ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare
Zeidschrift zur Pflege der Mathomatik

> und sur Förderung des mathematisch-physikalischen Unterrichts
> Publiziert mit Unterstützung des Schweizerischen Nationalfonds nur Forderung der wissensehaftlichen Farschung

Distinct Distances Between Lattice Points

How many points $\left(x_{i}, y_{i}\right), 1 \leqslant i \leqslant k$, with integer coordinates $0<x_{i}, y_{i} \leqslant n$, may be chosen with all mutual distances distinct? By counting such distances, and pairs of differences of coordinates, we have

$$
\begin{equation*}
\binom{k}{2} \leqslant\binom{ n+1}{2}-1 \tag{1}
\end{equation*}
$$

so that $k \leqslant n$, and for $2 \leqslant n \leqslant 7$ such a bound can be attained; e.g. for $2 \leqslant n \leqslant 5$, by the points $(1,1),(1,2),(3,1),(4,4)$ and $(5,3)$; for $n=6$ by $(1,1),(1,2),(2,4),(4,6)$, $(6,3)$ and $(6,6)$; and for $n=7$ by $(1,1),(1,3),(2,3),(3,7),(4,1),(6,6)$ and $(7,7)$.

However, the fact that numbers may be expressed in more than one way as the sum of two squares indicates that this bound cannot be attained for $n>15$. A result of LaNDAU [4] states that the number of integers less than x expressible as the sum of two squares is asymptotically $c_{1} x(\log x)^{-1 / 2}$, so we can replace the right member of (1) by $c_{2} n^{2}(\log n)^{-1,2}$ and we have the upper bound

$$
\begin{equation*}
k<c_{3} n(\log n)^{-1 / 4} \tag{2}
\end{equation*}
$$

where c_{t} is in each case a positive constant.
A beuristic argument can be given to support the conjecture

$$
\begin{equation*}
k<c_{4} n^{2 / 3}(\log n)^{1 / 6} \tag{?}
\end{equation*}
$$

but it lacks conviction since the corresponding argument in one dimension gives a false result.

On the other hand we can show

$$
\begin{equation*}
k>n^{2 / 3-\epsilon} \tag{4}
\end{equation*}
$$

for any $\varepsilon>0$ and sufficiently large n, by means of the following construction. Choose points successively; when k points have been chosen, take another so that
(a) it does not lie on any circle having one of the k points as centre and one of the $\binom{k}{2}$ distinct distances determined by these points as radius,
(b) it does not form, with any of the first k points, a line with slope $b j a,(a, b)=1$, $|a|<n^{1 / 3}$. $|b|<n^{13}$. Note that in particular no two points determine a distance less than $n^{1 / 3}$.
(c) it is not equidistant from any pair of the first k points.

We may choose such a point provided that all n^{2} points are not excluded by these conditions.

Condition (a) excludes at most $k\binom{k}{2} n^{c_{j} \text { slog log n }}$ points, since there are $\binom{k}{2}$ circles round each of k points, and each circle contains at most $n^{\text {t/ }}$ (loglag n lattice points ${ }^{2}$.

Condition (b) excludes at most

$$
k \sum_{a=1}^{n / a}+\varphi(a) \frac{n}{a}<c_{0} k n^{\mathrm{a} / 3}
$$

points, since a line with slope $b\{a, b<a,(a, b)=1$, contains at most n / a lattice points. Condition (c) excludes at most $\binom{k}{2} n^{2 a}$ points, since there are $\binom{k}{2}$ lines of equidistant points, each of which has slope $b\left|a,(a, b)=1,|a| \geqslant n^{1 / 3}\right.$ and such a line contains at most $n /|a| \leqslant n^{2 / 3}$ lattice points.

Hence, so long as

$$
\frac{1}{2} k^{3} n^{\mathrm{c}_{0} / \operatorname{lon}_{k} \text { lof } n}+c_{n} k n^{4 / 3}+\frac{1}{2} k^{2} n^{2 / 3}<n^{2}
$$

there remain eligible points, and this is the case if $k \leqq n^{2 / 3-c}$. The lower bound (4) is thus established.

For the corresponding problem in one dimension, the existence of perfect difference sets [6] shows that for n an even power of a prime,

$$
k \geqslant n^{1 / 2}+1
$$

so that generally

$$
\begin{equation*}
k>n^{1 / 2}(1-\varepsilon) \tag{5}
\end{equation*}
$$

On the other hand it is known $[2,5]$ that

$$
\begin{equation*}
k<n^{1 / 2}+n^{1 / 2}+1 . \tag{6}
\end{equation*}
$$

In d dimensions, $d \geqslant 3$, we may replace Landau's theorem by the theorems on sums of three or four squares, giving an upper bound

$$
\begin{equation*}
k<c_{\mathrm{z}} d^{1 / 2} \tag{7}
\end{equation*}
$$

while the corresponding heuristic argument suggests the conjecture

$$
\begin{equation*}
k<c_{3} d^{2 / 3} m^{2 / 3}(\log n)^{1 / 3} \tag{?}
\end{equation*}
$$

The construction, with (hyper)spheres and (hyper)planes, corresponding to that given above, yields the same lower bound (4) as before.

One can also ask for configurations containing a minimum number of points, determining distinct distances, so that no point may be added without duplicating

[^0]a distance. Can this be done with as few as $O\left(n^{1 / 2}\right)$ points; or with $O\left(n^{1 / 3}\right)$ points in one dimension?

Another open problem [1] is given any n points in the plane (not necessarily lattice points) or in d dimensions], how many can one select so that the distances which are determined are all distinct? P. Erdös and R. K. Guv, Budapest

KEFERENCHS

11) Erdös, P., Nehany geometriai problemáról (in Hungarian), Mat. Lapok 8, 86-92 (1957); M. R. 20, 6056 (1959).
(2) Erdos, P. and Turan, P., On a Problem of Sidon in Additive Number Theory and Sone Folated Problems, 1. London Math. Soc. 16, 212-215 (1941): M R. 3, 270 (1942).
[3] Hardy, G. H, and Wriget, E. M., Introduction to the Theory of Nembers, 4th ed (Oxford 1960).
[4] Landau, E., Handbueh der. Lehere von der Vertoilung dor Primsanden (Leipzig 1909), 11, 643.
[5] Iindstrom, B., An Imequality for B_{g}-sequences, J. Combinatotial Theory 6, 211-212 (1969).
[6] Singer, J., A Theorem in Finite Projelitive Geometry and Some A pplications to Number Theory, Trans, Amer. Math. Soc. 43, 377-385 (1938).

[^0]: ${ }^{1}$ It is well known that the number of solutions of $n=x^{2}+y^{2}$ is less than or equal to $d(n)$, the number of divisors of $n[3]$ and $d(n)<n$ ciloglot n by a well known result of Wioerz [3].

