ON THE NUMBER OF COMPLETE SUBGRAPHS AND CIRCUITS CONTAINED IN GRAPHS

P. ERDÖS, Budapest

(Received January 10, 1968)

Dedicated to V. JARNÍK on the occasion of his 70-th birthday.

Denote by $\mathscr{G}(n; k)$ a graph of *n* vertices and *k* edges. Put for $n \equiv r \pmod{p-1}$

$$m(n, p) = \frac{p-2}{2(p-1)} \left(n^2 - r^2\right) + \binom{r}{2}, \quad 0 \le n \le p-1$$

and denote by K_p the complete graph of p vertices. A well known theorem of TURÁN [6] states that every $\mathscr{G}(n; m(n, p) + 1)$ contains a K_p and that this result is best possible. Thus in particular every $\mathscr{G}(2n; n^2 + 1)$ contains a triangle. Denote by $f_n(p; l)$ the largest integer so that every $\mathscr{G}(n; m(n, p) + l)$ contains at least $f_n(p; l)$ distinct K_p 's. RADEMACHER proved that $f_n(3; 1) = \lfloor n/2 \rfloor$ and I proved $\lfloor 1 \rfloor$ that there exists a constant $0 < c < \frac{1}{2}$ so that for every

(1)
$$l < cn, \quad f_n(3; l) = l \left[\frac{n}{2} \right]$$

and I conjectured that (1) holds for every $l < \lfloor n/2 \rfloor$. We are very far from being able to determine $f_n(p; l)$ in general, the problem is unsolved even for p = 3 (though W. BROWN has certain plausible unpublished conjectures). NORDHAUS and STEWART [4] conjectured that

$$\lim_{n = \infty} \min_{l} \frac{f_n(3; l)}{\frac{1}{2}ln} = \frac{8}{9}, \quad 0 < l \le \binom{n}{2} - \left[\frac{n^2}{4}\right]$$

I proved that for $l = o(n^2)$

(2)
$$f_n(3; l) = (1 + o(1)) l \frac{n}{2}.$$

I do not give the proof of (2) in this paper.

290

Theorem 1. Let $n > n_0(p)$. Then

$$f_n(p; 1) = \prod_{i=0}^{p-3} \left[\frac{n+i}{p-1} \right].$$

The special case

(3)

 $f_{3n}(4;1) = n^2$

was stated without proof in [1]. It is possible that the condition $n > n_0(p)$ can be omitted and that (3) holds for every n.

Instead of Theorem 1 we prove the following more general

Theorem 2. Let $n > n_0(p)$ $(l_1 < \varepsilon_p n, \varepsilon_p > 0)$ be a sufficiently small constant. Then

$$f_n(p; l_1) = l_1 \prod_{i=0}^{p-3} \left[\frac{n+i}{p-3} \right].$$

In the case p = 3 the proof of Theorem 1 is much simpler than that of Theorem 2, [2], but for the general case I have no simpler proof for Theorem 1 than for Theorem 2.

Our principal tool for the proof of Theorems 1 and 2 will be

Theorem 3. Let $n > n_0(p)$, $l_2 < n/200p^4$. Let there be given a $\mathscr{G}(n; m(n, p) - l_2)$ which contains a K_p . Then it has an edge which is contained in $n^{p-2}/(10p)^{6p} K_p$'s of our graph.

By Turáns theorem every $\mathscr{G}(n; m(n, p) + 1)$ contains a K_p . Thus Theorem 3 implies the following corollary of independent interest.

Theorem 3'. Every $\mathscr{G}(n; m(n, p) + 1)$ has an edge which is contained in $n^{p-2}/(10p)^{6p} K_p$'s of our graph.

For p = 3 all our Theorems are known [1]. In fact I can show that every $\mathscr{G}(n; [n^2/4] + 1)$ has an edge which is contained in at least (n/6) + O(1) triangles and that n/6 is best possible. For p > 3. I have not succeeded in determining the best possible constant in Theorem 3'. The constants in all our Theorems are very far from being best possible.

To prove Theorem 3 we need two Lemmas, but first we have to introduce some notations. \mathscr{G}_m will denote a graph of *m* vertices. $\mathscr{G}(y_1, \ldots, y_l)$ will denote the subgraph of \mathscr{G} spanned by the vertices y_1, \ldots, y_l . $\mathscr{G} - x_1 - \ldots - x_r$ denotes the subgraph of \mathscr{G} from which the vertices x_1, \ldots, x_r and all edges incident to them have been omitted. Let e_1, \ldots, e_r be edges of \mathscr{G} . $\mathscr{G} - e_1 - \ldots - e_r$ denotes the subgraph of \mathscr{G} from which the edges e_1, \ldots, e_r have been omitted. $e(\mathscr{G})$ will denote the number of edges of \mathscr{G} , v(x) the valency of the vertex x is the number of edges of \mathscr{G} incident to x. $K(u_1, \ldots, u_p)$ denotes the complete p - chromatic graph, with u_i vertices of the *i*-th

color and where any two vertices of different color are joined by an edge. If \mathscr{S} is a set $|\mathscr{S}|$ denotes the number of its elements and if $A \subset \mathscr{S}$, \overline{A} is the complement of A in \mathscr{S} .

We always assume $p \ge 4$, since our Theorems are all known for p = 3.

Lemma 1. Let $|\mathscr{S}| = n$ and $A_i \subset \mathscr{S}, 1 \leq i \leq p$. Assume

(4)
$$|A_i| > n\left(\frac{p-2}{p-1} - \frac{1}{100p^4}\right), \quad 1 \le i \le p.$$

Then there are values $1 \leq i < j \leq p$ so that

(5)
$$|A_i \cap A_j| > n\left(\frac{p-3}{p-1} + \frac{1}{10p^3}\right).$$

(5) is not best possible, but suffices for our purpose. From (4) and $|\mathscr{S}| = n$ it follows that if (5) fails to hold for every $1 \leq i < j \leq p$, then

(6)
$$|A_i| \leq n \left(\frac{p-2}{p-1} + \frac{1}{10p^3} + \frac{1}{100p^4}\right).$$

From (6) we have

(7)
$$|\bar{A}_i| \ge n \left(\frac{1}{p-1} - \frac{1}{10p^3} - \frac{1}{100p^4}\right).$$

Further clearly

(8)
$$|A_i \cap A_j| = |A_i| + |A_j| - n + |\overline{A}_i \cap \overline{A}_j|.$$

Thus if (5) never holds we have from (4) and (8) that for every $1 \leq i < j \leq p$

(9)
$$\left|\overline{A}_{i} \cap \overline{A}_{j}\right| \leq n \left(\frac{1}{50p^{4}} + \frac{1}{10p^{3}}\right).$$

It is easy to see that (7) and (9) lead to a contradiction. We evidently have

(10)
$$n = |\mathscr{S}| \ge \sum_{i=1}^{p} |\overline{A}_i| - \sum_{1 \le i < j \le p} |\overline{A}_i \cap \overline{A}_j|.$$

Thus from (7) and (10)

$$\max_{1 \le i < j \le p} |\bar{A}_i \cap \bar{A}_j| \ge \frac{1}{\binom{p}{2}} n \left(\frac{1}{p-1} - \frac{1}{10p^2} - \frac{1}{100p^3} \right)$$

which contradicts (9) and hence proves the Lemma.

292

Lemma 2. Let $\mathscr{G}(n; m(n, p) - l_2) = \mathscr{G}, l_2 < n/200p^4$ be a graph which contains a K_p . Then it has a subgraph $\mathscr{G}_N, N > n/100p^2$ which also contains a K_p and each vertex of which has $(in \mathscr{G}_N)$ valency

(11)
$$v(x) > N\left(\frac{p-2}{p-1} - \frac{1}{100p^4}\right).$$

If our \mathscr{G} satisfies (11) our Lemma is proved. If not let x_1, \ldots be a sequence of vertices of our \mathscr{G} so that the valency of x_i in $\mathscr{G} - x_1 - \ldots - x_{i-1}$ satisfies

(12)
$$v(x_i) \leq (n-i) \left(\frac{p-2}{p-1} - \frac{1}{100p^4}\right).$$

Suppose this process stops in k steps, in other words every vertex of $\mathscr{G} - x_1 - \ldots - x_k$ has valency greater than

(13)
$$(n-k)\left(\frac{p-2}{p-1}-\frac{1}{100p^4}\right).$$

But then by (12) and by the fact that $e(\mathscr{G} - x_1 - \ldots - x_k) \leq \binom{n-k}{2}$ a simple argument shows that

$$e(\mathscr{G}) = m(n, p) - l_2 = \frac{p-2}{p-1} \binom{n}{2} + O(n) < \left(\frac{p-2}{p-1} - \frac{1}{100p^4}\right) \binom{n}{2} + \binom{n-k}{2}.$$

(14) clearly leads to a contradiction if $n > n_0(p)$ and $n - k \le n/100p^2$. Thus $n - k > n/100p^2$. Put $\mathscr{G}_N = \mathscr{G} - x_1 - \ldots - x_k$. By (13) \mathscr{G}_N satisfies (11), it clearly satisfies $N > n/100p^2$. Finally by (12) and $k \ge 1$ we obtain by a simple computation

(15)
$$e(\mathscr{G}_N) \ge e(\mathscr{G}) - \sum_{i=0}^{k-1} (n-i) \left(\frac{p-2}{p-1} - \frac{1}{100p^4} \right) >$$

$$> m(n, p) - \frac{n}{200p^4} - \sum_{i=0}^{k-1} (n-i) \left(\frac{p-2}{p-1} - \frac{1}{100p^4} \right) > m(n-k, p) = m(N, p).$$

(15) implies by Turáns theorem that our \mathscr{G}_N contains a K_p , which completes the proof of Lemma 2.

Now we are ready to prove Theorem 3. Our $\mathscr{G}(n; m(n, p) - l_2)$ contains by Lemma 2 a \mathscr{G}_N , $N > n/100p^2$ the valency of each vertex of which satisfies (11) and it contains a K_p say $(x_1, ..., x_p)$. Denote by A_i the set of vertices in \mathscr{G}_N joined to x_i . By (11) we can apply Lemma 1 and obtain that there are two vertices x_i and x_j , $1 \le i < j \le p$ both of which are joined to $(y_1, ..., y_t$ are vertices of \mathscr{G}_N)

(16)
$$y_1, ..., y_t, \quad t > N\left(\frac{p-3}{p-1} + \frac{1}{10p^3}\right), \quad N > n/100p^2.$$

Consider now the graph $\mathscr{G}_N(y_1, ..., y_t)$. By (11) and (16) we have for every *i*

$$(17) \quad v(y_i) > N\left(\frac{p-2}{p-1} - \frac{1}{100p^4}\right) - N + t = t - N\left(\frac{1}{p-1} + \frac{1}{100p^4}\right) > \\ > t\left(1 - \frac{\frac{1}{p-1} + \frac{1}{100p^4}}{\frac{p-3}{p-1} + \frac{1}{10p^3}}\right) > t\left(\frac{p-4}{p-3} + \frac{1}{20p^3}\right).$$

In (17) $v(y_i)$ of course denotes valency in $\mathscr{G}_N(y_1, ..., y_t)$. Denote by B_i the set of y's joined to y_i . It immediately follows from (17) that for every $i_1, ..., i_r, r \leq p - 3$

$$(18) |B_{i_1} \cap \ldots \cap B_{i_r}| > \frac{t}{20p^3},$$

(for r (17) could of course be considerably improved).

For (18) and (15) we immediately obtain that $\mathscr{G}_N(y_1, ..., y_t)$ contains at least $(t > (p - 3) N/(p - 1) > n/300p^2)$

(19)
$$\frac{1}{(p-2)!} \frac{t^{p-2}}{(20p^3)^{p-2}} > \frac{1}{(p-2)!} \frac{n^{p-2}}{(10p)^{5(p-2)}} > \frac{n^{p-2}}{(10p)^{6p}}$$

 K_{p-2} 's. (19) follows from the fact that by (18) we have for each r at least $t/20p^3$ choices for the r-th vertex of our K_{p-2} . Each of these K_{p-2} 's form together with the edge (x_i, x_j) a K_p of our $\mathscr{G}(n; m(n, p) - l_2)$ each of which contain the edge (x_i, x_j) , and this completes the proof of Theorem 3.

Now we prove Theorem 2. The proof is very similar to [1]. We use the following theorem of SIMONOVITS [5]:

To every p there is a δ_p so that if $l < \delta_p n$ and the graph $\mathscr{G}(n; m(n, p) - l)$ does not contain a K_p then it is (p - 1)-chromatic, in other words it is a subgraph of some $K(u_1, \ldots, u_{p-1})$ with $\sum_{i=1}^{p-1} u_i = n$.

Now we are ready to prove Theorem 2. Consider Turáns graph

$$K(u_1, ..., u_{p-1}), \quad u_i = \left[\frac{n+i-1}{p-1}\right], \quad 1 \leq i \leq p-1,$$

having the vertices $x_j^{(i)}$, $1 \le j \le [(n + i - 1)/(p - 1)]$, $1 \le i \le p - 1$. Add the l_1 edges $(x_1^{(p-1)}, x_j^{(p-1)})$, $2 \le j \le l_1 + 1$. This $\mathscr{G}(n; m(n, p) + l_1)$ clearly has $l_1 \prod_{i=0}^{p-3} [(n + i)/(p - 1)] K_p$'s. Thus to prove Theorem 2 we only have to show

(20)
$$f_n(p, l) \ge l_1 \prod_{i=0}^{p-3} \left[\frac{n+i}{p-1} \right].$$

To prove (20) observe that by Turáns theorem our $\mathscr{G}(n; m(n, p) + l_1)$ contains a K_p , let r be the smallest integer so that $\mathscr{G} - e_1 - \ldots - e_r$ contains no K_p . By Turáns theorem we have $r \ge l_1$. Assume first $r \ge (10p)^{6p} l_1$. From Theorem 3 (and from the proof of Theorem 3) we obtain that if $\varepsilon_p < 1/2.10^8 p^{6p+2}$, $(l_1 < \varepsilon_p n)$ then each of the edges e_i , $1 \le i \le (10p)^{6p} \cdot l_1$ are contained in at least $n^{p-2}/(10p)^{6p} K_p$'s of $\mathscr{G} - e_1 - \ldots - e_{i-1}$. These K_p 's are clearly all different. Thus \mathscr{G} contains at least

$$l_1 n^{p-2} > l_1 \prod_{i=0}^{p-3} [(n + i)/(p - 1)]$$

 K_p 's which proves (20) in this case.

Assume next $r < (10p)^{6p} l_1$. Let $\varepsilon_p < \delta_p / (10p)^{6p}$. We have by assumption $l_1 < \varepsilon_p n$. Then by the theorem of Simonovits $\mathscr{G} - e_1 - \ldots - e_r$ must be contained in a $K(u_1, \ldots, u_{p-1}), \sum_{i=1}^{p-1} u_i = n$. Now we assume $p \ge 4$. We then easily obtain

(21)
$$u_i = \left[\frac{n+i-1}{p-1}\right], \quad 1 \leq i \leq p-1.$$

To see this observe that if $p \ge 4$ and $\sum_{i=1}^{p-1} u_i = n$ and (21) is not satisfied for all *i* we would have by a simple computation for sufficiently small δ_p

$$m(n, p) - r < e(\mathscr{G} - e_1 - \ldots - e_r) \leq \prod_{i=1}^{p-1} u_i < m(n, p) - \delta_p n$$

an evident contradiction since $r < \delta_p n$.

Observe now that (since δ_p is small) the edges e_i , $1 \leq i \leq r$ must join vertices of the same color of our $K(u_1, ..., u_n)$. By (21) we observe by a simple argument that each e_i , $1 \leq i \leq r$ is contained in at least $(r - l_1 = r_1)$

$$\left(\left[\frac{n}{p-1}\right] - r_1\right)\prod_{i=1}^{p-3}\left[\frac{n+1}{p-1}\right]$$

 K_p 's and these K_p 's are clearly, all different, or our graph contains at least

(22)
$$r\left(\left[\frac{n}{p-1}\right] - r_1\right)\prod_{i=1}^{p-3}\left[\frac{n+i}{p-1}\right]$$

 K_p 's. From $r < \delta_p n$ it follows for sufficiently small δ_p that $r([n/(p-1)] - r_1)$ is minimal if r_1 is as small as possible, in other words if $r = l_1$, $r_1 = 0$. Thus by (22) our \mathscr{G} contains at least

$$l_1 \prod_{i=0}^{p-3} \left[\frac{n+i}{p-1} \right]$$

295

 K_p 's, which completes the proof of (20) and Theorem 2.

With considerably greater care we could prove the following further results:

Theorem 4. Let $n > n_0(p)$

(23)
$$l = \sum_{i=0}^{j} \left(\left[\frac{n+i}{p-1} \right] - 1 \right) + t, \quad 0 \le t < \left[\frac{n+j+1}{p-1} \right], \quad -1 \le j \le p-3.$$

Then every $\mathscr{G}(n; m(n, p) + 1 - l)$ which contains a K_p contains at least

(24)
$$\left(\left[\frac{n+j+1}{p-1}\right]-t\right)\prod_{j=1}^{p-3}\left[\frac{n+j}{p-1}\right] = g(n, p, l)$$

 K_p 's. Further every $\mathscr{G}(n; m(n, p) + 1 - l)$ satisfying (23), which contains a K_p has an edge which is contained in $e_p g(n, p, l) K_p$'s.

The proof of Theorem 4 is quite complicated, it uses methods of [1] and will not be given here. It is quite easy to see though that (24) is best possible. It suffices to consider a Turán graph $K(u_1, ..., u_{p-1})$, $u_i = [(n + i - 1)/(p - 1)]$, $1 \le i \le p - 1$ having vertices $x_j^{(i)}$, $1 \le j \le [(n + i - 1)/(p - 1)]$, $1 \le i \le p - 1$. Add the edge $(x_1^{(p-1)}, x_2^{(p-1)})$ and omit l suitable edges emunating from $x_1^{(p-1)}$. The details can be left to the reader.

By the methods of this paper we can prove the following

Theorem 5. Every $\mathscr{G}(2n; n^2 + 1)$ contains at least n(n-1)(n-2) pentagons.

K(n, n) with one edge added shows that Theorem 5 is best possible. Theorem 5 could be generalised for (2r + 1)-gons but we will return to these questions at another occasion.

References

- [1] P. Erdös: On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122-127.
- [2] P. Erdös: Some theorems on graphs, Riveon lematematika, 10 (1955), 13-16 (in Hebrew).
- [3] P. Erdös: Some recent results on extremal problems in graph theory. Theory of graphs, International Symposium, Rome 1966, p. 117-130.
- [4] E. A. Nordhaus and B. M. Stewart: Priangles in an ordinary graph, Canad. J. Math. 15 (1963), 33-41.
- [5] M. Simonovits: A method for solving extremal problems in graph theory. Stability problems, Theory of Graphs, Proc. Colloquium held at Tihany, Hungary, Acad. Press and Akad. Kiadó 1968, 279-334.
- [6] P. Turán: Eine Extremalaufgabe aus der Graphentheorie, Mat. és Fiz. Lapok, 48 (1941), 436-452 (written in Hungarian). See also P. Turán. On the theory of graphs, Coll. Math. 3 (1954), 19-30.

Author's address: Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary.