ON THE GROWTH OF dk(n)

P. ERDÖS and I. KÁTAI Budapest, Hungary

1.) Let d(n) denote the number of divisors of n, $\log_k n$ the k-fold iterated logarithm. It was shown by Wigert [1] that (exp $z = e^z$)

$$d(n) < \exp\left((1 + \epsilon)\log^2 \frac{\log n}{\log \log n}\right)$$

for all positive values of ϵ and all sufficiently large values of n, and that

$$d(n) \geq \exp\left((1 - \epsilon)\log^2 \frac{\log n}{\log \log n}\right)$$

for an infinity of values of n.

Let $d_k(n)$ denote the k-fold iterated d(n) (i.e.,

$$d_1(n) = d(n), (d_k(n) = d(d_{k-1}(n)), k \ge 2).$$

S. Ramanujan remarked in his paper [2] that

$$d_2(n) \ge 4 \quad \frac{\sqrt{2 \log n}}{\log \log n} \quad ,$$

and that

$$d_3(n) > (\log n)^{\log \log \log \log n}$$

for an infinity of values of n.

Let ℓ_k denote the k^{th} element of the Fibonacci sequence (i.e.,

$$\ell_{-1} = 0, \ \ell_0 = 1, \ \ell_k = \ell_{k-1} + \ell_{k-2} \text{ for } k \ge 1$$
).

We prove the following:

Oct.

Theorem 1. We have

(1.1)
$$d_k(n) < \exp(\log n)^k$$

for all fixed k, all positive ϵ and all sufficiently large values of n, further for every $\epsilon > 0$

(1.2)
$$d_{k}(n) > \exp\left(\frac{\frac{1}{\ell_{k}} - \epsilon}{(\log n)^{k}}\right)$$

for an infinity of values of n.

It is obvious that d(n) < n, if n > 2. For a general n > 1, let k(n) denote the smallest k for which $d_k(n) = 2$. We shall prove

Theorem 2.

(1.3)
$$0 < \limsup \frac{K(n)}{\log \log \log n} < \infty$$

2.) The letters c, c_1, c_2, \cdots denote positive constants, not the same in every occurrence. The p_i 's denote the ith prime number.

3.) First, we prove (1.2). Let r be large. Put $N_1 = 2 \cdot 3 \cdots p_r$, where the p's are the consecutive primes. We define N_2, \cdots, N_k by induction. Assume

(3.1)
$$N_{j} = \prod_{i=1}^{S_{j}} p_{i}^{r_{2}}$$

then

(3.2)
$$N_{j+1} = \left(p_1 \cdots p_{r_1}\right)^{p_1 - 1} \left(p_{r_1 + 1} \cdots p_{r_1 + r_2}\right)^{p_2 - 1} \cdots \left(p_{r_1 + \cdots + r_{S_j} - 1}^{p_{s_j} - 1} \cdots p_{r_1 + \cdots + r_{S_j}}\right)^{p_{S_j} - 1}$$

From (3.2) $d(N_{j+1}) = N_j$, and thus

(3.3)
$$d_k(N_k) = 2^r$$
.

Let S_j and Γ_j denote the number of different and all prime factors of $N_j,$ respectively. We have

$$S_1 = \Gamma_1 = r, S_{j+1} = \Gamma_j.$$

Furthermore

(3.5)
$$S_{j+2} = \Gamma_{j+1} = \sum_{\nu=1}^{S_j} \gamma_{\nu} (p_{\nu} - 1) \le p_{S_j} \sum_{\nu=1}^{S_j} \gamma_{\nu} \le c \Gamma_j S_j \log S_j$$
,

since $p_{\ell} < c_{\ell} \log \ell$ for $\ell \geq 2$. Hence by (3.4)

(3.6)
$$S_{j+2} < c S_{j+1} S_j \log S_j$$
 $(j \ge 1)$,

follows.

Using the elementary fact that

$$\sum_{i=1}^{\ell} \log p_i^{} < cp_\ell^{} < c\ell \log \ell \text{ ,}$$

we obtain from (3.2),

(3.7)
$$\log N_{j+1} \leq p_{S_j} \sum_{i=1}^{\Gamma_j} \log p_i \leq c S_j \Gamma_j (\log \Gamma_j)^2 = c S_j S_{j+1} (\log S_{j+1})^2$$
.

From (3.3), (3.4) we easily deduce by induction that for every $\epsilon > 0$ and sufficiently large r

$$\begin{split} \mathbf{S}_1 &= \mathbf{r}, \quad \Gamma_1 = \mathbf{r}, \quad \mathbf{S}_2 = \mathbf{r}, \quad \Gamma_2 \leq \mathbf{r}^{2+\boldsymbol{\epsilon}}, \quad \mathbf{S}_3 < \mathbf{r}^{2+\boldsymbol{\epsilon}}, \quad \Gamma_3 < \mathbf{r}^{3+\boldsymbol{\epsilon}}, \cdots, \\ & \mathbf{S}_k < \mathbf{r}^{k-1^{+\boldsymbol{\epsilon}}}, \quad \Gamma_k \leq \mathbf{r}^{k^{+\boldsymbol{\epsilon}}}. \end{split}$$

Using (3.7), we obtain that

$$\log N_{k} \leq r^{\ell} k^{+\epsilon},$$

whence

$$d_{k}(N_{k}) = 2^{r} \geq \exp\left((\log N_{k})^{1/\ell} k^{-\epsilon}\right),$$

which proves (1.2).

4.) Now we prove (1.1). Let N_0,N_1,\cdots,N_k be an arbitrary sequence of natural numbers, such that

$$d(N_{j+1}) = N_{j}$$
,

for $j = 0, 1, \cdots, k - 1$.

Let B denote an arbitrary quantity in the interval

$$(\log \log N_k)^{-c} \le B \le (\log \log N_k)^c$$
,

not necessarily the same at every occurrence.

We prove

(4.1)
$$\log N_k \geq B(\log N_0)^{\ell_k},$$

whence (1.1) immediately follows.

In the proof of (4.1) we may assume that $\log N_0 \ge (\log N_k)$, with a positive constant $\delta < 1/\ell_k$.

Let

$$N_1 = \prod_{i=4}^{S_1} q_i^{\alpha_i - 1}.$$

Then

1969]

ON THE GROWTH OF
$$d_k(n)$$

S₁

Since

$$N_{0} = \prod_{i=1}^{n} \alpha_{i} .$$

$$2^{\alpha_{i}-1} \leq q_{i}^{\alpha_{i}-1} | N_{1} ,$$

we have

 $\alpha_i \leq c \log N_1$.

Hence

$$(\log 2)S_1 \leq \log N_0 = \sum \log \alpha_i \leq (\log \log N_1 + c)S_1$$
,

i.e.,

$$\log N_0 = BS_1$$
 .

We need the following:

Lemma. Suppose that for some integer $j,\ 1\leq j\leq k-1$,

(4.2)
$$Q_1^{\gamma_1-1} \cdots Q_A^{\gamma_A-1} |_{N_j}$$
,

where $\,{\rm Q}_1,\,\cdots,\,{\rm Q}_{\rm A}\,$ are different prime numbers and

(4.3)
$$A \ge BS_1^{\ell_{j-1}}; Q_i \ge BS_1^{\ell_{j-1}}, \gamma_i \ge BS_1^{\ell_{j-2}}$$
 (i = 1,..., A).

Then either

(4.4)
$$\log N_{j+1} \ge (\log N_0)^{\ell_k}$$
,

(4.5)
$$r_{1}^{\beta_{i}-1} \cdots r_{C}^{\beta_{C}-1} |_{N_{j+1}}$$

where $\mathbf{r_1}, \cdots, \mathbf{r_C}$ are different primes and

(4.6)
$$C \geq BS_1^{\ell_j}, r_i \geq BS_1^{\ell_j}, \beta_i \geq BS_1^{\ell_j-1}$$
 (i = 1,...,C).

To prove the lemma, let

$$N_{j+1} = \prod_{i=1}^{N_{j+1}} \frac{\delta_i - 1}{t_i}, \quad t_i \text{ primes }.$$

Since $d(N_{j+1}) = N_j$, by (4.2),

(4.7)
$$\prod_{i=1}^{A} \alpha_i^{\gamma_i - 1} \Big|_{\Pi}^{S_{j+1}} \delta_i = N_j .$$

Assume first that there is a δ_i which has at least $2\ell_k$ (not necessarily distinct) prime divisors amongst the Q_i . We then have

$$\log N_{j+1} \geq \frac{1}{2} S_1 \log t_i \geq \frac{\log 2}{2} S_i \geq \left(\left(BS_1^{\ell} \right)^{2\ell_k} \geq \left(BS_1 \right)^{2\ell_k} \geq \left(\log N_0 \right)^{\ell_k} ,$$

if N_0 is sufficiently large, i.e. (4.4) holds. Then by (4.2), the number D of δ 's, each of which contains a prime divisor amongst the Q's satisfies the inequality

(4.8)
$$D \ge \frac{1}{2_k} \sum_{i=1}^{A} (\gamma_i - 1) \ge \frac{A}{4_k} \min \gamma_2 \ge ABS_1^{\ell_j - 2} \ge BS_1^{\ell_j - 2^{+\ell_j} - 1} = BS_1^{\ell_j}.$$

Without loss of generality, we assume that these δ 's are $\delta_1, \dots, \delta_D$ and $t_1 > t_2 > \dots > t_D$ in (4.7). Since at least one Q divides $\delta_i (i \leq D)$, by (4.3), we have

$$\delta_i > BS_1^{\ell} J^{-1}$$
.

Furthermore it is obvious that $t_{D/2} > D$. By choosing

$$C = D - \frac{D}{2}$$
, $r_i = t_i$, $\beta_i = \delta_i$ (i = 1,...,C),

we obtain (4.5) and (4.6).

This completes the proof of the Lemma.

Now (4.1) rapidly follows. Indeed, the validity of (4.4) for some j, $1 \leq j \leq k - 1$, immediately implies (4.1). So we may assume that (4.4) does not hold for $j = 1, \dots, k - 1$. Now we use the Lemma for $j = 1, \dots, k - 1$. Since N_1 has S_1 different prime divisors ([1/2 S_1] of these is greater than S_1)

1969]

273

the conditions (4.2), (4.3) are satisfied for j = 1. Hence (4.5)-(4.6) holds, i.e., the conditions (4.2)-(4.3) hold for j = 2. By induction we obtain that N_k has at least

$$BS_1^{\ell}k-1$$

distinct prime factors each with the exponent greater than BS_1^{k-2} . Let

$$N_{k} = \Pi P_{i}^{\rho_{i}-1}$$
.

Since

$$\log N_k > \frac{1}{4} \sum \rho_i$$
,

we have

$$\log N_{k} > BS_{1}^{\ell_{k-1}+\ell_{k-2}} = B(\log N_{0})^{\ell_{k}}.$$

Consequently (4.1) holds.

5.) Proof of Theorem 2. Using (1.1) in the form

$$d_2(n) < \exp\left(\left(\log n\right)^{2/3}\right)$$

for $n \ge c$, and applying this k times, we have

(5.1)
$$\log d_{2k}(n) < (\log n)^{(2/3)^k}$$
, when $d_{2k-2}(n) \ge c$.

Equation (5.1) implies the upper bound in (1.3) by a simple computation.

For the proof of the lower bound we use the construction as in 3). Let r be so large that

$$(\log S_{j+1})^2 < S_{j+1}^{1+\epsilon}$$

in (3.6). Using that

ON THE GROWTH OF dk (n)

Oct. 1969

$$\log N_{j+1} \leq (\log N_j)^{2+\epsilon}$$
.

Thus

$$\log N_k \leq (\log N_1)^{(2+\epsilon)^k}$$
,

hence by taking logarithms twice,

$$K(N_k) \ge k \ge c_1 \log_3 N_k$$
,

which completes the proof of (1.3).

Denote by L(n) the smallest integer for which $\log n_{L(n)} < 1$. We conjecture that

$$\frac{1}{n}\sum_{m=1}^{n} K(m)$$

increases about like L(n), but we have not been able to prove this.

REFERENCES

- Wigert, Sur l'ordre de grandeur du nombre des diviseurs d'un entier, Arkiv för Math. 3(18), 1-9.
- S. Ramanujan, "Highly Composite Numbers," <u>Proc. London Math. Soc.</u>, 2(194), 1915, 347-409, see p. 409.

* * * * *

CORRECTION

On p. 113 of Volume 7, No. 2, April, 1969, please make the following changes:

Change the author's name to read George <u>E</u>. Andrews. Also, change the name "Einstein," fourth line from the bottom of p. 113, to "Eisenstein."

* * * * *