ON THE IRRATIONALITY OF CERTAIN SERIES

By

P. Erdös

(Received: 13.12.1965)
In a previous paper [1] I proved that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{d(n)}{t^{n}}=\sum_{n=1}^{\infty} \frac{1}{t^{n}-1} \tag{1}
\end{equation*}
$$

is irrational for every integer $t \geqslant 2$. Denote by $V(n)$ the number of distinct prime factors of n. I conjectured in [1] that

$$
\sum_{n=1}^{\infty} \frac{V(n)}{t^{n}}=\sum_{p} \frac{1}{t^{p}-1}
$$

is also irrational. I have not yet been able to prove this conjecture. In fact I know no example of an infinite sequence $n_{1}<n_{2}<\ldots$ and $t \geqslant 2$ for which

$$
\begin{equation*}
\sum_{t=1}^{\infty} \frac{1}{t^{n}-1} \tag{2}
\end{equation*}
$$

is rational, though it seems likely that this can happen. I am going to prove the following

Theorem. Let $\left(n_{i}, n_{j}\right)=1, \sum_{i=1}^{\infty} 1 / n_{i} \leqslant \infty$. Then

$$
\sum_{i=1}^{\infty} \frac{1}{t^{n_{i}-1}}
$$

is irrational for every $t \geqslant 2$.
By more complicated arguments one can show that the condition $\left(n_{i}, n_{j}\right)=1$ is superfluous. We do not give the details since I do not think that the condition $\sum_{i=1}^{\infty} 1 / n_{i}<\infty$ is very relevant. In fact it could be replaced by a weaker but more complicated condition. I would expect that the series (2) is always irrational if $n_{k+1}-n_{k} \rightarrow \infty$ (perhaps even $n_{k} / k \rightarrow \infty$ suffices).

The terms of the series (1) can be defined by the following recussion : $u_{1}=t-1, u_{n+1}=t u_{n}+t-1$. One would expect that if a series is defined by this recursion, then $\Sigma 1 / u_{n}$ is irrational for any positive integral value of u_{1}. $n=1$
This I have not been able to prove, not even if $t=2$. For $t=2$ one would have to prove that $\sum_{n=1}^{\infty} \frac{1}{\left(2^{n}-1\right) l^{n}}$ is irrational for every positive integer l, but this I have not been able to do. Incidentally, I cannot show that

$$
\sum_{n=1}^{\infty} \frac{1}{n!-1} \text { is irrational. }
$$

Now we have to prove our theorem. Denote by $V^{*}(m)$ the number of divisors of m amongst the n_{i}. We evidently have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{t^{n_{k}}-1}=\sum_{m=1}^{\infty} \frac{V^{*}(m)}{t^{m}}=\alpha \tag{3}
\end{equation*}
$$

As in [1] we show that irrationality of α by showing that the t-ary development of α is infinite but that it contains arbitrarily many 0 's. To show this let k be sufficiently large. We first of all try to find integers y for which

$$
\begin{equation*}
V^{*}(y+i)=t^{i}, i=1, \ldots, k . \tag{4}
\end{equation*}
$$

We now give k congruences for y.

$$
\begin{aligned}
& y+1 \equiv 0\left(\bmod \prod_{i=1}^{t} n_{i}\right), \\
& y+2 \equiv 0\left(\bmod \prod_{i=t+1}^{t^{2}+t} n_{i}\right) .
\end{aligned}
$$

Now if $n_{1}=2 y+3 \equiv 0\left(\bmod n_{1}\right)$. Thus if $n_{1}=2$ our third congruence is $y+i \equiv 0\left(\bmod \Pi n_{i}\right), t^{2}+t+1<i<t^{3}+t^{2}+t-1$, in other words i runs through $t^{3}-1$ values. If $n_{1}>2$ then $t^{2}+t+1<i<t^{3}+t^{2}+t$ (i.e., i runs through t^{3} values). In the j th congruence $1 \leqslant j \leqslant k$, we demand that $y+j$ should be a multiple of the first $r_{j} n$'s which have not yet been used in the first $j-1$ congruences where r_{j} is determined so that the first j congurences assure that $y+j$ is divisible by precisely t of the first $r_{1}+\ldots+r_{j} n$'s. It is easy to see that r_{j} is uniquely determined and its value depends only on the sequence $n_{1}<n_{2}<\ldots$ (here we strongly use that the n 's are relatively prime in pairs). Put $\sum_{j=1} r_{j}=l, A_{l}=\prod_{i=1} n_{i}, y$ is uniquely determined $\bmod A_{l}$ by these k congruences. We clearly have

$$
t^{k}<l \leqslant \sum_{i=1}^{k} t^{i}
$$

and $y+j$ is divisible by precisely t^{j} of the n_{i} not exceeding n_{l} (since the
n 's of index greater than $r_{1}+\ldots+r_{j}$ but not exceeding $r_{1}+\ldots+r_{k}=l$ can never divide $n+i$. To see this let

$$
\sum_{i=1}^{j} r_{i}<u \leqslant \sum_{i=1}^{l} r_{i}
$$

and let $j, j^{\prime}<j^{\prime} \leqslant k$ the least integer for which $n+j^{\prime} \equiv 0\left(\bmod n_{u}\right)$. By definition of our congruences $n_{u} \geqslant u>t^{\prime}>j^{\prime}$, hence $n+j$ is not congruent to $0\left(\bmod n_{u}\right)$ as stated).

Let y_{0} be the smallest positive solution of our congruences. We evidently have $0<y_{0}<A_{l}$. Let x be sufficiently large and put

$$
\begin{equation*}
y=y_{0}+s A_{l}, 0 \leqslant s<\frac{x}{A_{l}} \tag{4}
\end{equation*}
$$

We shall now show that there is an s satisfying (4) for which
and

$$
\begin{gather*}
V^{*}(y+i)=t^{i}, 1 \leqslant i \leqslant k \tag{5}\\
0<\sum_{j>k} \frac{V^{*}(y+j)}{t^{y+j}}<\frac{1}{t^{y+k / a}} \tag{6}
\end{gather*}
$$

(5) and (6) imply that there are at least $\frac{k}{2} 0^{\prime}$'s following the y 's t-ary digit of α and since this holds for every k and since (6) also implies that not all digits following the y 's are 0 , we have proved that α is irrational.

Thus to complete our proof we only have to show (5) and (6) hold for a y satisfying (4). In view of our k, congruences (5) are satisfied if $y+i=y_{0}+s A_{l}+i$ is not congruent to $0\left(\bmod n_{j}\right), 1 \leqslant i \leqslant k, n_{l}<n_{j} \leqslant X . \ldots(7)$

We estimate from above the number of values of s for which (7) is not satisfied for some i or n_{j}. For fixed i and j the number of solutions of (7) is at most $\left[\frac{X}{A_{l} n_{j}}\right]+1$. Put $N(x)=\sum_{n_{j} \leqslant x} 1$, since $\sum_{j=1}^{\infty} \frac{1}{n_{j}}<\infty$ we have $N(x)=0(x)$. Thus finally the number of values of s for which (7) is not satisfied for all relevant values of i and j is for sufficiently large k and x at most $\left(\sum_{j>k} \frac{1}{n_{j}}<\epsilon\right.$ for $\left.k>k_{0}\right)$

$$
\begin{equation*}
\frac{X}{A_{l}} \sum_{j>k} \frac{1}{n_{j}}+k N(X)<\frac{X}{2 A_{l}} \tag{8}
\end{equation*}
$$

Now we deal with (6). Put for $j>k$

$$
\begin{equation*}
V^{*}(y+j)=V_{1}^{*}(y+j)+V_{2}^{*}(y+j) \tag{9}
\end{equation*}
$$

where

$$
V_{1}^{*}(y+j)=\sum_{\substack{n_{1} /(y+j) \\ i \leqslant l}} 1, V_{2}^{*}(y+j)=\sum_{\substack{n_{i} /(y+j) \\ i>l}} 1
$$

For $j \leqslant 2 k$ we have

$$
\begin{equation*}
V_{1}{ }^{*}(y+j)<k, \tag{10}
\end{equation*}
$$

since from our congruences it follows that if $u \leqslant l$ then $n_{u} \mid(y+i)$ for some $0<i \leqslant k$ hence if for $j \leqslant 2 k, n_{u} \mid(y+j)$ we have $n_{u}<2 k$, hence by $N(x)=o(x), u<k$ (for $k>k_{0}$) and hence (10) follows.

For $j>2 k$ we evidently have

$$
\begin{equation*}
V_{1}^{*}(y+j) \leqslant l<t^{k+1} . \tag{11}
\end{equation*}
$$

From (19) and (11) we have for $k>k_{0}$.

$$
\begin{equation*}
\sum_{j>k} \frac{V_{1}^{*}(y+j)}{t^{y+j}}<k \sum_{j>k} \frac{1}{t^{y+j}}+t^{k+1} \sum_{j>2 k} \frac{1}{t^{y+j}}<\frac{1}{2 t^{k / 2}} . \tag{12}
\end{equation*}
$$

Now we prove the following
Lemma. For all, but $\frac{X}{4 A_{l}}$ values of s we have for every $j>k$,

$$
\begin{equation*}
V^{*}(y+j)<j^{2} . \tag{13}
\end{equation*}
$$

To prove our lemma we first of all observe that (13) is trivially satisfied for $j>x$, since if $j<x$ then

$$
V^{*}(y+j)<y \dagger j<2 j<j^{2} .
$$

We evidently have for a fixed $j<x, y<x$ and $k>k_{0}$

$$
\begin{gathered}
\left(\text { in } \Sigma_{1} y=y_{0}+s A_{l}, 0 \leqslant s<\frac{x}{A_{l}}\right) \\
\sum_{1} V_{2}^{*}(y+j) \leqslant \sum_{k<n_{i} \leqslant 2 X}\left[\left(\frac{X}{A_{l} n_{t}}\right)+1\right]<N(2 X)+\frac{X}{A_{l}} \sum_{n_{i}>k} \frac{1}{n_{i}}<\frac{X}{A_{l}} .
\end{gathered}
$$

Thus for any fixed j, the number of values of which (13) does not hold is less than $\frac{x}{j^{2} A_{i}}$. Hence the total number of values of s for which (13) does not hold for some $j<k$ is less than

$$
\frac{X}{A_{l}} \sum_{j>k} \frac{1}{j^{2}}<\frac{X}{4 A_{l}}
$$

which proves the lemma.
Let now s satisfy (5) and (13). Then for $k>k_{0}$

$$
\begin{equation*}
\sum_{j>k} \frac{V_{2}^{*}(y+j)}{t^{y+j}}<\sum_{j>k} \frac{j^{2}}{i^{y+k}}<\frac{1}{t^{k / 2}} \tag{14}
\end{equation*}
$$

By (8) and our Lemma there are values of s which satisfy (5) and (13). By (12) and (14) these s also satisfy (6) (the left side of (6) is trivially satisfied), hence the proof of our theorem is complete.

If we do not assume $\left(n_{i}, n_{j}\right)=1$ the proof becomes more complicated. We have to use the result that if the fractional part of $t^{n} \alpha$ takes on infinitely many different values, then α is irrational.

If we assume $\left(n_{i}, n_{j}\right)=1$, then by using Brun's method $\sum_{i} \frac{1}{n_{i}}<\infty$
could probably be replaced by $\sum_{n_{i}<x} \frac{1}{n_{i}}=o(\log \log x)$ but I do not see how to handle the case if the n 's are the set of all primes.

REFERENCE

1. P. Erdös : On arithmetical properties of Lambert series, J. Indian Math. Soc. 12, 1948 pp. 63-66.
Panjab University, Chandigarh.
