ON THE SUM $\sum_{n=1}^{x} d[d(n)]$

By
P. ERDOS
(Recived: 13-12-1965)
Denote by $d(n)$ the number of divisors of n. It is well-known that

$$
\sum_{n=1}^{x} d(n)=x \log x+(2 c-1) x+0\left(x^{n}\right), n<\frac{1}{3}
$$

Ramanujan [1] investigated the function $d[d(n)]$, but I believe the following simple result is new :

Theorem. $\quad \lim _{x=\infty} \frac{1}{\log \log x} \sum_{n=1}^{x} d\{d(n)\}=d_{2}$
where $0<d_{2}<\infty$ is a constant.
Proof. The proof of (1) is simple. Denote by $s_{1}=1<s_{2}<\ldots$ the sequence of integers all whose prime factors occur with an exponent greater than 1. Clearly every integer can be uniquely written in the form $s_{i} q_{i}$ where q_{i} is square free and $\left(s_{i}, q_{i}\right)=1$. Thus we evidently have $[V(q)$ denotes the number of prime factors of q and in $\left.\Sigma^{\prime} q<\frac{x}{s_{i}},\left(q, s_{i}\right)=1\right]$

$$
\begin{equation*}
\sum_{n=1}^{x} d\{d(n)\}=\sum_{i} \sum^{\prime} d\left\{d\left(s_{i}, q\right)\right\}=\sum_{i} \sum^{\prime} d\left\{2^{p(q)} \cdot d\left(s_{i}\right)\right\} \tag{2}
\end{equation*}
$$

Put $d\left(s_{i}\right)=2^{d_{i}} \beta_{i}, \beta_{i}$ odd. Then from (2) we have

$$
\begin{equation*}
\sum_{n=1}^{x} d\{d(n)\}=\sum_{i} \sum^{\prime} d\left(2^{v(\theta)+d_{i}} \cdot \beta_{i}\right)=\sum_{i} d\left(\beta_{i}\right) \sum^{\prime}\left\{v(q)+d_{i}+1\right) \tag{3}
\end{equation*}
$$

For fixed i we evidently have by interchanging the order of summation (p, q, r are primes)

$$
\begin{gather*}
\text { ON THE SUM } \sum_{n=1}^{\infty} d[d(n)] \\
\sum^{\prime}\left\{v(q)+d_{i}+1\right)=\sum^{\prime} v(q)+0(x)=\frac{x}{s_{i}} \sum_{\substack{p \leqslant x \\
p+s_{i}}}^{f\left(s_{i}\right)\left(1-\frac{1}{p}\right)}+0(x) \\
\quad=\frac{x f\left(s_{i}\right)}{s_{i}} \sum_{p \leqslant x} \frac{1}{p}+0(x)=x \log \log x \frac{f\left(s_{i}\right)}{s_{i}}+0(x), \tag{4}
\end{gather*}
$$

where

$$
\begin{equation*}
f\left(s_{i}\right)=\prod_{q+s_{i}}\left(1-\frac{1}{q^{2}}\right) \prod_{s+s_{i}}\left(1-\frac{1}{s}\right) \tag{5}
\end{equation*}
$$

The $0(x)$ in (4) is not uniform in i. Put now

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{d\left(\beta_{i}\right) f\left(s_{i}\right)}{s_{i}}=d_{2} \tag{6}
\end{equation*}
$$

It is easy to see that the series (6) converges. To see this observe that

$$
\begin{align*}
& \sum_{i=1}^{\infty} \frac{d\left(\beta_{i}\right) f\left(s_{i}\right)}{s_{i}}<\sum_{i=1}^{\infty} \frac{d\left(\beta_{i}\right)}{s_{i}} \leqslant \sum_{i=1}^{\infty} \frac{d\left(s_{i}\right)}{s_{i}} \\
= & \prod_{p}\left(1+\sum_{k=2}^{\infty} \frac{k+1}{p^{k}}\right)<\infty . \tag{7}
\end{align*}
$$

(3) and (4) clearly implies that for every fixed i_{0}

$$
\begin{equation*}
\sum_{n=1}^{x} d\{d(n)\}=x \log \log x \sum_{i \leqslant i_{0}} \frac{d\left(\beta_{i}\right) f\left(s_{i}\right)}{s_{i}}+\sum_{i>i_{0}} d\left(\beta_{i}\right) \sum^{\prime}\left\{v(q)+d_{i}+1\right\}+0(x) \tag{8}
\end{equation*}
$$

Thus by (6) and (7), (8) implies (1) if we can show that for every $\epsilon>0$ there is an i_{0} so that

$$
\begin{equation*}
\sum_{i>i_{0}} d\left(\beta_{i}\right) \sum^{\prime}\left\{v(q)+d_{i}+1\right)<\epsilon x \log \log x . \tag{9}
\end{equation*}
$$

By $d\left(s_{i}\right)=2^{d i} \beta_{i}$ we clearly have $d\left(\beta_{i}\right)\left\{v(q)+d_{i}+1\right\} \leqslant d\left(s_{i}\right) v(q)$. Thus instead of (9) it will suffice to show

$$
\begin{equation*}
\left.\sum_{i>i_{0}} d\left(s_{i}\right) \sum^{\prime} v(q)<\epsilon x \log \log x_{i}\right] \tag{10}
\end{equation*}
$$

Clearly we have for $x>x_{0}$

$$
\begin{equation*}
\sum^{\prime} v(q) \leqslant \sum_{n \leqslant x / s_{i}} v(n) \leqslant \frac{x}{s_{i}} \sum_{p \leqslant x} \frac{1}{p} \ll \frac{2 x \log \log x}{s_{i}} . \tag{11}
\end{equation*}
$$

From (10) and (11) we have for sufficiently large i_{0},

$$
\begin{gathered}
\left(\text { by (7) } \sum_{i} \frac{d\left(s_{i}\right)}{s_{i}}<\infty\right) \\
\sum_{i>i_{0}} d\left(s_{i}\right) \sum^{\prime} v(q)<2 x \log \log x \sum_{i>i_{0}}^{\infty} \frac{d\left(s_{i}\right)}{s_{i}}<\epsilon x \log \log x
\end{gathered}
$$

which proves (9) and hence the proof of our theorem is complete.
Put $d(n)=d_{1}(n), d_{k}(x)=d\left\{d_{k-1}(n)\right\}$ and denote by $\log _{k} n$ the k-fold interated logarithm. It seems likely that $\left(0<d_{k}<\infty\right)$

$$
\lim _{x=\infty} \frac{\mathrm{I}}{\log _{k} x} \sum_{n=1}^{x} d_{k}(n)=d_{k}
$$

I have verified this for $k=3$, the proof is similar but much more complicated than for $k=2$ and probably could be made to work in the general case but I have not carried out the details.

Denote by $l(n)$ the smallest integer k for which $d_{k}(n)=2$. It seems to be very difficult to get good limitations for the growth of $l(n)$, no doubt the problem is somewhat artificial.

REFERENCE

1. Ramanujan, S. : On highly composite Numbers, Collected Papers (Cambridge), 1927.

Punjab University,
Chandigarh.

