delta(b, c)$.

Proof. There is a sequence§ $b_{0}<\ldots<\hat{b}_{m} \rightarrow b$, where $m=\omega\left(b^{\prime}\right)$. Let $|N|=a$ and $\left|A_{v}\right|<b(v \in N)$. Then $N=N_{0}+\ldots+\hat{N}_{m}$, where

$$
N_{\mu}=\left\{v:\left|A_{v}\right|<b_{\mu}\right\} \quad(\mu<m)
$$

[^3]By definition of m there is $\mu<m$ such that $\left|N_{\mu}\right|=|N|=a$. Since $a \rightarrow \Delta\left(b_{\mu}, c\right)$, the system $\left(A_{\nu}: v \in N_{\mu}\right)$ contains a $\Delta(c)$-system.

Lemma 7. If $c>c^{\prime}$ then $c \rightarrow \Delta(2, c)$.
Proof. We have $c=c_{0}+\ldots+\hat{c}_{m}$, where $m=\omega\left(c^{\prime}\right)$ and $c_{0}, \ldots, \hat{c}_{m}<c$. Let

$$
S=S_{0}+\ldots+\hat{S}_{m} ; \quad\left|S_{\mu}\right|=c_{\mu}(\mu<m) ; \quad S_{\mu} S_{v}=\varnothing(\mu<v<m) .
$$

Put $A_{v x}=\{v\}\left(v<m ; x \in S_{v}\right)$, so that $A_{v x}$ is independent of x. Then the $(c,<2)$ system ($A_{v x}: v<m ; x \in S_{v}$) contains no $\Delta(c)$-system.

3. Determination of $f_{\Delta}(b, c)$

For cardinals b, c we denote by $f_{\Delta}(b, c)$ the least a such that $a \rightarrow \Delta(b, c)$.
For the sake of the completeness of the discussion we begin by stating the values of f_{Δ} in the degenerate cases, which are, of course, of little interest.

$$
f_{\Delta}(0,0)=0 ; \quad f_{\Delta}(0, c)=1 \quad(c \geqslant 1) ; \quad f_{\Delta}(1, c)=c(c \geqslant 0)
$$

If $b \geqslant 2$ then $f_{\Delta}(b, 0)=0 ; f_{\Delta}(b, 1)=1 ; f_{\Delta}(b, 2)=2$. Next, if $1 \leqslant b, c<N_{0}$ then Theorem III gives what seems to be the best known upper estimate for f_{Δ}. In this case the determination of the exact value of $f_{\Delta}(b, c)$ is beyond the scope of methods known at present.

For the remainder of this paper we shall assume that

$$
\begin{equation*}
b \geqslant 2 ; \quad c \geqslant 3 ; \quad b+c \geqslant N_{0} . \tag{5}
\end{equation*}
$$

The number $f_{\Delta}(b, c)$ will turn out to be closely related to the number $s(b, c)$ defined by the equation

$$
\begin{equation*}
s(b, c)=\sup \left(c_{0}, \ldots, \hat{c}_{\omega(b)}<c\right) \Sigma(v<\omega(b)) c_{0} \ldots \hat{c}_{v} \tag{6}
\end{equation*}
$$

In fact, for every choice of b and c the number $f_{\Delta}(b, c)$ has one of the values $s(b, c)$, $s^{+}(b, c)$. This means that our analysis will show that $s^{+}(b, c) \rightarrow \Delta(b, c)$, and $s_{0} \rightarrow \Delta(b, c)$ for every $s_{0}<s(b, c)$.

Our results are summarized in the following theorem \dagger
Theorem IV. Let the cardinal numbers b, c satisfy (5) and let the cardinal number $s(b, c)$ be defined by (6). Then
(a)

$$
f_{\Delta}(b, c)=s(b, c)
$$

if either (i) $b<\aleph_{0} \leqslant c^{\prime}=c$,
or (ii) $\aleph_{0} \leqslant b^{-}=b<c^{\prime}=c^{-}=c$ and $\sup \left(b_{0}<b ; c_{0}<c\right) c_{0}{ }^{b_{0}}>\sup \left(b_{0}<b\right) c_{1}{ }^{b_{0}}$ for every $c_{1}<c$,
or (iii) $\aleph_{0} \leqslant b=b_{0}{ }^{+}<c^{\prime} \leqslant c^{-}=c$

$$
\text { and } \sup \left(c_{0}<c\right) c_{0}^{b_{0}}=\left(\sup \left(c_{0}<c\right) c_{0}^{b_{0}}\right)^{\prime}>c_{1}^{b_{0}} \text { for every } c_{1}<c .
$$

(b) In all other cases

We note that

$$
f_{\Delta}(b, c)=(s(b, c))^{+}
$$

$$
\begin{equation*}
s(b, c) \geqslant \max (b, c) \tag{7}
\end{equation*}
$$

For, if all $c_{v}=1$ then $\Sigma c_{0} \ldots \hat{c}_{v}=b$, and if c_{0} is arbitrary such that $c_{0}<c$, and $c_{v}=0(v \geqslant 1)$ then $\Sigma c_{0} \ldots \hat{c}_{v}=1+c_{0}$.

If $c \geqslant \aleph_{0}$ then

$$
\begin{equation*}
s_{0} \rightarrow \Delta(b, c) \quad\left(s_{0}<s\right) \tag{8}
\end{equation*}
$$

For we can choose $c_{0}, \ldots, \hat{c}_{o(b)}<c$ such that, by Lemma 2 ,

$$
s_{0} \leqslant \Sigma c_{0} \ldots \hat{c}_{v} \rightarrow \Delta(b, c),
$$

and then appeal to the monotoneity of our relation.
We shall evaluate $f_{\Delta}(b, c)$ without assuming the generalized continuum hypothesis (H). We shall also compute $f_{\Delta}(b, c)$ under the assumption of (H). To avoid tiresome repetition we shall use the relation

$$
s(b, c) \stackrel{H}{=} d
$$

to express the fact that if (H) is assumed then $s(b, c)=d$. Such relations will be stated without proof. The reader can easily supply the proofs, e.g. by referring to [2] §36. Whenever the arguments of the functions s or f_{Δ} are the given cardinals b, c we shall write s and f_{Δ} instead of $s(b, c)$ and $f_{\Delta}(b, c)$ respectively. The symbols b_{v}, c_{v}, where v is an ordinal, will always denote cardinals such that $b_{v}<b$ and $c_{v}<c$. We put

$$
n=\omega(b)
$$

Our discussion will follow a highly ramified scheme of classification which in the interest of clarity is presented in detail.

We use the notation

$$
a^{(n}=\Sigma(v<n) a^{|v|}
$$

where a denotes a cardinal and n an ordinal number.
Case 1. $b<\mathfrak{N}_{0}$. Then $s=c$. For we have, for any $c_{v}, \Sigma(v<n) c_{0} \ldots \hat{c}_{v} \leqslant c$ and (7) completes the proof.

Case 1a. $c=c^{\prime}$. Then $f_{\Delta}=s$.
Proof. By Lemma 1, $c \rightarrow \Delta(b, c)$. For, we have $c^{\prime} \geqslant \aleph_{0}>b$ and $c_{0}{ }^{b_{0}}<c$.
Case 1b. $c>c^{\prime}$. Then $f_{\Delta}=s^{+}$.
Proof. By Lemma $7, c \rightarrow \Delta(2, c)$ and hence $c \rightarrow \Delta(b, c)$. Also, by Case 1a, $c^{+} \rightarrow \Delta\left(b, c^{+}\right)$and therefore $c^{+} \rightarrow \Delta(b, c)$.

Case 2. $b \geqslant \aleph_{0}$.
Case 2a. $c=c_{0}{ }^{+}$. Then, clearly, $s=c_{0}^{(n}$. Also, $s \stackrel{H}{=} b$ if $c_{0}<\aleph_{0} ; s \stackrel{H}{=} c_{0}$ if $b \leqslant c_{0}{ }^{\prime} ; s \stackrel{H}{=} c$ if $c_{0}{ }^{\prime}<b \leqslant c_{0} ; s \stackrel{H}{=} b$ if $\aleph_{0} \leqslant c_{0}<b$.

Case 2a1. $b=b^{-}$. Then $f_{\Delta}=s^{+}$.
Proof. We begin by showing that

$$
\begin{equation*}
s \leftrightarrow \Delta(b, c) . \tag{9}
\end{equation*}
$$

If $c \geqslant \aleph_{0}$ then, by Lemma 2, $s=c_{0}{ }^{(n} \leftrightarrow \Delta(b, c)$. Now let $c<\aleph_{0}$. By Lemma 3 we have, for $v<n, 2^{|v|} \rightarrow \Delta\left(|v|^{+}, 3\right)$. Hence there is a $\left(2^{|v|},<|v|^{+}\right)$-system
$\left(A_{v \lambda}: \lambda \in L_{v}\right)$ which does not contain any $\Delta(3)$-system. Choose any distinct objects $x_{0}, \ldots, \hat{x}_{n}, y_{0}, \ldots, \hat{y}_{n}$ outside $\Sigma\left(v<n ; \lambda \in L_{v}\right) A_{v \lambda}$ and put

$$
B_{v i}=\left\{x_{0}, \ldots, \hat{x}_{v}, y_{v}\right\}+A_{v \lambda} \quad\left(v<n ; \lambda \in L_{v}\right) .
$$

Then (9) follows if we can show that ($B_{v \lambda}: v<n ; \lambda \in L_{v}$) is a ($s,<b$)-system which does not contain any $\Delta(3)$-system. Clearly

$$
\left|\left\{(v, \lambda): v<n ; \lambda \in L_{v}\right\}\right|=2^{(n}=s .
$$

Also, $\left|B_{v j}\right|<b$. Now let $v_{0} \leqslant v_{1} \leqslant v_{2}<n$, and $\lambda_{p} \in L_{v_{\rho}}$ for $\rho<3$. Suppose that the three pairs $\left(v_{\rho}, \lambda_{\rho}\right)$ are distinct and that $\left(D_{0}, D_{1}, D_{2}\right)$ is a $\Delta(3)$-system, where $D_{\rho}=B_{v_{\rho} \lambda_{\rho}}$ for $\rho<3$. If $v_{0}=v_{1}=v_{2}$, then $\left(A_{v_{0} \lambda_{\rho}}: \rho<3\right)$ is a $\Delta(3)$-system which contradicts the definition of the $A_{v_{0} \lambda}$.
If $v_{0}=v_{1}<v_{2}$, then $y_{v_{0}} \in D_{0} D_{1}-D_{1} D_{2}$ which is false.
If $v_{0}<v_{1}=v_{2}$, then $y_{v_{1}} \in D_{1} D_{2}-D_{0} D_{1}$ which is false.
Hence $v_{0}<v_{1}<v_{2}$. But then $x_{v_{0}} \in D_{1} D_{2}-D_{0} D_{1}$ which is false. This proves (9). Next, we prove that

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) . \tag{10}
\end{equation*}
$$

Case 2ala. $b \geqslant \aleph_{1} . \quad$ By (7), $\left(s^{+}\right)^{\prime}=s^{+}>b \geqslant b^{\prime}$. Hence, by Lemma 6, (10) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b_{0}^{+}, c\right) \quad\left(\aleph_{0} \leqslant b_{0}<b\right) \tag{11}
\end{equation*}
$$

Since $s \geqslant c_{0}{ }^{b_{0}}$, (11) follows from

$$
\begin{equation*}
\left(c_{0}^{b_{0}}\right)^{+} \rightarrow \Delta\left(b_{0}^{+}, c\right) \quad\left(\aleph_{0} \leqslant b_{0}<b\right) . \tag{12}
\end{equation*}
$$

Since $\left(c_{0}{ }^{b_{0}}\right)^{+} \geqslant c_{0}{ }^{+}=c$, (12) follows from

$$
\begin{equation*}
\left(c_{0}^{b_{0}}\right)^{+} \rightarrow \Delta\left(b_{0}^{+},\left(c_{0}^{b_{0}}\right)^{+}\right) \quad\left(\aleph_{0} \leqslant b_{0}<b\right) \tag{13}
\end{equation*}
$$

But (13) follows from Lemma 1. For we have, if $\aleph_{0} \leqslant b_{0}<b$,

$$
\left(\left(c_{0}{ }^{b_{0}}\right)^{+}\right)^{\prime}=\left(c_{0}{ }^{b_{0}}\right)^{+}>c_{0}{ }^{b_{0}} \geqslant b_{0}{ }^{+}
$$

and

$$
\left(c_{0}^{b_{0}}\right)^{b_{0}}=c_{0}{ }^{b_{0}}<\left(c_{0}{ }^{b_{0}}\right)^{+} .
$$

This proves (10).
Case 2alb. $b=\aleph_{0}$.
Case 2alb1. $c<\aleph_{0}$. Then $s=\aleph_{0}$. By Lemma $1, s^{+}=\aleph_{1} \rightarrow \Delta\left(\aleph_{0}, \aleph_{1}\right)$, and this implies (10).

Case 2alb2. $c \geqslant \mathbb{N}_{0}$. Then $s=c_{0} . \quad$ By Lemma 1,

$$
s^{+}=c_{0}^{+} \rightarrow \Delta\left(\aleph_{0}, c_{0}^{+}\right),
$$

which is (10).
Case 2a2. $b=b_{0}{ }^{+}$. Then $s=c_{0}{ }^{b_{0}}$ and $f_{\Delta}=s^{+}$. Also, $s={ }_{=}^{H} c_{0}$ if $b_{0}<c_{0}{ }^{\prime}$; $s \stackrel{H}{=} c$ if $c_{0}{ }^{\prime} \leqslant b_{0} \leqslant c_{0} ; s \stackrel{H}{=} b$ if $c_{0}<b_{0}$.

Proof. Clearly, $s=c_{0}{ }^{(n} \leqslant b c_{0}{ }^{b_{0}}=c_{0}{ }^{b_{0}} \leqslant s . \quad$ By Lemma 3, $s=c_{0}{ }^{b_{0}} \rightarrow \Delta(b, c)$. By Lemma 1,

$$
\begin{equation*}
\left(c_{0}^{b_{0}}\right)^{+} \rightarrow \Delta\left(b,\left(c_{0}{ }^{b_{0}}\right)^{+}\right) \tag{14}
\end{equation*}
$$

For, we have $\left(c_{0}{ }^{b_{0}}\right)^{+}>c_{0}{ }^{b_{0}} \geqslant b$ and $\left(c_{0}{ }^{b_{0}}\right)^{b_{0}}=c_{0}{ }^{b_{0}}<\left(c_{0}{ }^{b_{0}}\right)^{+}$. By (7), (14) implies $s^{+} \rightarrow \Delta(b, c)$.

Case 2b. $c=c^{-}$.
Case 2b1. $b=b_{0}{ }^{+}$.
Case 2bla. $\quad c^{\prime}=b$. Then we can choose a sequence $0<c_{0}<\ldots<\hat{c}_{n} \rightarrow c$. Then $s=\Sigma(v<n) c_{0} \ldots \hat{c}_{v} ; f_{\Delta}=s^{+} ; s \stackrel{H}{=} c$.

Proof. Let $x_{0}, \ldots, \hat{x}_{n}<c$. Then we can find inductively numbers

$$
f(0)<\ldots<\hat{f}(n)<n
$$

such that $x_{v}<c_{f(v)}(v<n)$. Then $\Sigma(v<n) x_{0} \ldots \hat{x}_{v} \leqslant \Sigma c_{0} \ldots \hat{c}_{v}$. Hence, by Lemma 2,

$$
s=\Sigma c_{0} \ldots \hat{c}_{v} \rightarrow \Delta(b, c)
$$

We now prove

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) \tag{15}
\end{equation*}
$$

By (7), (15) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b, s^{+}\right) \tag{16}
\end{equation*}
$$

We have $\left(s^{+}\right)^{\prime}=s^{+}>s \geqslant b$. Hence, by Lemma 1, (16) follows from

$$
\begin{equation*}
s^{b_{0}} \leqslant s \tag{17}
\end{equation*}
$$

Put $c_{0} \ldots \hat{c}_{v}=p_{v}(v<n)$.
Case 2bla1. There is a sequence $v_{0}<\ldots<\hat{v}_{n}<n$ with $p_{v_{0}}<\ldots<\hat{p}_{v_{n}}$. Then

$$
s=\Sigma(v<n) p_{v} \leqslant \Sigma(\lambda<n)\left|v_{\lambda}\right| p_{v \lambda} \leqslant \Sigma(\lambda<n) p_{v \lambda} \leqslant s
$$

By Lemma 4,

$$
\begin{equation*}
s^{b_{0}}=\left(\Sigma p_{v_{2}}\right)^{b_{0}} \leqslant \Sigma p_{v_{2}}^{2 b_{0}} \leqslant \Sigma p_{v}{ }^{b_{0}} . \tag{18}
\end{equation*}
$$

Put $\omega\left(b_{0}\right)=m$ and consider the sequence $d_{0}, \ldots, \hat{d}_{n}$, where $d_{m \rho+\mu}=c_{\rho}(\mu<m ; \rho<n)$. By definition of s,

$$
\Sigma(v<n) p_{v}^{b_{0}} \leqslant \Sigma(v<n) d_{0} \ldots d_{v} \leqslant s .
$$

Hence (18) implies (17).
Case 2bla2. There is no sequence $v_{0}<\ldots<\hat{v}_{n}<n$ with $p_{v_{0}}<\ldots<\hat{p}_{v_{n}}$. Then, by Lemma 5 , there is a sequence $0<v_{0}<\ldots<\hat{v}_{n}<n$ such that $p_{v_{0}}=\ldots=\hat{p}_{v_{n}}=p$, say. Then $p_{v}=p\left(v_{0} \leqslant v<n\right)$;

$$
s=\Sigma\left(v<v_{0}\right) p_{v}+\Sigma\left(v_{0} \leqslant v<n\right) p \leqslant b p
$$

Also, $b p=\Sigma\left(v_{0} \leqslant v<n\right) p_{v} \leqslant s$. Hence $s=b p$. We have $p \geqslant c_{v}(v<n)$ and so $p \geqslant c \geqslant c^{\prime}=b ; s=p$.
Consider the sequence d_{0}, \ldots, d_{n} defined by

$$
d_{v o v+\mu}=c_{\mu} \quad\left(\mu<v_{0} ; v<n\right)
$$

By definition of s,

$$
s^{b_{0}}=\left(c_{0} \ldots \hat{c}_{v_{0}}\right)^{b_{0}} \leqslant \Sigma(v<n) d_{0} \ldots \hat{d}_{v} \leqslant s
$$

This again proves (17).
Case 2blb. $c^{\prime}<b$. Then

$$
s=c^{(n} ; \quad f_{\Delta}=s^{+} ; \quad s \stackrel{H}{=} c^{+} .
$$

Proof. Choose $0<c_{0}<\ldots<\hat{c}_{m} \rightarrow c$, where $m=\omega\left(c^{\prime}\right)$, and put

$$
d_{m v+\mu}=c_{\mu} \quad(\mu<m ; v<n)
$$

Let $x_{0}, \ldots, \hat{x}_{n}<c$, and choose any $v<n$. Then we can find inductively numbers $f_{v}(0)<\ldots<\hat{f}_{v}(m)<m$ such that $x_{m v+\mu} \leqslant d_{m v+f_{v}(\mu)}(\mu<m ; v<n)$. We define f by putting $f(m v+\mu)=m v+f_{v}(\mu) \quad(\mu<m ; v<n)$. Then $f(0)<\ldots<\hat{f}(n)<n$ and $x_{v} \leqslant d_{f(v)}(v<n)$. Hence

$$
\Sigma(v<n) x_{0} \ldots \hat{x}_{v} \leqslant \Sigma d_{0} \ldots \hat{d}_{v} .
$$

This proves $s=\Sigma d_{0} \ldots \hat{d}_{v}$. Put $p_{v}=d_{0} \ldots \hat{d}_{v}(v<n)$. We shall make use of the fact that $p_{m}=c^{c^{\prime}}$ ([2], p. 141, Satz 6). We have

$$
\begin{aligned}
s & =\Sigma(v<n) \Sigma(m v \leqslant \lambda<m v+m) p_{\lambda} \leqslant \Sigma(v<n)|m| p_{m v+m} \\
& =\Sigma(v<n) c^{\prime}\left(c^{c^{\prime}}\right)^{|v+1|} \leqslant \Sigma(v<n) c^{c^{\prime}|v|} \\
& =\Sigma(v<m) c^{c^{\prime}}+\Sigma(m \leqslant v<n) c^{|v|} \leqslant c^{(n} \\
& \leqslant \Sigma(v<n)\left(c_{0} \ldots \hat{c}_{m}\right)^{|v|} \leqslant \Sigma(v<n) d_{0} \ldots \hat{d}_{v} \leqslant s .
\end{aligned}
$$

This shows that, by Lemma 2,

$$
s=c^{(n}=\Sigma d_{0} \ldots \hat{d}_{v} \rightarrow \Delta(b, c)
$$

Finally, by Lemma $1, s^{+} \rightarrow \Delta\left(b, s^{+}\right)$. For, we have $\left(s^{+}\right)^{\prime}>s \geqslant b$;

$$
\begin{aligned}
s & =c^{(n} \leqslant b c^{b_{0}}=c^{b_{0}} \leqslant s, \\
s^{b_{0}} & =c^{b_{0} b_{0}}=c^{b_{0}}=s<s^{+} .
\end{aligned}
$$

Now (7) yields $s^{+} \rightarrow \Delta(b, c)$.
Case 2blc. $c^{\prime}>b$. Then $s=\sup \left(c_{*}<c\right) c_{*}{ }^{b}{ }^{\circ} \stackrel{H}{=} c$.
Proof. Let $c_{0}, \ldots, \hat{c}_{n}<c$. Then there is \bar{c} such that $2, c_{0}, \ldots, \hat{c}_{n} \leqslant \bar{c}<c$ and hence $\Sigma(v<n) c_{0} \ldots \hat{c}_{v} \leqslant b \bar{c}^{b_{0}}=\bar{c}^{b_{0}}$. Therefore $s \leqslant \sup \left(c_{\%}<c\right) c_{*}^{b_{0}}=\sigma$, say. If $x_{v}=c_{*}<c(v<n)$, then $s \geqslant \Sigma x_{0} \ldots \hat{x}_{v} \geqslant c_{*}^{b_{0}}$. Hence $s \geqslant \sigma$ and so $s=\sigma$.

Case 2blc1. There is $2 \leqslant c_{1}<c$ such that $s=c_{1}{ }^{b_{0}}$. Then $f_{\Delta}=s^{+}$.
Proof. By Lemma 3, $c_{1}^{b_{0}} \rightarrow \Delta\left(b, c_{1}^{+}\right)$. Hence $s \rightarrow \Delta(b, c)$. By Lemma 1 , $s^{+} \rightarrow \Delta\left(b, s^{+}\right)$. For, we have $\left(s^{+}\right)^{\prime}>s \geqslant b ; s^{b_{0}}=c_{1} b_{0} b_{0}=s<s^{+}$. By (7) we deduce $s^{+} \rightarrow \Delta(b, c)$.

Case 2blc2. $s>c_{0}{ }^{b_{0}}\left(c_{0}<c\right)$.
Case 2blc2a. $s=s^{\prime}$. Then $f_{\Delta}=s$.
Proof. By Lemma 1, $s \rightarrow \Delta(b, s)$. For, if $s_{0}<s$ then there is $c_{0}<c$ such that $s_{0}{ }^{b_{0}} \leqslant\left(c_{0}{ }^{b_{0}}\right)^{b_{0}}=c_{0}{ }^{b_{0}}<s$. Also, using (7) we find $s^{\prime}=s \geqslant c \geqslant c^{\prime}>b$, so that Lemma 1 applies and gives $s \rightarrow \Delta(b, s)$. By (7) we deduce $s \rightarrow \Delta(b . c)$, and (8) completes the proof.

Case 2blc2b. $s>s^{\prime}$. Then $f_{\Delta}=s^{+}$.
Proof. If we assume that $s>c$ then there is $c_{0}<c$ such that $c_{0}{ }^{b_{0}} \geqslant c$. Then, for every $c_{1}<c$, we have $c_{1}{ }^{b_{0}} \leqslant c^{b_{0}} \leqslant\left(c_{0}{ }^{b_{0}}\right)^{b_{0}}=c_{0}{ }^{b_{0}}$ and hence $s \leqslant c_{0}{ }^{b_{0}}<s$ which
is a contradiction. Hence, by Lemma $7, s=c \rightarrow \Delta(2, c)$ and therefore $s \rightarrow \Delta(b, c)$. Also,

$$
\begin{gathered}
\left(c^{+}\right)^{\prime}=c^{+}>c^{\prime}>b ; \quad c=x_{0}+\ldots+\hat{x}_{l} ; \quad l=\omega\left(c^{\prime}\right) ; \quad x_{0}<\ldots+\hat{x}_{l}<c ; \\
b_{0}<b<c^{\prime}=|l|=|l|^{\prime} .
\end{gathered}
$$

Hence, by Lemma 4,

$$
c^{b_{0}} \leqslant \Sigma(\hat{\lambda}<l) x_{\lambda}^{2 b_{0}} \leqslant|l| s=c<c^{+} .
$$

Now Lemma 1 gives $c^{+} \rightarrow \Delta\left(b, c^{+}\right)$and so $s^{+} \rightarrow \Delta(b, c)$.
Case 2b2. $b=b^{-}$.
Case 2b2a. $\quad c^{\prime}=b$. Choose $0<c_{0}<\ldots<\hat{c}_{n} \rightarrow c$. Then

$$
s=\Sigma(v<n) c_{0} \ldots \hat{c}_{v} ; \quad f_{\Delta}=s^{+} ; \quad s \stackrel{H}{=} c .
$$

Proof. If $x_{0}, \ldots, \hat{x}_{n}<c$ then there is a sequence $f(0)<\ldots<\hat{f}(n)<n$ such that $x_{v} \leqslant c_{f(v)}(v<n)$. Then $\Sigma x_{0} \ldots \hat{x}_{v} \leqslant \Sigma c_{0} \ldots \hat{c}_{v}$ and therefore, by Lemma 2, $s=\Sigma c_{0} \ldots \hat{c}_{v} \rightarrow \Delta\left(b,{ }_{-} c\right)$. We now prove

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) \tag{19}
\end{equation*}
$$

By (7), (19) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b, s^{+}\right) \tag{20}
\end{equation*}
$$

By Lemma 1, (20) follows from

$$
\begin{equation*}
s^{b_{0}} \leqslant s \quad\left(b_{0}<b\right) \tag{21}
\end{equation*}
$$

Let $b_{0}<b$ and put $c_{0} \cdots \hat{c}_{v}=p_{v} \quad(v<n)$.
Case 2 b 2 a 1 . There is $v_{0}<\ldots<\hat{v}_{n}<n$ such that $p_{v_{0}}<\ldots \hat{p}_{v_{n}}$. Then

$$
s=\Sigma(v<n) p_{v} \leqslant \Sigma(\lambda<n)\left|v_{\lambda}\right| p_{v_{\lambda}} \leqslant \Sigma(\lambda<n) p_{v_{\lambda}} \leqslant s
$$

By Lemma 4, which applies since $b_{0}<b=c^{\prime}=c^{\prime \prime}=b^{\prime}=|n|^{\prime}$,

$$
\begin{equation*}
s^{b_{0}}=\left(\Sigma p_{v_{\lambda}}\right)^{b_{0}} \leqslant \Sigma p_{v_{2}}^{2 b_{0}} \leqslant \Sigma p_{v}^{b_{0}} \tag{22}
\end{equation*}
$$

Put $\omega\left(b_{0}\right)=m$ and $d_{m v+\mu}=c_{v}(\mu<m ; \nu<n)$. Then, by definition of s,

$$
\Sigma(v<n) p_{v}^{b_{0}} \leqslant \Sigma d_{0} \ldots \hat{d}_{v} \leqslant s
$$

Hence (22) implies (21), and (19) is proved.
Case 2b2a2. There is no $v_{0}<\ldots<\hat{v}_{n}<n$ such that $p_{v_{0}}<\ldots<\hat{p}_{v_{n}}$. Then, by Lemma 5 , there is $0<v_{0}<\ldots<\hat{v}_{n}<n$ such that $p_{\mathrm{v}_{\mathrm{o}}}=\ldots=\hat{p}_{\mathrm{v}_{n}}=p$, say. Then

$$
\begin{aligned}
p_{v} & =p \quad\left(v_{0} \leqslant v<n\right) \\
s & =\Sigma\left(v<v_{0}\right) p_{v}+\Sigma\left(v_{0} \leqslant v<n\right) p_{v} \leqslant\left|v_{0}\right| p+|n| p \\
& =b p=\Sigma\left(v_{0} \leqslant v<n\right) p_{v} \leqslant s \\
s & =b p ; \quad p \geqslant c_{v}(v<n) ; \quad p \geqslant c \geqslant c^{\prime}=b ; \quad s=p
\end{aligned}
$$

Put $d_{v_{0} v+\lambda}=c_{\lambda}\left(v<n ; \lambda<v_{0}\right)$. Then, by definition of s,

$$
\left(c_{0} \ldots \hat{c}_{v_{0}}\right)^{b_{0}} \leqslant \Sigma(v<n) d_{0} \ldots \hat{d}_{v} \leqslant s ; \quad s^{b_{0}}=p^{b_{0}} \leqslant s
$$

Hence (21) follows and (19) is proved.

Case 2b2b. $c^{\prime}<b$. Then

$$
s=c^{(n} ; \quad f_{\Delta}=s^{+} ; \quad s \stackrel{H}{=} c^{+} .
$$

Proof. Let $m=\omega\left(c^{\prime}\right)$, and choose a sequence $0<c_{0}<\ldots<\hat{c}_{m} \rightarrow c$. Put $d_{m v+\mu}=c_{\mu} \quad(\mu<m ; v<n)$. Let $x_{0}, \ldots, \hat{x}_{n}<c$. Then, for every $v<n$, we can find inductively numbers $f_{v}(0)<\ldots<\hat{f_{v}}(m)<m$ such that

$$
x_{m v+\mu} \leqslant d_{m v+f_{v}(\mu)} \quad(\mu<m ; v<n)
$$

Define f by putting $f(m v+\mu)=m v+f_{v}(\mu) \quad(\mu<m ; v<n)$. Then

$$
f(0)<\ldots<\hat{f}(n)<n
$$

and

$$
x_{v} \leqslant d_{f(v)} \quad(v<n) ; \quad \Sigma(v<n) x_{0} \ldots \hat{x}_{v} \leqslant \Sigma d_{0} \ldots \hat{d}_{v}
$$

Thus $s=\Sigma d_{0} \ldots \hat{d}_{v}$. Put $p_{v}=d_{0} \ldots \hat{d}_{v}(v<n)$. Then

$$
\begin{aligned}
s & =\Sigma(v<n) \Sigma(m v \leqslant \lambda<m v+m) p_{\lambda} \leqslant \Sigma(v<n)|m| p_{m v+m} \\
& =\Sigma(v<n) c^{\prime}\left(c^{c}\right)^{|v+1|} \leqslant \Sigma(v<n) c^{|v| c^{\prime}} \\
& =\Sigma(v<m) c^{c^{\prime}}+\Sigma(m \leqslant v<n) c^{|v|} \leqslant c^{(n} .
\end{aligned}
$$

On the other hand, using $c_{0} \ldots \hat{c}_{m}=c^{c^{\prime}}>c$, we find

$$
c^{(n} \leqslant \Sigma(v<n)\left(c_{0} \ldots \hat{c}_{m}\right)^{|v|} \leqslant \Sigma(v<n) d_{0} \ldots \hat{d}_{v}=s
$$

Hence, by Lemma 2, $s=c^{(n}=\Sigma d_{0} \ldots \hat{d}_{v} \rightarrow \Delta(b, c)$. We now prove

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) \tag{23}
\end{equation*}
$$

We recall that s always stands for the number $s(b, c)$. By Lemma 6, (23) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b_{1}^{+}, c\right) \quad\left(c^{\prime}<b_{1}<b\right) \tag{24}
\end{equation*}
$$

Next, by the monotoneity property of s, (24) follows from

$$
\begin{equation*}
s^{+}\left(b_{1}^{+}, c\right) \rightarrow \Delta\left(b_{1}^{+}, c\right) \quad\left(c^{\prime}<b_{1}<b\right) . \tag{25}
\end{equation*}
$$

But (25) follows from case 2blb, and (23) is established.
Case 2b2c. $c^{\prime}>b$. Then \dagger

$$
s=\sup \left(b_{0}<b ; c_{0}<c\right) c_{0} \stackrel{b_{0}}{\underline{H}} c .
$$

Proof. Let $x_{0}, \ldots, \hat{x}_{n}<c$. Then there is c_{1} such that $x_{0}, \ldots, \hat{x}_{n}<c_{1}<c$. Put $\sigma=\sup \left(b_{0}<b ; c_{0}<c\right) c_{0}{ }^{b_{0}}$. Then

$$
\Sigma(v<n) x_{0} \ldots \hat{x}_{v} \leqslant c_{1}^{(n} \leqslant b \sigma
$$

Also, $\sigma \geqslant 2^{|v|}>|v| \quad(v<n) ; \sigma \geqslant b$, so that $s \leqslant \sigma$. If $s<\sigma$ then there are b_{0} and c_{0} such that $s<c_{0}{ }^{b_{0}}$. Put $y_{v}=c_{0}(v<n)$. Then $s<c_{0}{ }^{b_{0}} \leqslant \Sigma(v<n) y_{0} \ldots \hat{y}_{v} \leqslant s$ which is a contradiction. Hence $s=\sigma$.

Case 2b2c1. There are b_{0} and c_{0} such that $s=c_{0}{ }^{b_{0}}$. Then $f_{\Delta}=s^{+}$.
Proof. By Lemma 3, $s=c_{0}{ }^{b_{0}} \rightarrow \Delta\left(b_{0}{ }^{+}, c_{0}{ }^{+}\right)$and hence $s \rightarrow \Delta(b, c)$. By Lemma 1, $s^{+} \rightarrow \Delta\left(b, s^{+}\right)$. For, we have $\left(s^{+}\right)^{\prime}>s \geqslant b$, and if $b_{1}<b$ then

$$
s^{b_{1}}=c_{0}^{b_{0} b_{1}} \leqslant s<s^{+} .
$$

[^4]We now conclude that $s^{+} \rightarrow \Delta(b, c)$.
Case $2 \mathrm{~b} 2 \mathrm{c} 2 . \quad s>c_{0}{ }^{b_{0}}\left(b_{0}<b ; c_{0}<c\right)$. Put $k=\omega\left(s^{\prime}\right)$. Then there are sequences $b_{0} \leqslant \ldots \leqslant \hat{b}_{k}<b$ and $c_{0} \leqslant \ldots \leqslant \hat{c}_{k}<c$ such that $c_{0}{ }^{b_{0}}<\ldots<\hat{c}_{k}{ }^{b_{k}} \rightarrow s$.

Case 2b2c2a. There is $\kappa_{0}<k$ such that $c_{\kappa_{0}}=\ldots=\hat{c}_{k}=\bar{c}$, say. Then $f_{\Delta}=s^{+}$.
Proof. $\sup (\kappa<k) \bar{c}^{b_{\kappa}}=s$. There is \bar{b} such that

$$
b_{\kappa_{0}}<b_{\kappa_{0}+1}<\ldots<\hat{b}_{k} \rightarrow \bar{b} \leqslant b .
$$

If $\bar{b}<b$ then $\bar{c}^{b_{\kappa}} \leqslant \bar{c}^{\bar{b}}<s(\kappa<k)$ which is false. Hence $\bar{b}=b ;|k|=b^{\prime} ; s^{\prime}=b^{\prime}$. We have $\bar{c}^{(n} \geqslant \bar{c}^{|v|}(v<n)$ and hence $\bar{c}^{(n} \geqslant s$.
On the other hand, $\bar{c}^{(n} \leqslant \Sigma(v<n) s=b s=s$.
Hence, by Lemma 2, $s=\bar{c}^{(n} \rightarrow \Delta(b, c)$.
We now prove

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) \tag{26}
\end{equation*}
$$

We have $\left(s^{+}\right)^{\prime}>s^{\prime}=b^{\prime}$. Hence, by Lemma 6, (26) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b_{*}^{+}, c\right) \quad\left(b_{*}<b\right) . \tag{27}
\end{equation*}
$$

Choose any $b_{*}<b$. Then, by Case 1 if $b_{*}<\aleph_{0}$ and by Case 2 blc if $b_{*} \geqslant \aleph_{0}$, $f_{\Delta}\left(b_{*}^{+}, c\right) \leqslant s^{+}\left(b_{*}^{+}, c\right) \leqslant s^{+}$. This implies (27) and therefore (26).

Case 2 b 2 c 2 b . There is no $\kappa_{0}<k$ such that $c_{\kappa_{0}}=\ldots=\hat{c}_{k}$. Then, by Lemma 5, there is $\kappa_{0}<\ldots<\hat{\kappa}_{k}<k$ such that

$$
c_{x_{0}}<\ldots<\hat{c}_{\kappa_{k}} \rightarrow \bar{c} \leqslant c .
$$

Case $2 \mathrm{~b} 2 \mathrm{c} 2 \mathrm{~b} 1 . \quad \bar{c}=c$. Then $s=c$.
Proof. We have $|k| \geqslant c^{\prime}$. If $s>c$, then there are d_{0}, e_{0} such that

$$
d_{0}<b ; \quad e_{0}<c ; \quad e_{0}^{d_{0}} \geqslant c .
$$

Then, for $d_{1}<b$ and $e_{1}<c$, we have

$$
e_{1}{ }^{d_{1}} \leqslant c^{d_{1}} \leqslant e_{0}{ }^{d_{0} d_{1}} \leqslant \sup \left(d_{2}<b\right) e_{0}^{d_{2}} \leqslant s
$$

and therefore $s=\sup \left(d_{2}<b\right) e_{0}{ }^{d_{2}}$. This implies the contradiction

$$
s^{\prime} \leqslant b^{\prime} \leqslant b<c^{\prime} \leqslant|k|=s^{\prime}
$$

We have thus proved that $s=c$. Let $d_{0}<b$. Then, by Case 1 or Case 2 b 1 ,

$$
f_{\Delta}\left(d_{0}^{+}, c\right) \leqslant s^{+}\left(d_{0}^{+}, c\right) \leqslant s^{+} .
$$

Hence $c^{+} \rightarrow \Delta\left(d_{0}{ }^{+}, c\right)\left(d_{0}<b\right)$, and we deduce from Lemma 6 that

$$
\begin{equation*}
c^{+} \rightarrow \Delta(b, c) . \tag{28}
\end{equation*}
$$

Case 2b2c2bla. $c=c^{\prime}$. Then $f_{\Delta}=s=c$.
Proof. $c=c^{\prime}>b$. If $d_{0}<b$ and $e_{0}<c$ then $e_{0}{ }^{d_{0}}<s=c$. Hence, by Lemma 1, $c \rightarrow \Delta(b, c)$.

Case 2b2c2b1b. $c>c^{\prime}$. Then $f_{\Delta}=s^{+}=c^{+}$.
Proof. By Lemma $7, c \rightarrow \Delta(2, c)$ and so $c \rightarrow \Delta(b, c)$. Now (28) completes the proof.

Case 2b2c2b2. $\bar{c}<c$. Then

$$
s=\sup \left(b_{*}<b\right) \bar{c}^{b} * ; \quad f_{\Delta}=s^{+}
$$

Proof. By Lemma 2,

$$
s=\sup (\kappa<k) c_{\kappa}^{b_{\kappa}} \leqslant \sup (\kappa<k) \bar{c}^{b_{\kappa}} \leqslant \bar{c}^{(n} \leftrightarrow \Delta(b, c) .
$$

Hence $s \rightarrow \Delta(b, c)$. We now prove

$$
\begin{equation*}
s^{+} \rightarrow \Delta(b, c) . \tag{29}
\end{equation*}
$$

In view of Lemma 6 and the relations $\left(s^{+}\right)^{\prime}>s \geqslant b$, (29) follows from

$$
\begin{equation*}
s^{+} \rightarrow \Delta\left(b_{*}^{+}, c\right) \quad\left(b_{*}<b\right) \tag{30}
\end{equation*}
$$

By Case 1 or Case 2 b 1 ,

$$
f_{\Delta}\left(b_{*}^{+}, c\right) \leqslant s^{+}\left(b_{*}^{+}, c\right) \leqslant s^{+} \quad\left(b_{*}<b\right)
$$

This proves (30) and hence (29).

References

1. P. Erdős and R. Rado, "Intersection theorems for systems of sets ", J. London Math. Soc., 35 (1960), 85-90.
2. H. Bachmann, Transfinite Zahlen (Springer, 1933).
3. S. Michael, "A note on intersections", Proc. Amer. Math. Soc., 13 (1962), 281-283.
4. R. O. Davies, "An intersection theorem of Erdős and Rado", Proc. Cambridge Philos. Soc. 63 (1967), 55.

Department of Mathematics, The University, Reading.

[^0]: Received 18 September, 1967; revised 29 February, 1968.
 \dagger The cardinal of the set A is denoted by $|A|$, and set union by $A+B$ or $\Sigma(\nu \in N) A_{v}$, and set intersection by $A B$ or $\Pi(v \in N) A_{v} . A \subset B$ denotes inclusion, in the wide sense. We use the obliteration operator ^ whose effect consists in removing from a well-ordered series the term above which it is placed. Unless the contrary is stated all sets are allowed to be empty. For every cardinal a the symbol a^{+}denotes the least cardinal exceeding a.
 \$ [added 9-10-1968] Karel Prikry has proved a general theorem which implies the case $a=\mathbf{N}_{1}$; $b=\mathbf{N}_{0}$; of Theorem II (ii).

[^1]: $\dagger\left\{x_{0}, \ldots, \hat{x}_{n}\right\} \neq$ denotes the set $\left\{x_{0}, \ldots, \hat{x}_{n}\right\}$ and, at the same time, expresses the fact that $x_{\mu} \neq x_{v}$ for $\mu<\nu<n$.
 \ddagger For every set A and every cardinal b we put $[A]^{b}=\{X: X \subset A ;|X|=b\}$.

[^2]: \dagger The symbol $\left\{X_{\lambda}: \lambda \in L\right\} \neq$ denotes the set $\left\{X_{\lambda}: \lambda \in L\right\}$ and, at the same time, expresses the fact that $X_{\lambda} \neq X_{\mu}$ whenever $\{\lambda, \mu\}_{\neq} \subset L$.
 \ddagger For ordinals m, n such that $m \leqslant n$ we put $[m, n)=\{\nu: m \leqslant \nu<n\}$.

[^3]: \dagger The symbol $\left\{\nu_{0}, \ldots, \hat{v}_{n}\right\}<$ denotes the set $\left\{\nu_{0}, \ldots, \hat{v}_{n}\right\}$ and expresses the fact that $\nu_{x}<\nu_{\beta}$ for $x<\beta<n$.
 \ddagger We put $x^{-}=y$ if $x=y^{+}$, and $x^{-}=x$ if x is not of the form y^{+}.
 § The relation $b_{0}<\ldots<\hat{b}_{m} \rightarrow b$ means that $b_{0}<\ldots<\hat{b}_{m}$ and sup $(\mu<m) b_{\mu}=b$.

[^4]: \dagger This value of s remains valid for the remainder of the paper.

