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A graph G is said to be even if its vertices can be put into two dis-
tinct classes A and B so that no two vertices of the same class are
joined by an edge. If in addition each class contains exactly n
representatives, G is said to be of type (n, n) . In what follows all our
graphs will be of this form . Let every vertex in A be joined to every
vertex in B . Then we say that G is saturated.

A matching of G is a set of edges covering every vertex just once .
It was shown recently [1] that if G has more than (1/2+c)n 2 edges,
c > 0, then it cannot have a unique matching. The method of proof
depended upon a result of Znam . This result allowed one to find
disjoint saturated subgraphs Gz of G which were of type (r, r) with
r > c' log n and such that every matching of EG i could be extended to
a matching of G . In the present note we show that it suffices to find
a subgraph of G whose edges are distributed with some regularity,
further we obtain a better estimate for the number of matchings .

THEOREM 1 . Let G be an even graph of type (n, n) and suppose that
G has at least (1/2+c)n 2 edges, and has at least one matching . Then
G has at least

(1)

	

V µ

distinct matchings, where

(2)

	

t, = [1/2 ml,

	

m

	

an,

	

a - 1 - (1-2c) 112 ,

and m is an integer .
In particular, if c is fixed and n large, the number of distinct match-

ings exceeds
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where c l > 0 depends only upon c .
PROOF . Let the vertices of G be a l , . . . , a. and b l , . . . , b n , and

let the given matching be that which associates ai with bi for i =
1,

	

, n.
Let p (a) denote the number of b's joined to ai and let a (b i ) de-

note the number of a's joined to bi . Plainly

n
E {p(ai) + a (bi )} > (1+2c) n 2,
i=1

since the sum on the left is twice the number of edges of G .
Let N denote the number of values of i for which p(a i) + a(bi )
(I+a)n . Then since p(ai ) S n and a(b i) 6n the sum is at most

2nN + (1+%)n (n-N) .

It follows that

N > n(2c-a) / ( 1-a) = an,

the last equation being a consequence of the definition of a in (2) .
We can therefore suppose that

p(ai) + o(bi)'/ (l+a)n,

for i = 1,

	

mwhere m is the least integer > a n.
For given i, let No denote the number of j (I<i<n), distinct from

i, for which there is no edge aib; or bia ; ; let N, denote the number for
which there is one such edge ; and let N2 denote the number for which
there are two such edges . Then

No +N,+Na =n-1

N,+2Na>,(I+a)n-1 .

It follows on subtraction that Na > a n, whence Na > m.
Thus, for each i = 1, . . . , m there exist

rl ,

	

Ym ,
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such that ai is joined to each b, and bi is joined to each a, for the
above values of r . This enables us to construct a variety of distinct
matchings of G, as follows .

We replace the edges a lb s and a,b, by the edges a~b, and a,bl for
r = r, , . . . , r,, ,',' . This is possible in m ways . When any such choice
has been made, we consider the least i different from 1 and r (thus
i = 2 or 3), and we replace the edges aibi and a,b, by aib, and a,bi for
s = rli ', . . . , r;,;' provided s # 1 or r . This is possible in at least
m-2 ways. Next we consider the least j which is different from 1, r, i, s
(thus j 6 5) and make a similar replacement, which is possible in at
least m-4 ways, and so on .

The number of distinct matchings so obtained is at least

(m-2r).
o< r < ~m

Since m > 2µ, this is at least 2 1` t, !, as stated .
The final clause is an immediate deduction, for if c is fixed, then

so is a and µ > (n !)cl-
Whilst giving a nontrivial result for any c > 0, as c approaches

1/2 cl , does not approach 1 as one would expect . For larger values of
c the following result is perhaps therefore of interest.

THEOREM 2 . Let G satisfy the hypotheses of Theorem 1 with 2c >
4'3-1 . Then G has at least m! distinct matchings where m is an
integer satisfying

m + 1 > n(2c-(2-4c)"')

PROOF . We use the notation of the previous theorem . It is plain
that we can find a value of i so that

p (ai) + 6 (bi ) Z (1+2c) n .

Without loss of generality` we can take i = 1 . Let k be the least
integer satisfying k > 2cn . Then arguing as in the proof of the pre-
vious theorem we see that we may assume that

aibs and lbi

	

(i = 1, . . . , k)

are all edges of G .
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For any -9 satisfying 0 < B < 1, let N, denote the number of values
of i so that P (ai) > +fin . We obtain the estimates

so that

and

„N,3 +

	

(n-N,) > E P (aí ) › (1/2+c) n2 ,

N_3 ›n(112+e-4)/ (1-4).

Hence choosing 0 = 1 - (1/2-c) 111 and putting V for the least inte-
ger not less than 9 2 we see that Na > V. Of these values of i at least
k + V - n satisfy i < k and by relabelling, if necessary, we can there-
fore assume that

p(ai)›V

	

(i=1, . . .,k+V-n).

Moreover for any such i the number of edges a i b, with j < k + V - n
is at least

(k+V-n) + V - n = k + 2V - 2n .

Consider now the subgraph G' with vertices a,, b i ; i,j = 1, . . . ,
. . . , k + V - n . By addition of edges of the type a,b,, k + V - n
< s < n we can clearly extend any matching of G' to one of G . We
now derive matchings of G' by constructing distinct cycles all of which
have an edge in common .

Defining p' (a,) and a' (bi) in analogy with the definitions in Theo-
rem 1 we see that

P' (ai ) > k + 2V - 2n,

	

(i= 1, . . .,k+V-n)

P (a i ) = a' (b i ) = k + V - n .

We construct cycles all containing the edge albs . First choose a value
of j satisfying 1 < j < k + V - n so that a,b; is an edge of G' . This is
clearly possible in p' (a l) - 1 ways. Let this value be j l . Now a„ bil
is an edge of G' and we choose j,

	

1, jl so that ail b; 2 is an edge of



G'. This is possible in p' (a ; l) - 2 ways. Then a7, b; 2 is an edge of
G' and so on until after k + 2V - 2n - 1 choices we reach the edge
a,b, where s # 1 . We now complete our cycle with the edge a,b l since
atbl is an edge for any aá in G' .

In this manner the number of cycles and therefore the number of
matchings of G' is at least

Noting that the restriction 2c > ~3 - I guarantees k + 2V - 2n ex-
ceeds a positive multiple of n we see that the proof is complete .

By a simple modification of the argument in Theorem 1 it is easily
seen that G cannot have a unique matching if it has more than 1/2 n
(n+l) edges . In a certain sense this result is best possible as can be
seen on considering the graph with edges aib, for 1 < i < j < n . This
clearly has 1/2n (n-1-1) edges and just one matching .

Finally we noted that the value of c l in theorem 1 cannot exceed
(2c)"' . Consider the graph G with edges aibi for i, j satisfying
1 < i < j < n s n - [nAr2c] < i < n and i < j < n . Then G has
more than (1/2+c) n 2 edges (taking of course 0 < c < 1/2), but only
exp (I+o (1) ) -12cn log n) matchings . Indeed it seems likely that this
upper bound is more nearly the value of cl to be expected .
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k+2V-2n
II

	

(p' (ai,)-i) > (k+2V-2n-1) 1
i-1
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