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Denote by W(n ; k) a graph of n vertices and k edges. Put for n - r (mod p - 1)

m(n,p)=
p-2

(n 2 -r 2)+ (r ), 0<_n_<p-1
2(p - 1)

	

22

and denote by KP the complete graph of p vertices . A well known theorem of TUR.áN
[6] states that every 9(n ; m(n, p) + 1) contains a Kp and that this result is best
possible. Thus in particular every á(2n ; n 2 + 1) contains a triangle. Denote by
f„(p ; 1) the largest integer so that every W(n; m(n, p) + 1) contains at least fn(p ; l)
distinct K p 's. RADEMACHER proved that fn(3 ; 1) = [n/2] and I proved [1] that there
exists a constant 0 < c < z so that for every

(1) 1 < cn , fn(3 ; 1) = l
[n2 ]

and I conjectured that (1) holds for every 1 < [n/2] . We are very far from being able
to determine fn(p; 1) in general, the problem is unsolved even for p = 3 (though W .
BROWN has certain plausible unpublished conjectures) . NORDHAus and STEWART [4]
conjectured that

lim mint"(3'1) = 8 0 < l < (n) - rn2l
n=w I in

	

9

	

2

	

4

I proved that for l = o(n2 )

(2)

290

fn(3 ; l) = (1 + 0(1)) l
2

.

I do not give the proof of (2) in this paper .



Theorem 1 . Let n > no(p) . Then

(3)

	

fn(P ; 1) =pH
C

n + ~,

=o p - 11

The special case

&(4;1)=n'
was stated without proof in [1] . It is possible that the condition n > rt o(p) can be
omitted and that (3) holds for every n .

Instead of Theorem 1 we prove the following more general

Theorem 2 . Let n > n o(p) (l, < epn, ep > 0) be a sufficiently small constant . Then

p_3
n + i

fn(P ; I,) = 1, a
[P

-
3]

.

In the case p = 3 the proof of Theorem 1 is much simpler than that of Theorem 2,
[2], but for the general case I have no simpler proof for Theorem 1 than for Theorem 2 .
Our principal tool for the proof of Theorems 1 and 2 will be

Theorem 3 . Let it > no(p), l z < n/200p4 . Let there be given a S(n ; in(n, p) - l,)
which contains a Kp . Then it has an edge which is contained in np -2 ,l(10p) 6 p Kp's
of our graph .

By Turáns theorem every ~§(n ; m(n, p) + 1) contains a Kp . Thus Theorem 3
implies the following corollary of independent interest .

Theorem 3' . Every S(n ; m(n, p) + 1) has an edge which is contained in
np -Zf(10p) 6PK p ' s of our graph .

For p = 3 all our Theorems are known [1] . In fact I can show that every 21(n ;
[n2/4] + 1) has an edge which is contained in at least (n/6) + 0(1) triangles and
that n16 is best possible. For p > 3. 1 have not succeeded in determining the best
possible constant in Theorem 3' . The constants in all our Theorems are very far
from being best possible .

To prove Theorem 3 we need two Lemmas, but first we have to introduce some
notations. S,, will denote a graph of m vertices . W(y,, . . ., y,) will denote the subgraph
of W spanned by the vertices y,, . . ., y,. W - x, - . . . - x, denotes the subgraph
of S from which the vertices x,, . . ., x, and all edges incident to them have been
omitted . Let e,, . . ., e r be edges of W . - e, - . . . - e, denotes the subgraph of W
from which the edges e,, . . ., er have been omitted . e(S) will denote the number of
edges of S, v(x) the valency of the vertex x is the number of edges of W incident to x .
K(u,, . . ., up) denotes the complete p - chromatic graph, with it i vertices of the i-th
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color and where any two vertices of different color are joined by an edge . If 9 is
a set 191 denotes the number of its elements and if A c .So, J is the complement
of A in 9 .

We always assume p >- 4, since our Theorems are all known for p = 3 .

Lemma 1 . Let ICI = n and Ai c Y, 1 <_ i <_ p. Assume

(4)

		

IA,I >n p	2

	

1

	

lei<p
p - 1 100p

Then there are values 1 <_ i < j < p so that

(5)

	

IAinA;I>n p-3 + 1
p - 1

	

lop3)

(5) is not best possible, but suffices for our purpose . From (4) and 19'1

	

n it
follows that if (5) fails to hold for every 1 < i < j <_ p, then

Further clearly

(8)

Thus if (5) never holds we have from (4) and (8) that for every I

	

i < j < p

(9)

	

I A i n A .i 1 < n 1 + 1
50p4

	

lop3

It is easy to see that (7) and (9) lead to a contradiction . We evidently have
P

	

_
(10)

	

n = I~I >_ Y- IA i I - y R n A;j .
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Thus from (7) and (10)

IAI<n p-2 + 1 + 1
(p - I

	

lop 3

	

100p4

IA, n A;I = IA i I + IA i I - n + If1 i n Rj 1 .

max Ill i n Ajl >_
1 n

	

1 - 1 - I
i<i<;< P

	

(p)

	

p - 1

	

1op,

	

100p3
2

which contradicts (9) and hence proves the Lemma .



Lemma 2. Let 5(n; m(n, p) - l z ) _ ~, l z < n/200p 4 be a graph which contains
a Kp . Then it has a subgraph !JN , N > n/IOOp 2 which also contains a Kp and
each vertex of which has (in PN) valency

(11)

	

v(x) > N rp -2 -1
)

.
p - 1 loop¢

If our

	

satisfies (11) our Lemma is proved . If not let x,, . . . be a sequence of
vertices of our

	

so that the valency of x ; in 9 - x, - . . . - x ;_, satisfies

v(x i) _< (n - i)
p 2
-

1
) .

p - 1

	

100p4

Suppose this process stops in k steps, in other words every vertex of 5 -
- xk has valency greater than

1
loop¢ .

rt-But then by (12) and by the fact that e('o - x,

	

x,)

	

k
_<

	

a simple
argument shows that

	

2

(14)

e(s)

	

p) - 1,

	

2 n
-F O(n) < p

2

	

1

	

n +
n-k

= rn(n,

	

_
p

--

	

- -
v- 1 2

	

p- 1

	

loop¢ 2

	

2

(14) clearly leads to a contradiction if n > n o(p) and n - k < n/100p 2 . Thus
n - k > nil 00p 2 . Put -I

	

'jN =

	

- x,

	

x F , . By (13) TN satisfies (11), it clearly
satisfies N > n! 1 OOp 2 . Finally by (12) and k >__ 1 we obtain by a simple computation

k-1

	

_
(15)

	

e(~.v) >_ e(S6)

	

Cp
-2 - -~~--~ >

=o

	

p - 1

	

IOOp4

> m(n, p) -	4

	

- (n - i)
(Pp

2

	

1
> m(n - k, p) = tn(N, p) .

20Op

	

i=o

	

p - 1

	

100p á

(t5) implies by Turáns theorem that our ~N contains a Kp, which completes the
proof of Lemma 2 .
Now we are ready to prove Theorem 3 . Our . (n; m(n, p) - IJ contains by

Lemma 2 a SN , N > n/IOOp' the valency of each vertex of which satisfies (11) and it
contains a Kp say (x i , . . ., x p ) . Denote by A r the set of vertices in SN joined to x r .
By (11) we can apply Lemma 1 and obtain that there are two vertices x ; and x j ,
1 < i < j <= p both of which are joined to (y,, . . ., y, are vertices of WJN)

(16)

	

> N p- 3
+ 1

	

N > n/100p' .
p - 1 lOp3)

29 3



Consider now the graph ~7N(y l , . . ., y,) . By (11) and (16) we have for every i

(17) u(yi)>N(p
-1

	

loop
-

1

	

N+t=t-NC
p 1 1 + IOOp°) >1.)

/	 1 	+	1 \
4

>t 1-p-1
loop >t p-4 + 1

p-3 1 p-3 20p 3

p-1 + lop 3 f

In (17) v(y i ) of course denotes valency in IN(y,, . . ., y,) . Denote by B i the set of y's
joined to y i . It immediately follows from (17) that for every i,, . . ., i r , r <_ p - 3

t
(18)

	

IBjI n . . . n B i I >

20p3

(for r < p - 3 (17) could of course be considerably improved .
For (18) and (15) we immediately obtain that

	

y,) contains at least
(t > (p - 3) Nl(p - 1) > n/3oop2 )

(19)

	

1

	

tp -2

	

>

	

1

	

np-2

	

> np-2

(p - 2)! (20p 3 )p-2

	

(p

	

(10p) 5(p - 2)

	

(IOp)6 p

K p - 2 's . (19) follows from the fact that by (18) we have for each r at least t/20p 3
choices for the r-th vertex of our K p _ 2 . Each of these K p _ 2's form together with the
edge (x i , xj ) a Kp of our §(n ; m(n, p) - 1 2 ) each of which contain the edge (x i , xj ),
and this completes the proof of Theorem 3 .
Now we prove Theorem 2. The proof is very similar to [1] . We use the following

theorem of SIMONOVITS [5] :

To every p there is a 6p so that if 1 < 6 pn and the graph 1(n ; m(n, p) - 1) does not
contain a Kp then it is (p - 1)-chromatic, in other words it is a subgraph of some

p-1

K(u,, . . ., up -,) with E u i = n .
i=i

Now we are ready to prove Theorem 2 . Consider Turáns graph

K u,, . . ., u p-, , ui =
C

n + i - 1 j
(

	

)

	

1

	

p - 1 ,
p - 1

having the vertices x~ i) , 1 <_ j 5 [(n + i - 1)/(p - 1)], 1 5 i <_ p - 1 . Add the 1,
edges (xipxjp2 < j < 1, + 1 . This W(n ; m(n, p) + l,) clearly has
p-3

1, H [(n + i)l(p - 1)] K p' s . Thus to prove Theorem 2 we only have to show
i=o

p
(20)

	

f», 1)
> 1

,
-3

n + i

[p- l
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To prove (20) observe that by Turáns theorem our S(n ; m(n, p) + 1J contains
a Kp , let r be the smallest integer so that - e l - . . . - e, contains no Kp . By
Turáns theorem we have r >_ 1 1 . Assume first r >_ (lop) 6 p 1 1 . From Theorem 3 (and
from the proof of Theorem 3) we obtain that if ep < 1/2.108p6p+2, (11 < e pn) then
each of the edges e i , 1 < i _<_ (lop) 6 p . 11 are contained in at least np-2/(lop) 6p Kp's
of

	

- e l

	

e i - I . These Kp's are clearly all different . Thus I contains at least

p-3
l,np-z )

11

	

[(n + i)f(p - 1)]
=o

Kp ' s which proves (20) in this case .
Assume next r < (10p) 6p 1, Let E p < óp/(lop)6p. We have by assumption 1 1 <

< epn . Then by the theorem of Simonovits 5 - e l -

	

e, must be contained
p-I

in a K(u l , . . ., up-I), Y. u, = n. Now we assume p >_ 4. We then easily obtain
i=1

(21)

	

u.=
n+i-1

	

1 < < p_1p
p - 1

P-1
To see this observe that if p > 4 and Y u ; = n and (21) is not satisfied for all i we

i= 1
would have by a simple computation for sufficiently small óp

p-1

m(n,p)-r<e(~7 -e,- . . .- e,~ -- [1u;<m(n,p)-ópn
[=1

an evident contradiction since r < ópn.

Observe now that (since ó p is small the edges e i , 1 < i < r must join vertices of
the same color of our K(u l , . . ., u„) . By (21) we observe by a simple argument
that each e„ 1 < i < r is contained in at least (r - 1 1 = r 1 )

([p n 1] rI /

	

[p ±
1 ]

Kp's and these Kp's are clearly, all different, or our graph contains at least

(22)

	

r ([p
11

1]
- r)

p-3 n[	fl
p
± 1]

KP 's . From r < ópn it follows for sufficiently small óp that r([n/(p - 1)] - r l )
is minimal if r l is as small as possible, in other words if r = 1 1 , r l = 0. Thus by (22)
our

	

contains at least
P-3

1l1f1
	 +i ]

=o lp - 1
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KP's, which completes the proof of (20) and Theorem 2 .
With considerably greater care we could prove the following further results :

Theorem 4 . Let n > n o(p)

i(23) 1-YC[n+ ;]-11

	

n+ 'j 1 1 , -1<j<p-3
P -

	

J

	

p -

Then every ~V(n; nn(n, p) + 1 - 1) which contains a Kp contains at least

(24)

	

(1it+ j + 1l
- tl 11

Cn

	 +i -
g(tt , P 1)p-1

	

,+t p-1

KP's. Further every ~(n ; m(n, p) + 1 - 1) satisfying (23), which contains a Kp
has an edge which is contained in e p g(n, p, 1) KP 's .
The proof of Theorem 4 is quite complicated, it uses methods of [1] and will

not be given here . It is quite easy to see though that (24) is best possible . It suffices to
consider a Turán graph K(u I , . . ., u p _ r ), u i _ [(n + i - 1)1(p - 1)], 1 <-- i <_

< p - I having vertices xs`) , 1 < j ~, [(n + i - 1)1(p - 1)], l < i <_ p - 1 . Add
the edge (xip - ' ) , xzp - ' ) ) and omit 1 suitable edges emunating from x~p -r ~. The
details can be left to the reader .

By the methods of this paper we can prove the following

Theorem 5 . Every á(2n ; n 2 + 1) contains at least n(n - 1) (n - 2) pentagons .

K(n, n) with one edge added shows that Theorem 5 is best possible . Theorem 5
could be generalised for (2r + 1)-goes but we will return to these questions at an-
other occasion .
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