P. Erd"́s
(received October 16, 1968)

A family of sets $\left\{A_{\alpha}\right\}$ is said by Miller [3] to have property B if there exists a set S which meets all the sets A_{α} and contains none of them. Property B has been extensively studied in several recent papers (see the references in [2] and the last chapter of P. Erdós and A. Hajnal, On chromatic number of graphs and set systems, Acta. Math. Acad. Sci. Hung. 17 (1966) 61-99). Hajnal and I define $m(n)$ as the smallest integer for which there is a family of $m(n)$ sets $A_{k},\left|A_{k}\right|=n$, $1 \leq \mathrm{k} \leq \mathrm{m}(\mathrm{n})$, which do not have property B [1]. Trivially $m(n) \leq\binom{ 2 n-1}{n}$ (take all subsets taken n at a time of a set of $2 n-1$ elements), $m(2)=3, m(3)=7, m(4)$ is not known. It is known [2], [4] that for $n>n_{0}(6)$
(1) $2^{n}\left(1+\frac{4}{n}\right)^{-1} \leq m(n)<(1+\epsilon)$ e $\log 2 n_{n}^{2} 2^{n-2}$
$\mathrm{m}_{\mathrm{N}}(\mathrm{n})$ is the smallest integer for which there are $\mathrm{m}_{\mathrm{N}}(\mathrm{n})$ sets $A_{k},\left|A_{k}\right|=n, 1 \leq k \leq m_{N}(n)$ which are all subsets of a set $S,|S|=N$ and which do not have property B. I conjectured in [2] that for $N<c_{1} n$, $m_{N}(n)>\left(2+c_{2}\right)^{n}$. In this note we prove this conjecture and get fairly good upper and lower bounds for $m_{N}(n)$. In fact we prove that if $\mathrm{N}=(\mathrm{c}+\mathrm{o}(1)) \mathrm{n}$
(2) $\left\{\begin{array}{l}\lim _{n=\infty} m_{N}(n)^{1 / n}=2(c-2)^{\frac{1}{2}(c-2)}(c-1)^{1-c} c^{\frac{1}{2} c} \text { for } c>2 \text { and } \\ \lim _{n=\infty} m_{N}(n)^{1 / n}=4 \text { if } N=(2+o(1)) n .\end{array}\right.$

Canad. Math. Bull. vol. 12, no. 4, 1969

THEOREM 1.

(3)

$$
m_{2 N-1}(n) \geq m_{2 N}(n) \geq 2^{n-1} \prod_{i=0}^{n-1}\left(1+\frac{i}{2 N-2 i}\right)
$$

Let $|S|=2 N$ and $\left|A_{k}\right|=n, 1 \leq k \leq m_{2 N}(n)$ where $\left\{A_{k}\right\}$ is a family of subsets of S which does not have property B. Clearly S can be split in $\frac{1}{2}\binom{2 \mathrm{~N}}{\mathrm{~N}}$ ways as the union of two disjoint sets $\mathrm{S}_{1}^{(\mathrm{t})}$ and $S_{2}^{(t)}, 1 \leq t \leq \frac{1}{2}\binom{2 N}{N}$ for every $t,\left|S_{1}^{(t)}\right|=\left|S_{2}^{(t)}\right|=N$. By assumption the family $\left\{A_{k}\right\}, 1 \leq k \leq \mathrm{m}_{2 \mathrm{~N}}(\mathrm{n})$ does not have property B . Thus for every $t, 1 \leq t \leq \frac{1}{2}\binom{2 N}{N}$, at Ieast one of the sets $S_{i}^{(t)}, i=1$ or 2 , contains one of our $A_{k}^{\prime} s$. A fixed A_{k} can clearly be contained for only $\binom{2 \mathrm{~N}-\mathrm{n}}{\mathrm{N}-\mathrm{n}}$ values of t in one of the sets $\mathrm{S}_{\mathrm{i}}{ }^{(\mathrm{t})}$, $\mathrm{i}=1$ or 2 (i.e. there are $\binom{2 N-n}{N-n}$ subsets of S having N elements which contains a given A_{k}). Thus clearly

$$
m_{2 N}(n) \geq \frac{1}{2}\binom{2 N}{N} /\binom{2 N-n}{N-n}=\frac{1}{2} \prod_{i=0}^{n-1} \frac{2 N-i}{N-i}=2^{n-1} \prod_{i=0}^{n-1}\left(1+\frac{i}{2 N-2 i}\right)
$$

Thus since $m_{k+1}(n) \leq m_{k}(n)$ is obvious, Theorem 1 is proved.

THEOREM 2.

$$
\begin{align*}
m_{2 N+1}(n) & \leq m_{2 N}(n) \leq\left[N 2^{n} \prod_{i=0}^{n-1}\left(1-\frac{i}{2 N-i}\right)^{-1}\right] \tag{4}\\
& =N 2^{n} \prod_{i=0}^{n-1}\left(1+\frac{i}{2 N-2 i}\right)=f(N, n)
\end{align*}
$$

The proof of Theorem 2 follows very closely the proof in [2].
Let $|S|=2 N$. We shall construct our $f(N, n)$ sets $A_{k}, 1 \leq k \leq f(N, n)$, $A_{k} \subset S,\left|A_{k}\right|=n$, not having property B by induction. Suppose I have already chosen ℓ of the sets $A_{j}, 1 \leq j \leq \ell<f(N, n)$ and suppose that there are u_{ℓ} pairs of subsets of $S\left\{K_{i}, \bar{K}_{i}\right\}, 1 \leq i \leq u_{\ell}$ so that no set $A_{j}, 1 \leq j \leq \ell$ is contained either in K_{i} or in \bar{K}_{i}.

If $u_{\ell}=0$ Theorem 2 is proved. Assume henceforth $u_{\ell}>0$. We shall prove that we can find a set $A_{\ell+1}$ so that

$$
\begin{equation*}
u_{\ell+1} \leq u_{\ell}\left(1-\prod_{i=0}^{n-1}\left(1-\frac{i}{2 N-i}\right) / 2^{n-1}\right) . \tag{5}
\end{equation*}
$$

For each $\mathrm{i}, 1 \leq \mathrm{i} \leq{ }_{\ell}$, consider all subsets of n elements of K_{i} and \bar{K}_{i}. For fixed i the number of these subsets is clearly

$$
\left(\underset{n}{\left|K_{i}\right|}\right)+\left(\underset{n}{\mid \bar{K}_{i}} \mid\right) \geq 2\left({ }_{n}^{N}\right) \quad\left(\left|K_{i}\right|+\left|\bar{K}_{i}\right|=|S|=2 N\right) .
$$

Thus the total number of subsets under consideration ($1 \leq \mathrm{i} \leq \mathrm{u}_{\ell}$) is at least $2 \mathrm{u}_{\ell}\binom{\mathrm{N}}{\mathrm{n}}$. The total number of subsets of S taken n at a time is $\binom{2 N}{n}$. Hence at least one of those sets say $A_{\ell+1}$ occurs either in K_{i} or in \bar{K}_{i} for at least

$$
\frac{2 u_{\ell}\binom{N}{n}}{\binom{2 N}{n}}=2 u_{\ell=0}^{n-1}(N-i)\left(\prod_{i=0}^{n-1}(2 N-i)\right)^{-1}=\frac{u_{\ell}}{2^{n-1}} \prod_{i=0}^{n-1}\left(1-\frac{i}{2 N-i}\right)
$$

values of i, which proves (5).
Clearly $u_{0}=2^{2 N-1}$ (since S has $2^{2 N}$ subsets). Hence from (5)
(6)

$$
u_{r} \leq 2^{2 N-1} /\left(1-\frac{\prod_{i=0}^{n-1}\left(1-\frac{i}{2 N-i}\right)}{2^{n-1}}\right)^{r}
$$

Thus by (6) if $r=f(N, n), u_{r}<1$ and our sets $A_{j}, 1 \leq j \leq f(N, n)$, do not have property B, which completes the proof of Theorem 2.
(2) follows easily from Theorems 1 and 2 by Stirling's formula.

For large values of N instead of $m_{N}(n)$ it seems more appropriate to consider $m_{N}^{\prime}(n)$ where $m_{N}^{\prime}(n)$ is the smallest integer for which there is a family $\left\{A_{k}\right\} \quad 1 \leq k \leq m_{N}^{\prime}(n)$ not having property B and satisfying $A_{k} \subset S,|S|=N$ and the further property that the set of $A_{k}^{\prime} s$ contained in any proper subset of S has property B. For $n=2, m_{2 N+1}^{\prime}(n)=2 N+1$, and, for even $N, m_{N}^{\prime}(n)$ is not defined; this is just a restatement of the fact that the only critical three chromatic graphs are the odd circuits.

It is easy to see that $m_{2 n-1}(n)=m_{2 n}(n)=\binom{2 n-1}{n}$. I can not compute $m_{2 n+1}(n)$ and in fact do not know the value of $m_{9}(4)$.

It would be interesting to find an asymptotic formula for $m_{N}(n)$ and $\mathrm{m}_{\mathrm{N}}^{1}(\mathrm{n})$, but I have not been able to do so. The upper and Iower bounds for $\mathrm{m}_{\mathrm{N}}(\mathrm{n})$ given by Theorems 1 and 2 differ by 2 N ; I could not even decrease this to $O(N)$.

I wish to thank the referee for some very useful remarks.

REFERENCES

1. P. Erdés and A. Hajnal, On a property of families of sets. Acta. Math. Acad. Sci. Hung. 12 (1961) 87-123 (see in particular problem 12 on p. 179)
2. P. Erdös, On a combinatorial problem II. Acta. Math. Acad. Sci. Hung. 15 (1964) 445-447.
3. E.W. Miller, On a property of families of sets. Comp. Rend. Varsovie (1937) 31-38.
4. W.M. Schmidt, Ein Kombinatorisches Problem von P. Erdös und A. Hajnal. Acta. Math. Acad. Sci. Hung. 15 (1964) 373-374.
