ON THE GROWTH OF $d_{k}(n)$

P. ERDÖS and I. KÁTAI Budapest, Hungary

1.) Let $d(n)$ denote the number of divisors of $n, \log _{k} n$ the k-fold iterated logarithm. It was shown by Wigert [1] that ($\exp z=e^{z}$)

$$
d(n)<\exp \left((1+\epsilon) \log ^{2} \frac{\log n}{\log \log n}\right)
$$

for all positive values of ϵ and all sufficiently large values of n, and that

$$
d(n)>\exp \left((1-\epsilon) \log ^{2} \frac{\log n}{\log \log n}\right)
$$

for an infinity of values of n.
Let $d_{k}(n)$ denote the k-fold iterated $d(n)$ (i.e.,

$$
d_{1}(\mathrm{n})=\mathrm{d}(\mathrm{n}),\left(\mathrm{d}_{\mathrm{k}}(\mathrm{n})=\mathrm{d}\left(\mathrm{~d}_{\mathrm{k}-1}(\mathrm{n})\right), \mathrm{k} \geq 2\right)
$$

S. Ramanujan remarked in his paper [2] that

$$
\mathrm{d}_{2}(\mathrm{n})>4 \frac{\sqrt{2 \log \mathrm{n}}}{\log \log \mathrm{n}}
$$

and that

$$
d_{3}(n)>(\log n)^{\log \log \log \log n}
$$

for an infinity of values of n.
Let ℓ_{k} denote the $k^{\text {th }}$ element of the Fibonacci sequence (i.e.,

$$
\left.\ell_{-1}=0, \quad \ell_{0}=1, \quad \ell_{k}=\ell_{k-1}+\ell_{k-2} \text { for } k \geq 1\right)
$$

We prove the following:

Theorem 1. We have

$$
\begin{equation*}
\mathrm{d}_{\mathrm{k}}(\mathrm{n})<\exp \quad(\log n)^{\frac{1}{l_{\mathrm{k}}}+\epsilon} \tag{1.1}
\end{equation*}
$$

for all fixed k, all positive ϵ and all sufficiently large values of n, further for every $\epsilon>0$

$$
\begin{equation*}
\left.\mathrm{d}_{\mathrm{k}}(\mathrm{n})>\exp (\log n)^{\frac{1}{l_{k}-\epsilon}}\right) \tag{1.2}
\end{equation*}
$$

for an infinity of values of n.
It is obvious that $d(n)<n$, if $n>2$. For a general $n>1$, let $k(n)$ denote the smallest k for which $d_{k}(n)=2$. We shall prove

Theorem 2.

$$
\begin{equation*}
0<\lim \sup \frac{K(n)}{\log \log \log n}<\infty . \tag{1.3}
\end{equation*}
$$

2.) The letters c, c_{1}, c_{2}, \cdots denote positive constants, not the same in every occurrence. The $p_{i}^{\prime} s$ denote the $i{ }^{\text {th }}$ prime number.
3.) First, we prove (1.2). Let r be large. Put $N_{1}=2.3 \cdots p_{r}$, where the p 's are the consecutive primes. We define $\mathrm{N}_{2}, \cdots, \mathrm{~N}_{\mathrm{k}}$ by induction. Assume

$$
\begin{equation*}
N_{j}=\prod_{i=1}^{S_{j}} p_{i}^{r_{2}} \tag{3.1}
\end{equation*}
$$

then
(3.2) $\quad N_{j+1}=\left(p_{1} \cdots p_{r_{1}}\right)^{p_{1}-1}\left(p_{r_{1}+1} \cdots p_{r_{1}+r_{2}}\right)^{p_{2}-1} \cdots\left(p_{r_{1}+\cdots+r_{S_{j}-1}+1}\right.$

$$
\left.\cdots p_{r_{1}+\cdots+r_{S_{j}}}\right)^{p_{S_{j}-1}}
$$

From (3.2) $d\left(N_{j+1}\right)=N_{j}$, and thus

$$
\begin{equation*}
\mathrm{d}_{\mathrm{k}}\left(\mathrm{~N}_{\mathrm{k}}\right)=2^{\mathrm{r}} \tag{3.3}
\end{equation*}
$$

Let S_{j} and Γ_{j} denote the number of different and all prime factors of N_{j}, respectively. We have

$$
\begin{equation*}
S_{1}=\Gamma_{1}=r, S_{j+1}=\Gamma_{j} \tag{3.4}
\end{equation*}
$$

Furthermore

(3.5) $\quad S_{j+2}=\Gamma_{j+1}=\sum_{\nu=1}^{S_{j}} \gamma_{\nu}\left(p_{\nu}-1\right)<p_{S_{j}} \sum_{\nu=1}^{S_{j}} \gamma_{\nu}<c \Gamma_{j} S_{j} \log S_{j}$,
since $p_{\ell}<c_{\ell} \log \ell$ for $\ell \geq 2$. Hence by (3.4)

$$
\begin{equation*}
s_{j+2}<\mathrm{c} \mathrm{~s}_{j+1} \mathrm{~s}_{\mathrm{j}} \log \mathrm{~s}_{\mathrm{j}} \quad(\mathrm{j} \geq 1) \tag{3.6}
\end{equation*}
$$

follows.
Using the elementary fact that

$$
\sum_{i=1}^{\ell} \log p_{i}<\mathrm{cp}_{\ell}<\mathrm{c} \ell \log \ell
$$

we obtain from (3.2),

$$
\text { (3.7) } \quad \log N_{j+1} \leq p_{S_{j}} \sum_{i=1}^{\Gamma_{j}} \log p_{i} \leq \operatorname{c~S}_{j} \Gamma_{j}\left(\log \Gamma_{j}\right)^{2}=\operatorname{cS}_{j} S_{j+1}\left(\log S_{j+1}\right)^{2}
$$

From (3.3), (3.4) we easily deduce by induction that for every $\epsilon>0$ and sufficiently large r

$$
\begin{gathered}
\mathrm{S}_{1}=\mathrm{r}, \quad \Gamma_{1}=\mathrm{r}, \quad \mathrm{~S}_{2}=\mathrm{r}, \quad \Gamma_{2}<\mathrm{r}^{2+\epsilon}, \mathrm{S}_{3}<\mathrm{r}^{2+\epsilon}, \Gamma_{3}<\mathrm{r}^{3+\epsilon}, \cdots \\
\mathrm{S}_{\mathrm{k}}<\mathrm{r}^{\ell} \mathrm{k-1}+\mathrm{r}_{\mathrm{k}} \leq \mathrm{r}^{\ell+\epsilon}
\end{gathered}
$$

Using (3.7), we obtain that

$$
\log \mathrm{N}_{\mathrm{k}} \leq \mathrm{r}^{\ell} \mathrm{k}^{+\boldsymbol{\epsilon}}
$$

whence

$$
d_{k}\left(N_{k}\right)=2^{r} \geq \exp \left(\left(\log N_{k}\right)^{1 / \ell} k^{-\epsilon}\right)
$$

which proves (1.2).
4.) Now we prove (1.1). Let $N_{0}, N_{1}, \cdots, N_{k}$ be an arbitrary sequence of natural numbers, such that

$$
d\left(N_{j+1}\right)=N_{j}
$$

for $\mathrm{j}=0,1, \cdots, k-1$.
Let B denote an arbitrary quantity in the interval

$$
\left(\log \log \mathrm{N}_{\mathrm{k}}\right)^{-\mathrm{c}} \leq \mathrm{B} \leq\left(\log \log \mathrm{N}_{\mathrm{k}}\right)^{\mathrm{c}}
$$

not necessarily the same at every occurrence.
We prove

$$
\begin{equation*}
\log \mathrm{N}_{\mathrm{k}} \geq \mathrm{B}\left(\log \mathrm{~N}_{0}\right)^{\ell \mathrm{k}} \tag{4.1}
\end{equation*}
$$

whence (1.1) immediately follows.
In the proof of (4.1) we may assume that $\log \mathrm{N}_{0} \geq\left(\log \mathrm{N}_{\mathrm{k}}\right)$, with a positive constant $\delta<1 / \ell_{\mathrm{k}}$.

Let

$$
\mathrm{N}_{\mathrm{i}}=\prod_{\mathrm{i}=4}^{\mathrm{S}_{1}}{\underset{\mathrm{i}}{ }{ }^{\alpha_{i}-1} .}^{1} .
$$

Then

$$
\mathrm{N}_{0}=\prod_{\mathrm{i}=1}^{\mathrm{S}_{1}} \alpha_{\mathrm{i}}
$$

$$
2^{\alpha_{i}-1} \leq\left. q_{i}^{\alpha_{i}-1}\right|_{N_{1}},
$$

we have

$$
\alpha_{i} \leq \mathrm{c} \log \mathrm{~N}_{1}
$$

Hence

$$
(\log 2) \mathrm{S}_{1} \leq \log \mathrm{N}_{0}=\Sigma \log \alpha_{i} \leq\left(\log \log N_{1}+\mathrm{c}\right) \mathrm{S}_{1},
$$

i.e. ,

$$
\log N_{0}=\mathrm{BS}_{1}
$$

We need the following:
Lemma. Suppose that for some integer $j, 1 \leq j \leq k-1$,

$$
\begin{equation*}
Q_{1}{ }^{\gamma_{1}-1} \cdots Q_{A}^{\gamma_{A}-1} \mid N_{j} \tag{4.2}
\end{equation*}
$$

where Q_{1}, \cdots, Q_{A} are different prime numbers and

$$
\begin{equation*}
\mathrm{A} \geq \mathrm{BS}_{1}{ }^{\ell} \mathrm{j}-1, \mathrm{Q}_{\mathrm{i}} \geq \mathrm{BS}_{1}^{\ell{ }_{j}-1}, \gamma_{\mathrm{i}} \geq \mathrm{BS}_{1}^{\ell}{ }^{\mathrm{j}-2}(\mathrm{i}=1, \cdots, \mathrm{~A}) . \tag{4.3}
\end{equation*}
$$

Then either
(4.4)
$\log N_{j+1} \geq\left(\log N_{0}\right)^{\ell}$,
or

$$
\begin{equation*}
\left.r_{1}^{\beta_{1}-1} \cdots r_{\mathrm{C}}^{\beta_{\mathrm{C}^{-1}}}\right|_{N_{\mathrm{j}+1}}, \tag{4.5}
\end{equation*}
$$

where r_{1}, \cdots, r_{C} are different primes and

$$
\begin{equation*}
\mathrm{C} \geq \mathrm{BS}_{1}^{\ell}{ }^{\mathrm{j}}, \quad \mathrm{r}_{\mathrm{i}} \geq \mathrm{BS}_{1}^{\ell}{ }^{\mathrm{j}}, \quad \beta_{\mathrm{i}} \geq \mathrm{BS}_{1}^{\ell}{ }^{\mathrm{j}-1} \quad(\mathrm{i}=1, \cdots, \mathrm{C}) . \tag{4.6}
\end{equation*}
$$

To prove the lemma, let

$$
N_{j+1}=\prod_{j+1}^{S_{i}}{t_{i}-1}, \quad t_{i} \text { primes } .
$$

Since $d\left(N_{j+1}\right)=N_{j}$, by (4.2),
(4.7)

$$
\prod_{i=1}^{A} Q_{i} \gamma_{i}-1 \mid \stackrel{S_{j+1}}{\Pi} \delta_{i}=N_{j}
$$

Assume first that there is a δ_{i} which has at least $2 \ell_{k}$ (not necessarily distinct) prime divisors amongst the Q_{i}. We then have

$$
\begin{aligned}
& \log N_{\mathrm{j}+1} \geq \frac{1}{2} \delta_{\mathrm{i}} \log \mathrm{t}_{\mathrm{i}} \geq \frac{\log 2}{2} \delta_{\mathrm{i}} \geq\left(\mathrm{CS}_{1}^{\ell}{ }_{\mathrm{j}-1}\right)^{2 \ell_{\mathrm{k}}} \geq \\
& \geq\left(\mathrm{BS}_{1}\right)^{2 \ell_{\mathrm{k}}} \geq\left(\log \mathrm{N}_{0}\right)^{\ell} \mathrm{k},
\end{aligned}
$$

if N_{0} is sufficiently large, i.e. (4.4) holds. Then by (4.2), the number D of δ 's, each of which contains a prime divisor amongst the Q's satisfies the inequality
(4.8) $\mathrm{D} \geq \frac{1}{2} \sum_{\mathrm{k}}^{\mathrm{A}} \sum_{\mathrm{i}=1}\left(\gamma_{\mathrm{i}}-1\right) \geq \frac{\mathrm{A}}{4} \mathrm{k} \min \gamma_{2} \geq \mathrm{ABS}_{1}{ }^{\mathrm{j}-2} \geq \mathrm{BS}_{1}{ }^{\mathrm{j}-2^{+\ell} \mathrm{j}-1}=\mathrm{BS}_{1}{ }^{\mathrm{j}}$.

Without loss of generality, we assume that these δ 's are $\delta_{1}, \cdots, \delta_{D}$ and t_{1} $>t_{2}>\ldots>t_{D}$ in (4.7). Since at least one Q divides $\delta_{i}(i \leq D)$, by (4.3), we have

$$
\delta_{\mathrm{i}}>\mathrm{BS}_{1}^{\ell}{ }^{\mathrm{j}-1}
$$

Furthermore it is obvious that $t_{[D / 2]}>D$. By choosing

$$
C=D-\frac{D}{2}, \quad r_{i}=t_{i}, \quad \beta_{i}=\delta_{i} \quad(i=1, \cdots, C)
$$

we obtain (4.5) and (4.6).
This completes the proof of the Lemma.
Now (4.1) rapidly follows. Indeed, the validity of (4.4) for some $\mathrm{j}, 1 \leq$ $\mathrm{j} \leq \mathrm{k}-1$, immediately implies (4.1). So we may assume that (4.4) does not hold for $j=1, \cdots, k-1$. Now we use the Lemma for $j=1, \cdots, k-1$. Since N_{1} has S_{1} different prime divisors ($\left[1 / 2 S_{1}\right]$ of these is greater than S_{1})
the conditions (4.2), (4.3) are satisfied for $j=1$. Hence (4.5)-(4.6) holds, i. e., the conditions (4.2)-(4.3) hold for $j=2$. By induction we obtain that N_{k} has at least

$$
\mathrm{BS}_{1}^{\ell}{ }_{\mathrm{k}-1}
$$

distinct prime factors each with the exponent greater than $\mathrm{BS}_{1}^{\ell}{ }^{\mathrm{k}-2}$. Let

$$
N_{k}=\Pi_{P_{i}}^{\rho_{i}-1}
$$

Since

$$
\log N_{k}>\frac{1}{4} \sum \rho_{i}
$$

we have

Consequently (4.1) holds.
5.) Proof of Theorem 2. Using (1.1) in the form

$$
\mathrm{d}_{2}(\mathrm{n})<\exp \left((\log \mathrm{n})^{2 / 3}\right)
$$

for $\mathrm{n} \geq \mathrm{c}$, and applying this k times, we have

$$
\begin{equation*}
\log \mathrm{d}_{2 \mathrm{k}}(\mathrm{n})<(\log \mathrm{n})^{(2 / 3)^{\mathrm{k}}}, \text { when } \mathrm{d}_{2 \mathrm{k}-2}(\mathrm{n}) \geq \mathrm{c} \tag{5.1}
\end{equation*}
$$

Equation (5.1) implies the upper bound in (1.3) by a simple computation.
For the proof of the lower bound we use the construction as in 3). Let r be so large that

$$
\mathrm{cS}_{\mathrm{j}+1}\left(\log \mathrm{~S}_{\mathrm{j}+1}\right)^{2}<\mathrm{s}_{\mathrm{j}+1}^{1+\epsilon}
$$

in (3.6). Using that

$$
\log N_{j+1} \leq\left(\log N_{j}\right)^{2+\epsilon}
$$

Thus

$$
\log N_{k} \leq\left(\log N_{1}\right)^{(2+\epsilon)^{k}}
$$

hence by taking logarithms twice,

$$
\mathrm{K}\left(\mathrm{~N}_{\mathrm{k}}\right) \geq \mathrm{k} \geq \mathrm{c}_{1} \log _{3} \mathrm{~N}_{\mathrm{k}},
$$

which completes the proof of (1.3).
Denote by $L(n)$ the smallest integer for which $\log n_{L(n)}<1$. We conjecture that

$$
\frac{1}{n} \sum_{m=1}^{n} K(m)
$$

increases about like $\mathrm{L}(\mathrm{n})$, but we have not been able to prove this.

REFERENCES

1. Wigert, Sur l'ordre de grandeur du nombre des diviseurs d'un entier, Arkiv för Math. 3(18), 1-9.
2. S. Ramanujan, "Highly Composite Numbers," Proc. London Math. Soc., $\underline{2}(194), 1915,347-409$, see p. 409.

CORRECTION

On p. 113 of Volume 7, No. 2, April, 1969, please make the following changes:

Change the author's name to read George E. Andrews. Also, change the name "Einstein," fourth line from the bottom of p. 113, to "Eisenstein."

