SOME MATCHING THEOREMS

By
.D. Elliott and P. Erdös

(Received: October 25, 1965)
A graph G is said to be even if its vertices can be put into two distinct classes A and B so that no two vertices of the same class are joined by an edge. If in addition each class contains exactly n representatives, G is said to be of type (n, n). In what follows all our graphs will be of this form. Let every vertex in A be joined to every vertex in B. Then we say that G is saturated.

A matching of G is a set of edges covering every vertex just once. It was shown recently [1] that if G has more than $(1 / 2+c) n^{2}$ edges, $c>0$, then it cannot have a unique matching. The method of proof depended upon a result of Żnam. This result allowed one to find disjoint saturated subgraphs G_{i} of G which were of type (r, r) with $r>c^{\prime} \log n$ and such that every matching of ΣG_{i} could be extended to a matching of G. In the present note we show that it suffices to find a subgraph of G whose edges are distributed with some regularity, further we obtain a better estimate for the number of matchings.

Theorem 1. Let G be an even graph of type (n, n) and suppose that G has at least $(1 / 2+c) n^{2}$ edges, and has at least one matching. Then G has at least

$$
\begin{equation*}
2^{\mu} \mu! \tag{1}
\end{equation*}
$$

distinct matchings, where

$$
\begin{equation*}
\mu=[1 / 2 m], \quad m \geqslant \alpha n, \quad \alpha=1-(1-2 c)^{1 / 2}, \tag{2}
\end{equation*}
$$

and m is an integer.
In particular, if c is fixed and n large, the number of distinct matchings exceeds

$$
(n!)^{c}{ }_{1}
$$

where $c_{1}>0$ depends only upon c.
Proof. Let the vertices of G be a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, and let the given matching be that which associates a_{i} with b_{i} for $i=$ $1, \ldots, n$.

Let $\mathrm{\rho}\left(a_{i}\right)$ denote the number of b^{\prime} 's joined to a_{i} and let $\sigma\left(b_{i}\right)$ denote the number of a 's joined to b_{i}. Plainly

$$
\sum_{i=1}^{n}\left\{p\left(a_{i}\right)+\sigma\left(b_{i}\right)\right\} \geqslant(1+2 c) n^{2}
$$

since the sum on the left is twice the number of edges of G.
Let N denote the number of values of i for which $p\left(a_{i}\right)+\sigma\left(b_{i}\right)$
$\geqslant(1+\alpha) n$. Then since $\rho\left(a_{i}\right) \leqslant n$ and $\sigma\left(b_{i}\right) \leqslant n$ the sum is at most

$$
2 n N+(1+\mathrm{x}) n(n-N)
$$

It follows that

$$
N \geqslant n(2 c-\alpha) /(1-\alpha)=\alpha n,
$$

the last equation being a consequence of the definition of α in (2).
We can therefore suppose that

$$
p\left(a_{i}\right)+o\left(b_{i}\right) \geqslant(1+\alpha) n
$$

for $i=1, \ldots, m$ where m is the least integer $\geqslant \alpha n$.
For given i, let N_{0} denote the number of $j(1 \leqslant j \leqslant n)$, distinct from i, for which there is no edge $a_{i} b_{j}$ or $b_{i} a_{j}$; let N_{1} denote the number for which there is one such edge ; and let N_{2} denote the number for which there are two such edges. Then

$$
\begin{gathered}
N_{0}+N_{1}+N_{\mathrm{a}}=n-1 \\
N_{1}+2 N_{\mathrm{n}} \geqslant(1+\alpha) n-1 .
\end{gathered}
$$

It follows on subtraction that $N_{2} \geqslant \alpha n$, whence $N_{2} \geqslant m$.
Thus, for each $i=1, \ldots m$ there exist

$$
r_{1}^{(i)}, \ldots, r_{\mathrm{s}}^{(i)},
$$

such that a_{i} is joined to each b_{r} and b_{i} is joined to each a_{r} for the above values of r. This enables us to construct a variety of distinct matchings of G, as follows.

We replace the edges $a_{1} b_{1}$ and $a_{r} b_{r}$ by the edges $a_{1} b_{r}$ and $a_{r} b_{1}$ for $r=r_{1}^{(1)}, \ldots, r_{m}^{(1)}$. This is possible in m ways. When any such choice has been made, we consider the least i different from 1 and r (thus $i=2$ or 3), and we replace the edges $a_{i} b_{i}$ and $a_{s} b_{s}$ by $a_{i} b_{s}$ and $a_{s} b_{i}$ for $s=r_{1}^{(i)}, \ldots, r_{m}^{(i)}$ provided $s \neq 1$ or r. This is possible in at least $m-2$ ways. Next we consider the least j which is different from $1, r, i, s$ (thus $j \leqslant 5$) and make a similar replacement, which is possible in at least $m-4$ ways, and so on.

The number of distinct matchings so obtained is at least

$$
\prod_{0 \leqslant r<\frac{1}{2} m}(m-2 r) .
$$

Since $m \geqslant 2 \mu$, this is at least $2^{\mu} \mu!$, as stated.
The final clause is an immediate deduction, for if c is fixed, then so is α and $\mu>(n!)^{c_{1}}$.

Whilst giving a non-trivial result for any $c>0$, as c approaches $1 / 2 c_{1}$, does not approach 1 as one would expect. For larger values of c the following result is perhaps therefore of interest.

Thborem 2. Let G satisfy the hypotheses of Theorem 1 with $2 c>$ $\sqrt{3}-1$. Then G has at least $m!$ distinct matchings where m is an integer satisfying

$$
m+1 \geqslant n\left(2 c-(2-4 c)^{1 / 2}\right)
$$

Proof. We use the notation of the previous theorem. It is plain that we can find a value of i so that

$$
\rho\left(a_{i}\right)+\sigma\left(b_{i}\right) \geqslant(1+2 c) n .
$$

Without loss of generality we can take $i=1$. Let k be the least integer satisfying $k \geqslant 2 c n$. Then arguing as in the proof of the previous theorem we see that we may assume that

$$
a_{i} b_{1} \text { and } b_{1} b_{i} \quad(i=1, \ldots, k)
$$

are all edges of G.

For any s satisfying $0<8<1$, let N_{s} denote the number of values of i so that $\rho\left(a_{i}\right) \geqslant \vartheta_{n}$. We obtain the estimates

$$
{ }_{n} N_{\vartheta}+\sigma v_{n}\left(n-N_{v}\right) \geqslant \Sigma \rho\left(a_{i}\right) \geqslant(1 / 2+c) n^{2},
$$

so that

$$
N_{s}>n(1 / 2+c-s) /(1-s) .
$$

Hence choosing $s=1-(1 / 2-c)^{1 / 2}$ and putting V for the least integer not less than ϑ_{n} we see that $N_{s} \geqslant V$. Of these values of i at least $k+V-n$ satisfy $i \leqslant k$ and by relabelling, if necessary, we can therefore assume that

$$
\rho\left(a_{i}\right) \geqslant V \quad(i=1, \ldots, k+V-n) .
$$

Moreover for any such i the number of edges $a_{i} b_{j}$ with $j \leqslant k+V-n$ is at least

$$
(k+V-n)+V-n=k+2 V-2 n
$$

Consider now the subgraph G^{\prime} with vertices $a_{i}, b_{i} ; i, j=1, \ldots$, $\ldots, k+V-n$. By addition of edges of the type $a_{t} b_{s}, k+V-n$ $<s \leqslant n$ we can clearly extend any matching of G^{\prime} to one of G. We aow derive matchings of G^{\prime} by constructing distinct cycles all of which have an edge in common.

Defining $\rho^{\prime}\left(a_{i}\right)$ and $\sigma^{\prime}\left(b_{d}\right)$ in analogy with the definitions in Theorem 1 we see that

$$
\mathrm{\rho}^{\prime}\left(a_{i}\right) \geqslant k+2 V-2 n, \quad(i=1, \ldots, k+V-n)
$$

and

$$
\rho^{\prime}\left(a_{1}\right)=\sigma^{\prime}\left(b_{1}\right)=k+V-n .
$$

We construct cycles all containing the edge $a_{1} b_{1}$. First choose a value of j satisfying $1<j \leqslant k+V-n$ so that $a_{i} b_{j}$ is an edge of G^{\prime}. This is clearly possible in $p^{\prime}\left(a_{1}\right)-1$ ways. Let this value be j_{1}. Now $a_{j_{1}} b_{n_{1}}$ is an edge of G^{\prime} and we choose $j_{2} \neq 1, j_{1}$ so that $a_{j 1} b_{f_{1}}$ is an edge of
G^{\prime}. This is possible in $\rho^{\prime}\left(a_{j 1}\right)-2$ ways. Then $a_{j 2} b_{j 2}$ is an edge of G^{\prime} and so on until after $k+2 V-2 n-1$ choices we reach the edge $a_{s} b_{b}$ where $s \neq 1$. We now complete our cycle with the edge $a_{s} b_{1}$ since $a_{i} b_{1}$ is an edge for any a_{i} in G^{\prime}.

In this manner the number of cycles and therefore the number of matchings of G^{\prime} is at least

$$
\prod_{i=1}^{k+2 V-2 n}\left(\rho^{\prime}\left(a_{j_{1}}\right)-i\right) \geqslant(k+2 V-2 n-1)!
$$

Noting that the restriction $2 c>\sqrt{3}-1$ guarantees $k+2 V-2 n$ exceeds a positive multiple of n we see that the proof is complete.

By a simple modification of the argument in Theorem 1 it is easily seen that G cannot have a unique matching if it has more than $1 / 2 n$ $(n+1)$ edges. In a certain sense this result is best possible as can be seen on considering the graph with edges $a_{i} b_{j}$ for $1 \leqslant i \leqslant j \leqslant n$. This clearly has $1 / 2 n(n+1)$ edges and just one matching.

Finally we noted that the value of c_{1} in theorem 1 cannot exceed $(2 c)^{1 / 2}$. Consider the graph G with edges $a_{i} b_{j}$ for i, j satisfying $1 \leqslant i \leqslant j \leqslant n ; n-[n \sqrt{2 c}]<i \leqslant n$ and $i \leqslant j \leqslant n$. Then G has more than $(1 / 2+c) n^{2}$ edges (taking of course $0<c<1 / 2$), but only $\exp (1+o(1)) \sqrt{2 c} n \log n)$ matchings. Indeed it seems likely that this upper bound is more nearly the value of c_{1} to be expected.

REFERENCE

1. Elliott, P.D. Even Graphs (To appear in Mathematika).
