
1NTERSECTION THEOREMS FOR SYSTEMS OF SETS (II) 

P. ERD6S AND R. RADO 

1. Introduction 

In this paper we present the complete solution of the problem which was con- 
sidered in [l], with the exception of the case in which both the given cardinal numbers 
are finite. The results of [l] will not be assumed. We begin by introducing some 
definitions.? 
A system C, = (B, : v EN) of sets B,, where v ranges over the index set LV, is said 
to contain the system Co = (A,, : /L E M) if, for /co EM, the set APO occurs in X1 at 
least as often as in Co, i.e. if 

I(v : veN; B, = APO)1 > I{p : /L E M; A, = A,,}/ (p,, EM). 

If Xi contains Co and, at the same time, C, contains C1 then we do not distinguish 
between the systems C, and X1. The system X, is called a (a, e b)-system if 
IN\ = a and ]&I < b for v GN. The system &, is called a A(c)-system if ]M] = c 
and Alro A,,, = A,: A,,, whenever Pi, pl, pz, p3 EM; p. P pl; p2 # p3. The da- 
tion 

a + A(b, c) (1) 

means, by definition, that every (a, < b)-system contains a A(c)-system. Clearly, 
(1) implies a, --) A(b,, cO) whenever a < ao; b 2 b,; c > q,. The logical negation 
of (I) is denoted by a ++ A(b, c). 

In [l] the following results were established. 

THEOREM I. (i) If a, b > 1 then 

(b+ bbab+l)+ + A@+, a’). 

(ii) 1fa 3 2; b 3 1; a+b > K,, then 

(ab)+ -+ A(b+, a’). 

THEOREM II. If a, b k 1 then abfi -I+ A@‘, a+). 

THEOREM III. If 1 < a, b < K, then 

c+ -+ A(b+, a’), 

nhere 
1 I--- 2 --_ -- 

2!a 31 *z 
-.. 

R. 0. Davies 141 has found a very simple proof of Theorem I (ii).$ 
S. Michael [3] has found, independently of [l], a proof of Theorem 1 (ii). 

Received 18 September, 1967; revised 29 February, 1968. 

+ The cardinal of the set A is denoted by IAl, and set union by A-rB or X(V E N)A,, and set 
intersection by AB or I’& EN) A,. A c B denotes inclusion, in the wide sense. We use the 
obliteration operator * whose effect consists in removing from a well-ordered series the term above 
which it is placed. Unless the contrary is stated all sets are allow.ed to be empty. For every cardinal 
a the symbol a+ denotes the least cardinal exceeding a. 

2 [added 9-10-19681 Karel Prikry has proved a general theorem which implies the case u= Ui ; 
h=&; of Theorem II (ii). 

[J. LONDON MATH. Sot., 44 (1969),467-4793 
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It follows from Theorem I that, given any cardinals b, c 2 1, there always is a 
cardinal a such that (1) holds. We shall determine, for any given b, c such that 
b+c 2 K,, the least a such that (1) holds. We denote this cardinal by f,(b, c), 
The results of [i] will not be used. Indeed, by means of lemmas 1 and 2 below we 
shall obtain proofs of Theorem I (ii) and of Theorem II which are simpler than 
those in [l]. We shall expressf,(b, c) in terms of sums or upper bounds of sequences 
of cardinals which in their turn are given explicitly in terms of b and c. Our result 
is stated as Theorem IV. We shall also give simpler expressions forf,(b, c) which 
are valid when the generalized continumm hypothesis 

2” = a+ (a 2 K,) 03 

is assumed. Our results will show that the cardinal numberf,(b, c) is always regular 
(disregarding the degenerate cases mentioned at the beginning of section 3). We 
should like to thank the referee for his helpful suggestions and for having pointed out 
some omissions in our original argument. 

2. Lemmas 

For every cardinal a we denote by w(u) the least ordinal n whose cardinal llzj 
equals a, i.e. the initial ordinal belonging to the cardinal a. For a 2 K. we denote 
by a’ the least cardinal b such that a can be expressed as the sum of b cardinals less 
than a. If a = a’ then a is called regular, and if a > a’ then a is singular. All our 
arguments are based on the “ naive set theory “. Unless it is stated otherwise, small 
letters denote ordinals or cardinals. 

LEMMA 1. Let c = c’ > b. Suppose that co *o < c whenever b. < b and co < c. 
Then c -+ A(b, c). 

Proof. Let (A, : v EN) be a (c, < b)-system which contains no A(c)-system, 
Put o(M) = E(v EM) A,@4 c N). We define subsets N,, ,.., flu(s) of N. Let 
A,, < o(b); N,, . . . . fiAo c N and assume that lNll < c@ < &), Put 

M = N,+ . . . +A$,. 

We then take as N,, a maximal subset of N - M such that A, A,, c a(M) whenever? 
{A VI+ = N,,. 
It follows that 

A, a(N,,) Q a(M) for v EN- (N,,+ M). 

If INno] = c then we obtain a contradiction. For we have1 

I&l < b < c’; IMI < c; 

lo(M)1 < WE M) (A,( < (Ml b < c; 

E(b, < 6) 1 [o(M)lbol < c. 

(2) 

It follows from c = c’ that there are a set MO c Nno and a set X such that jMoj = c 

and A, o(M) = X (v E M,). But then (A, : v EMJ is a A(c)-system which is the 
desired contradiction. Hence INno < c, and we have defined sets N1 such that 

t I% “,J %,}# denotes the set {x0, .., &} and, at the same time, expresses the fact that x, f x,, 
for p c Y <n. 

$ For every set A and every cardinal b we put [Alb = {X: X c A; 1x1 = 6). 
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INAl < c(% < w(b)). Then IN,+ . . . +fiUCb,l < c, and we can choose 

vo E iv - (No -I- . . . +i&J. 

Then, using (21, we obtain the required contradiction 

b > I&J 3 C(& < o(b))1 &,o(N,,)-A,,o(N,f . . . +%.J 

2 C(%, < w(b)) I = b. 

The following version of Lemma 1, although not required in the present paper, 
might be of interest. In it c need not be regular, and the conclusion is weaker than 
that in Lemma 1. 

LEMMA 1A. Let c’ > b and suppose that cob0 < c whenever b. < b and cO < c. 

Then c -+ A(b, c,,+) for co < c. 

The proof is very similar to that of Lemma 1 and is omitted. R. 0. Davies has 
found an alternative proof of Lemma 1. His method seems to yield Lemma 1A 
as well. 

LEMMA 2. Let n = w(b) Z 1 and 1 +c, -C c(v c n)‘ Then 

X(v < n) co .a. f, t, A(b, c). 

Proof. Let IA,] = c,(v c II) and A, A, = 0(~ < v < n). LetT (X, : a EL}, be 
thesetofallsetsXcA,+... -f-A” such that there is m(X) < n with 

IX&I = 1 (v < m(X)); XA, = 0 (m(X) < v < n). 

Then IL] = C(I! < n) cg . . . I,. Assume that 

L’ c L; IL’1 = c; X2X, = x ({,I, p}+ c L’). 

We have to deduce a contradiction. We have IX11 = Im(X,)] < b (LEE). Let 

x = (a& . . . . $}+; ,uo < . . . < p, < n; X&$4pp (p ir). 

The assumption3 {,uo, . . ., fl,} = [0, n) implies IL’1 6 1 which contradicts I,C![ = c > 1. 
Hence there exists the ordinal 

P = min (LO, 4-ko, ..-, Al). 

Case 1, There is p. < r such that ji < pPo, Then 

XA A, # 0 (1. EL’); x,, x,, A, = 0 ((A,, A,}, c L’). 

Hence we obtain !I![ < \A,-1 = cP c c = ICI, i.e. a contradiction. 

Case2. p. ,..., ,&<,C. Then{p, ,..., &}=[O,r)andr<n. ThenXnA,#O 
if R E L’ and X1 # X; X,, X1, A, = 0 ((A,, ,I,)+ c L’). This implies 

II!I < l+lA,l = 1+c, < c = IL’], 

a contradiction which proves Lemma 2. 

t The symbol {X, : A E L) + denotes the set {XA : X E L} and, at the same time, expresses the 
fact that XX f A’, whenever {A, p}+ c L. 

$ For ordinals m, n such that m < n we put [m, n) = {V : m < v < n]. 
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LEMMA 3. For all rardinalsp, q 3 1 we ha?qe qp++ A(p+, q+). 

Proof. Let 

IZ = co(p); IA,,/ = q (v < M); A,t A,, = 0 (,u i I’ < n). 

Let {X,: ?.EL)+ be the set of all X c &+ . . . -#-A, such that JXA,I = 1 (v -C n). 
Then the (qp, < p+)-system (X 1. : AE L) contains no A(q+)-system. For, let 
(X, : 3. EL’) be a A(q+)-system, for some L’ t L. Then we can choose {tx, /I}+ c L!. 
Since X, # X, we have N’ = (v : X, X, A,, # 0) # [0, n), and there is v. E [0, n)-N’. 
Then Xn A,,,, # 0 for J E E, and Xi X, A,, = X,X, A,,, = 0 for {R, c!)+ c L!, so 
that IL’/ f IA,,/ = q -C q+ = IL’\ which is a contradiction. 

Remark. If q B & then the conclusion of Lemma 3 follows, of course, from 
Lemma 2. 

LEMMA 4. Let s *, . . . . .$ be carriinuls, xO < . . . < 2I, 1 = o((ll) and t < III’. 
Thm 

(.Z(i < 1)x2)’ < Ec(A < I).~;“. 

ProoJ: Let 

IXJ = “A(% < I); x,x,, = 0 (;I < p < I); ITI = t. 

Let JE (X,+ . . . + B,)r, i.e. let f be a mapping J’: T--t X0+ . . . +X,. Then there 
is &Jf) < I such that f(T) c X,+ . . +X2,,(J,. Hence 

(T Xj)f ,< F (x0 4 . .* f a,)’ 6 2(1%1 XJ’ < C($y. 

LEMhfA 5. Let U > so; n = u(a); m = ~a’). Let x0, . . . . & be carditmls srtch 
that 40 < ..I < s,,. Then there are an ordinal k and ordinals vg < . . . K Ok < II 

wrh that eithn 

k = m aud s,., < . . . -=z R,,,, (3) 

0) k = M am1 xv0 = . . . = -P,.,t. (4) 

Proof. For 11, v < II put p = v whenever .)c!, = x,,. Let the equivalence classes 
of the relation 11 E v be N,, , . , flP, wherep is an ordinal, 1 < p < 71. We can number 
the N, in such a way that whenever r < s c p; 11 EN,; v EN,, then ,L[ < 11 and xfl < x,. 
If p 3 rn then we can choose V~ ENS for i < m, and (3) holds. Now let p < m. 
Then there is 7c c p such that IN,] = a. Then, if? N, = {I’~, . ., ii,,},, we have (4). 

LEMMA 6. Let$ a’ > b’; b = b-, and suppose that u --) A(b,, c) ,for all b, < 6, 
Then a + A(b, c). 

Proof. There is a sequence4 b. --c . . . < I$,,, + b, where 777 = w(b’). 
Let INI = a and ]A,] x b (Y EN). Then N = N, + ,. . +!?,,., where 

N,, = {v : (A,>( d b,,) (/I < m). 

? The symbol Iv,, , t,‘,< denotes the set [Q, . . . . 0,:. and expresses the fact that vr < vp for 
X<f?<ll. 

$ We put .Y- : .v if .I- = .I+, and x- = s ifs is not of the kwn y+. 

5 The relation ho < . . . =z 6,. + h lneans that h, < . . . < 6,, and sup (p x WI) h,, = b. 
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By definition of m there is p < m such that IN,! = [N[ = a. Since a -+ A(b,, c), 
the system (A, : v ENS contains a A(c)-system. 

LEMMA 7. If c > c’ then c++ A(2, c). 

Proof. We have c = c0 $ . . . +E,, where nz = W(C)) and cO, , .,, E, < c. Let 

s = s,+ .*. +$,; (S,( = en (p < m); S, S, = IZI (p < v < m). 

Put A,, = {v> (v < m; x E S,), so that A,, is independent of X. Then the (c, < 2)- 
system (A,, : v < m; x c S,,) contains no A(c)-system. 

3. Determination qff*(b, c) 

For cardinals b, c we denote by fa(b, c) the least a such that c1 --f A@, c). 
For the sake of the completeness of the discussion we begin by stating the values 

off, in the degenerate cases, which are, of course, of little interest. 

fh(O, 0) = 0; &IO, c) = 1 cc > 1); f*(l, c) = c (c 3 0). 

If b > 2 then f,(b, 0) = 0; fa(b, 1) = 1; f,(b, 2) = 2. Next, if 1 < 6, c K K, then 
Theorem III gives what seems to be the best known upper estimate for fA, In this 
case the determination of the exact value off,@, c) is beyond the scope of methods 
known at present. 

For the remainder of this paper we shall assume that 

b>22; c& 3; b+c>K,. (5) 

The number f,(b, c) will turn out to be closely related to the number s(b, c) defined 
by the equation 

s(b, c) = sup (cc, . . . . PwChj < r) Z(v < ru(b)) ci, . . . s;,.. (6) 

In fact, for every choice of b and c the number f,(b, c) has one of the values s(b, c), 
ss (b, c). This means that our analysis will show that s+(b, c) -+ A(b, c), and 
so -I-+ A@, c) for every so c s(b, c). 

Our results are summarized in the following theorem? 

THEOREM IV. Let the cardinal numbers b, c scltisfy (5) and let the cardinal numbe, 

s(b, c) be defined by (6). Then 

(4 .f,(b, c) = s(b, c> 

g&her (i) b < NO ,< C’ = C, 

or (ii) K0 < b- = b < c’ = c- = c 

and sup (b, < b; cO < c) cob0 > sup (b, c b) clbo for erery c1 < c, 

or (iii) K0 < 6 = b,’ < c’ < c- = c 

and sup (cO < c) cob0 = (Sup (co < c) cgbo)’ > clbo for wery cl < c. 

(b) In all other cases 
.fh(b, 4 = (44 4) +. 

We note that 
~(6, c) 2 max (b, c). (7) 

-f (a) (i) is Case la, (ii) is Case 2b 2c 2b la, and (iii) is Case 2b lc 2a. 
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For, if all c, = 1 then Cc, . . . P, = b, and if c0 is arbitrary such that c0 < c, and 
c, = Cl (19 3 1) then Xc, . . . E, = I+ cO. 

If c k N, then 
so ++ A@, 4 Go < s>- (8) 

For we can choose co, . , , , erncbj < c such that, by Lemma 2, 

so < cc, .*. 2” f, NJ, 4, 

and then appeal to the monotoneity of our relation. 
We shall evaluatef,(b, c) without assuming the generalized continuum hypothesis 

(If). We shall also compute f,(b, c) under the assumption of (II). To avoid tire- 
some repetition we shall use the relation 

s(b, c) k d 

to express the fact that if (H) is assumed then s(b, c) = d. Such relations wilt be 
stated without proof. The reader can easily supply the proofs, e.g. by referring to 
[2] $36. Whenever the arguments of the functions s or f* are the given cardinals 
b, c we shall write s and fa instead of s(b, c) and f,(b, c) respectively. The symbols 
b,, c,, where v is an ordinal, will always denote cardinals such that b, < b and 
c, -=c c. We put 

n = co(b). 

Our discussion will follow a highly ramified scheme of classification which in the 
interest of clarity is presented in detail. 

We use the notation 
a’” = C(v < n) a”” , 

where a denotes a cardinal and n an ordinal number. 

Case 1. b<K,. Thens=c. For we have, for any c,, Z(v < n) co . . . 2, < c 
and (7) completes the proof. 

Case la. c = c’. Thenf, = s. 

Proof. By Lemma I, c + A(b, c). For, we have c’ > K, > 6 and cob” < c. 

Case lb. c > c’. Then& = s+. 

Proof. By Lemma 7, c * A(2, c) and hence c-t+ A@, c). Also, by Case la, 
c+ + A(& c’) and therefore c+ -+ A(b, c). 

Case 2. b > No. 

Case 2a. c = co+. Then, clearly, s = q,(*. Also, s z b if co < R,; s g co if 

b<co’;s~cifco’<b<co;s~bifKo<co<b. 

Case 2al. b = b-. Then-f, = s’. 

Proof. We begin by showing that 

s-t+ A@, c). m 

If c > K, then, by Lemma 2, s = co@ f, A(b, c). Now let c < X0. By Lemma 3 
we have, for v < n, 2”’ ++ A(lvj’, 3). Hence there is a (2’“‘, < /VI+)-system 
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(A,, : I EL,) which does not contain any A(3)-system. Choose any distinct objects 
h x0, . . . . x,, y,,, . .., 9, outside C(v < 11; 1 EL,) Avl and put 

B,, = (x0, ..‘) 2,, y,} + A,, (v < 17; 1; E L,). 

Then (9) follows if we can show that (B,, : v < n; I EL,) is a (s, < b)-system which 
does not contain any A(3)-system. CIearly 

I{(v, 2) : v < n; i E L,}I = 2’” = s. 

Also, l&l < b. Now let vo < v1 d v2 < n, and &, E L,* for p < 3. Suppose that 
the three pairs (v,, 1,) are distinct and that (De, D,, D2) is a A(3)-system, where 

D, = Bvp~, for p < 3. If’ v0 = v1 = vz, then (AVO A, : p < 3) is a A(3)-system which 
contradicts the definition of the A,, 1. 

If ve = v1 < v2, then ~~~~ E Do D1 - D, D2 which is false. 

If ve < v1 = v2, then y,, E: Di D2 - Do D, which is false. 

Hence v0 < v1 < v2. But then x,, E D, D2 -Do D, which is false. This proves (9). 
Next, we prove that 

s+ --f A(b, c). 00) 

Case 2ala. b > X,. By (7), (s+)’ = s’ > b > 6’. Hence, by Lemma 6, (IO) 
follows from 

s+ 3 A(b,,+, c) (Ho < b. < b). 01) 

Since s > cgbo, (11) follows from 

(cobo)+ -+ A(bb,+, c) (No < b, < b). 02) 

Since (cgbo)* > cO+ = c, (12) follows from 

(cob”)+ -+ A@,+, (c,~o)+) (No < b, < b). (13) 

But (13) foIlows from Lemma 1. For we have, if 8+, < b. < b, 

((cob”)+)’ = (cob”)+ > cob0 >, bo+ 

and (Cobqbo = Cob” < (Cgbq+. 
This proves (10). 

Case 2alb. b = N,. 

Case 2albl. c < ‘&,. Then s = KO. By Lemma 1, s+ = 8, -+ A(K,, t\̂ J, 
and this implies (10). 

Case 2alb2. c > KO. Then s = cO. By Lemma 1, 

which is (10). 
s +=c+ 0 -+ A(%,, co+), 

Case 2a2. b = b,+. Then s = cob” and fa = s+. Also, s 2 q, if b. < co’; 

s~cifco’~b6,dco;s~bifc,<bo. 

ProoJ: Clearly, s = c,(” < bc,“o = cob0 f s, By Lemma 3, s = cob” -I+ A(b, c), 
By Lemma 1, 

(cob”)+ -+ A(b, (q+)+). (14) 
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For, we have (cob,)+ > cob0 > 6 and (c~~o)~o = coba < (cob,)+. By (7), (14) 
implies s+ --) A@, c). 

Case 2b. c = c-. 

Case 2bl. b = bof. 

Case 2bla. c’ = b. Then we can choose a sequence 0 < co < .., < C, + c. 

Then s = C(v < n) cg . . . t?,;,fA = s+; s 5 c. 

FrooJ Let x0, . . . . $,, < c. Then we can find inductively numbers 

f(0) < ..* <m < n 

. o . . .A, < Zc, . . . ty, ;;;m;h;t x, < cfc,., (v < 12)~ Then X(v < n) Y Hence, by 
3 

s = cc, . . * tv -t+ A(b, c). 
We now prove 

s+ + A(b, c). (15) 
By (7), (15) follows from 

s+ -+ A(b, s+). (16) 

We have (s+)’ = s + > s > b. Hence, by Lemma 1, (16) follows from 

Sbfl < s. (17) 
Put cg . . . E, = pp (v < n). 

Case 2blal. There is a sequence v0 < . ,. < 0, c n with pvo < . . . < $,,,. Then 

s = qv < n)p,, < x,(3. < n) IvJp,l < E(E” < n)p I’>, s s. 
By Lemma 4, 

SbQ = (Ep,,)“o < zp;;o d xpv% (18) 

Put w(b,) = nl and consider the sequence do, . . . . d,, where dmp+u = cp(p < m; p =z n). 
By definition of s, 

qv < n) p,,bo < qv < tt) d, . . . a, i s. 

Hence (18) implies (17). 

Case 2bla2. There is no sequence v0 < . . . < 9, e n with pyO < , . . < &.. Then, 
by Lemma 5, there is a sequence 0 < v0 < . ,. < 0, < n such that pVO = . . . = br, = p, 
say. Then pV = p {vO < v < n); 

s = T(v i vi,)py+~(v,, < s < n)p < bp. 

Also, bp = Z(v, G v < n)y, < s. Hence s = bp. We have p > c, (v < n) and 
so p 2 c 2 c’ = b; s = p. 
Consider the sequence n,, . . ., a, defined by 

a vov +p = cfl (p < v,; v < II). 
By definition of s, 

JbO = (co . . . ~,,)bo G c(V < n)d, . . . a,, G $. 

This again proves (17). 

Case 2blb. c’ < b. Then 

s = c(“; f* ?= s+; 2 c+. 
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Proof. Choose 0 < c0 < . . . < C, --f c, where m = o(c’), and put 

n mv+p = cp (p < m; v -c n). 

Let x0, . . . . $, < c, and choose any 1’ < II. Then we can find inductively numbers 
f,(O) < . . . <f2(m) < m such that q,,,,, < d,,,,.Yo,, (p < m; v < n). We define f 
by putting f(rnv+,u) = nzv+~,(~~) (p < m; v < n). Then f(O) < . <f(n) < 11 
and x,, d dlo.) (v < n), Hence 

Iqv < n) x* . . . 2, < a* .*. a,. 

This proves s = Cole . . . d,. Put py = n, . . . & (P < n). We shall make use of the 
fact that p,, = cc’ ([Z], p. 141, Satz 6). We have 

s = C(v c n) E(mv < 2. < mv+m)y;, < C(v < n) lrnl p,ti,,,.,rr 

= C(v < n) c’(c=‘)‘“+J ’ < z:(v < n) cc”” 

= C(v < m) cc’-+ E(m & v < n) 12~“~ < c(” 

< E(v < n)(co . . . 2,p < qv < n)& .‘, (2, < s. 

This shows that, by Lemma 2, 

s=dn= CL&)... 2, +i A(b, c). 

Finally, by Lemma 1, sc + A(b, s’). For, we have (s+)’ > s > h; 

s = cc” < bcbo = cbo < s, 

She = Cho ho = & = s < Sf. 

Now (7) yields s+ -+ A(b, c). 

Case 2blc. c’ > b. Then s = sup (c*< c)cgho Lf c. 

Proof. Let co, .‘., pa < c. Then there is i; such that 2, cO, . ..> 2,, < Z; < c and 
hence z(v < n) ce . . , 2, < bEbo = Zbo. Therefore s < sup (c~ < c) c$ = cr, say. 1 t 
.u,=c,<c(v<n),thens~Cs,,..~,~c~. Hences>aandsos=o. 

Case 2blc7. There is 2 < ci < c such that s = clbo. Then f* = s+. 

Proof, By Lemma 3, cl’0 -I+ A(b, cl’). Hence s+-, A(b, c). By Lemma 1, 
S’ -+ A(b, s+). For, we have (s+)’ > s 3 b: ~‘0 = cibo b. = s < s+. By (7) we 
deduce sf --f A(b, c). 

Case 2blc2. s > cob0 (co < c). 

Case 2blc2a. s = s’. Then fA = s. 

proof: By Lemma 1, s -+ A(b, s). For, if s0 < s then there is c0 < c such that 
Sob0 < (cfpqbo = co b. .c s. Also, using (7) we find s’ = s > c > c’ > b, so that Lemma 1 
applies and gives s -+ A(b, s). By (7) we deduce s -+ A(b. c), and (8) completes 
the proof. 

Case 2blc2b. s > s’. Then fA = s+. 

Proof. If we assume that s > c then there is c, c c such that cob0 2 c. Then, 
for every cl < c, we have cl’0 < & < (cgb~)‘o = cob” and hence s < ~~‘0 < s which 
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is a contradiction. Hence, by Lemma 7, s = c ++ A(2, c) and therefore s +-+ A(b, c). 
Also, 

(c+)’ = c+ > c’ > b; c = x,+ . . . +&; 1 = o(c’); x0 < *.. Jr 91 < c; 

b, < b < c’ = 111 = 111’. 
Hence, by Lemma 4, 

Cb, < X(1 < z)xibo d 111 s = c < Cf. 

Now Lemma 1 gives c+ --f A(b, c*) and so S’ -+ A(b, c). 

Case 2b2. b = b-. 

Case 2b2a. c’ = b. Choose 0 < c0 < . . . < E, 4 c. Then 

s= C(v<n)c,...P,; fy=s’; sgc. 

Proof. If x0, ..‘) P, < c then there is a sequence f(0) c . . . < f(n) < n such 
;hzt I;“,* < cf(,,) (v < n). Then Cx, . . . Iz, < EC, . . . 2” and therefore, by Lemma 2, 

0 .I. t, u A(b,yc). We now prove 

s+ -+ A(b, c). (19 
By (7), (19) follows from 

s+ -+ A(b, s*). (W 
By Lemma 1, (20) follows from 

SbO < s (bo < b). W) 

Let b. < b and put co . . . E, = pv (v c ~1). 

Case 2b2al. There is ve < . . . <D, < n such that pvo < . . . $,,. Then 

s = qv < n>p, < X(1 < n) IvJpva < E(A < n)p,, < 5. 

By Lemma 4, which applies since b, < b = c’ = C” = b’ = jy11’, 

SbO = (xp,,)ba < xp;Jy < IQ+. 

Put o(b,) = m and dm,,+p = c, (p < m; v < vl>. Then, by definition of s, 

C(v < n)pvbO < Cd, . . . a, < s. 

Hence (22) implies (21), and (19) is proved. 

(22) 

Case 2b2a2. There is no v. < .,. < P, < n such that pyO < . . . < p ,̂,. Then, 
by Lemma 5, there is 0 < v. < ._. < 0, < II such that p,,, = . . . = p,, = p, say. 
Then 

pv = p (v. < v c 4; 

s = E(v < v,)p,+q1?, < v < n)p, < Iv,lp+lnlp 

= bp = C(v, < v < n)p, < s; 

s = bp; p 2 c, (v < n); p 2 c > c’ = b; s = pi 

put 4, v+1 = cI (v < n; J. i vO). Then, by definition of s, 

(co -1. i?,,Jbo G C(v < n) do . . . a, < s; sbo = pbo < s. 

Hence (21) follows and (19) is proved. 
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Case 2b2b. c’ -C b. Then 

s=p; fps+; sH’c+. 

Proof. Let m = o(c’), and choose a sequence 0 < c0 c . . . < ?,,, -+ c. Put 
d mv+p = cIL (,u < m; v < n). Let x0, . . . . A,, -C c. Then, for every v < n, we can 
find inductively numbers f,(O) < . . . < fV(m) < m such that 

xm,+p G &v-If&j (cl < m; V < 4. 

Define f by putting f(mv + p) = mv +f.(& (p < m; v < n). Then 

f (0) < . . . <j(n) < n 

and x, ,< d&v, (v < 4; C(v < n)xo . . . f,3 < Ed,, . . . a,,. 

ThusS= Ed,,...&. Putp,=d,...& (v<n). Then 

s = E(v < n) X(mv d 3, < mvfm)p, < Ec(v < n) ImlpmVtm 

= E(v < n)c’(ccyv+l~ < C(v < n)@’ 

= E(v < m) cc’+ E(m < v < n) cl”l < 4”. 

On the other hand, using cc, . . . t,,, = cc’ > c, we find 

cc” < C(v < n)(c,, . . . 2,)‘“’ < E(v < n)d, .esd, = s. 

Hence, by Lemma 2, s = c@ = Ed, . . . d, f* A@, c). We now prove 

s+ --f A@, c). cu) 

We recall that s always stands for the number s(b, c). By Lemma 6, (23) follows 
from 

s+ --f A@,+, c) (c’ < b, < b). (24) 

Next, by the monotoneity property of S, (24) follows from 

s+(bl+, c) + A(&+, c) (c’ < b, < b). (25) 
But (25) follows from case 2blb, and (23) is established. 

Case 2b2c. c’ > b. Then? 

s = sup {b, < b; co < c) cDbo 2 c. 

Proof. Let x0, . . . . 9, -C c. Then there is cl such that x0, ,.., 2” < cl < C. 
Put (T = sup (b, < b; c0 < c) ~~~~~ Then 

C(v < n) x0 .s. R, < cl(” < bg. 

Also, 0 > 21’1 > Iv/ (v < n); D 2 6, so that s < 6. If s < cr then there are b, and 
ce such that s < cgho. Put yV=cO (v<rz). Then s-cc~~~< C(v<n)y,...S,<~ 
which is a contradiction. Hence s = b. 

Case 2b2cl. There are b, and c0 such that s = cgbo. Then fA = s+. 

Proof. By Lemma 3, s = cab0 f, A(bO+, co’) and hence s ++ A(b, c), By Lemma I, 

s+ + A(b, s’). For, we have (s+)’ > s > b, and if b, < b then 

Sbl = CObObl < s < s+, 

t This value of s remains valid for the remainder of the paper. 
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We now conclude that rf -+ A(b, c). 

Case2b2c2. s > cob” (b, < b; co < c), Put k = o(s’). Then there are sequences 
6, ,( A . . < 6, < b and c0 < . +. -G & < c such that cob” < . . . < tkb” -+ s. 

Case 2b2c2a. There is ICY < k such that c,, = . . . = & = P, say. Then f* = sf, 

Proof. sup (K < k) Cb* = S. There is ti such that 

b,, < bKofl < . . . < t$ --) 5 6 b. 

If 5 c b then Zbx < Es < s (K < k) which is false. Hence ti = b; Ikj = b’; s’ = 6’. 
We have 2’” > El’1 (v < n) and hence 8” > S. 
On the other hand, CC’* < C(v < n)s = bs = s. 
Hence, by Lemma 2, s = 8” tt A(b, c), 
We now prove 

s+ -+ A(b, c). (26) 

We have (s’)’ > S’ = b’. Hence, by Lemma 6, (26) follows from 

s+ -+ A(b;, c) {b, < b). (271 

Choose any b.+ < b. Then, by Case 1 if b, < Ho and by Case 2blc if b, > Ko, 

.&(b;, c) G s+(b,f, c) G s+. This implies (27) and therefore (26). 

Case 2b2c2b. There is no K~ < k such that c,, = . . . = i$ Then, by Lemma 5, 
there is K* < . . . < R, < k such that 

clco < . . . < eK,, 4 c < c. 

Case 2b2c2bl. C = c. Then s = c. 

Proof. We have jkj 3 c’. Ifs > c, then there are da, e, such that 

do < 6; e, < c; eodo > c. 

Then, for d, < b and e, < c, we have 

eldl < cdl < eodo d I < sup (d, < b) e/z < s 

and therefore s = sup (d, < b) cod’. This implies the contradiction 

s’ < b’ < b < c’ < Ikl = s’. 

We have thus proved that s = c. Let do < b. Then, by Case 1 or Case 2b1, 

hIdo+, c) < S+(dO+, c) < s+. 

Hence c’~ -+ A(do+, c) (no < b), and we deduce from Lernrna 6 that 

c+ + A(b, c). (281 

Case 2b2c2bla. c = c’. Then fa = s = c. 

ProoJ c = c’ > b. If do < b and e. < c then eodo < s = c. Hence, by Lemma I, 
c --f A(b, c). 

Case 2b2c2blb. c > cr. Then fA = s+ = c+. 

Proof. By Lemma 7, c f, A(2, c) and so c t, A(b, c). Now (28) completes 
the proof. 
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Case 2b2c2b2. 2 < c. Then 

s = sup (b.+ < b)Cb*; fa = s+. 

Proof. By Lemma 2, 

s = sup {K < k) cKb= < sup (K < k) Eb”. < +’ c, A(b, c). 

Hence s +P A(b, c), We now prove 

s+ + A(b, c). 

In view of Lemma 6 and the relations (s+)’ > s 2 6, (29) follows from 

s+ --f A(b,s, c) {b, < b). 
By Case 1 or Case 2b1, 

f,(b,f, c) < s+(b,+, c) < s+ (4 < 6. 

This proves (30) and hence (29). 

(29) 

(30) 
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