ON SOME APPLICATIONS OF PROBABILITY METHODS TO ADDITIVE NUMBER THEORETIC PROBLEMS P. Erdős and A. Rényi

UNIVERSITY OF COLORADO AND MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES

Throughout this paper A and B will denote infinite sequences of integers, B_k denotes a sequence of integers having k terms. A + B denotes the set of integers of the form $a_i + b_j$, $a_i \in A$, $b_j \in B$.

B is called a basis of order r if every sufficiently large integer is the sum of r or fewer b's, B is a basis if it is a basis of order r for some r.

 \overline{A} will denote the complementary sequence of A, in other words n is in \overline{A} if and only if it is not in A.

Put $A(x) = \sum 1$, A(u,v) = A(u) - A(v), $\lim_{x \to \infty} \frac{A(x)}{x}$ if it exists is the $a_1 \le x$ density of A, $\liminf_{x \to \infty} \frac{A(x)}{x}$ is the lower density.

R. Blum asked us the following question: Does there exist for every $0 < \alpha < 1$ a sequence A of density α so that for every B the density of A + B is 1? We shall prove this by probabilistic methods, in fact we prove the following, (in the meantime Blum solved his original problem by different methods).

<u>Theorem 1.</u> To every α , $0 < \alpha < 1$ there is a sequence A of density α so that for every B_k , $k = 1, 2, \dots$ the density of $A + B_k$ is $1 - (1 - \alpha)^k$.

Theorem 1 clearly implies that for every B the density of A + B is 1, thus the answer to Blum's question is affirmative.

Next we show that Theorem 1 is, in a certain sense, best possible. We prove

Theorem 2. Let A be any sequence of density α . Then to every $\epsilon > 0$ and to every k there is a B_k so that the lower density of $A + B_k$ is less than $1 - (1 - \alpha)^k + \epsilon$.

There is a slight gap between Theorems 1 and 2. It seems certain that

Theorem 1 can be slightly strengthened and that the following result holds:

To every α there is a sequence A of density α so that for every B_k the density of A + B, is greater than 1 - $(1 - \alpha)^k$.

We did not carry out the details of the construction of such a sequence A.

We observe that in Theorem 2 lower density cannot be replaced by density or upper density. To see this let $n_1 < n_2 < \cdots$ be a sequence of integers satisfying $n_{k+1}/n_k + \infty$. For every j, j = 1,2, \cdots and k = $2^{j-1}(2r + 1)$, r = 0,1, \cdots , U is in A if $n_k < U \le n_{k+1}$ and $U \equiv l(mod 2j)$, $l = 0, \cdots, j-1$. Clearly A has density 1/2, but for every B_2 , $A + B_2$ has upper density 1 (to see this let b_1 and $b_1 + j$ be the elements of B_2 then for every $k = 2^{j-1}(2r + 1)$ all but $o(n_{re1})$ of the integers not exceeding n_{re1} are in $A + B_2$).

Finally we settle an old question of Stöhr. Stöhr [4] asked if there is a sequence A of density 0 so that for every basis B, A + B has density 1? He also asked if the primes have the above property? Erdős [1] proved that the answer to the latter is negative. We shall outline the proof of the following:

<u>Theorem 3</u>. Let f(n) be an increasing function tending to infinity as alowly as we please. There always is a sequence A of density 0 so that for every B satisfying, for all sufficiently large n, B(n) > f(n), A + B has density 1.

It is well known and easy to see that for every basis B of order r we have $B(n) > cn^{1/r}$, thus Theorem 3 affirmatively answers Stöhr's first question.

Before we prove our Theorems we make a few remarks and state some problems. First of all it is obvious that for every A of density 0 there is a B so that A + B also has density 0. On the other hand it is known [5] that there are sequences A of density 0 so that for every B of positive density A + B has density 1. It seems very likely that such a sequence A of density 0 cannot be too lacunary. We conjecture that if A is such that $n_{k+1}/n_k > c > 1$ holds for every k then there is a B of positive density so that the density of A + B is not 1.

38

We once considered sequences A which have the property P that for every B A + B contains all sufficiently large integers [2]. We observed that then there is a subsequence B_k of B so that A + B_k also contains all sufficiently large integers (k depends on B).

It is easy to see that the necessary and sufficient condition that A does not have property P is that there is an infinite sequence $t_1 < t_2 < \cdots$ so that for infinitely many n and for every $t_1 < n$

(1)
$$\overline{A}(n-t_s, n) \ge 1$$
.

 easily implies that if A has property P then the density of A is 1 (the converse is of course false).

It is not difficult to construct a sequence A which has property P and for which there is an increasing sequence $t_1 < t_2 < \cdots$ so that for every i there are infinitely many values of n for which

(2)
$$\overline{A}(n-t_i, n) > i$$
.

(2) of course does not imply (1). Also we can construct a sequence A having property P so that for every k there is a $B^{(k)}$ so that for every subsequence $B_{k}^{(k)}$ of $B^{(k)}$ infinitely many integers should not be of the form $A + B_{k}^{(k)}$.

Now we prove our Theorems. The proof of Theorem 1 will use the method used in [3]; thus it will be sufficient to outline it. Define a measure in the space of all sequences of integers. The measure of the set of sequences which contain n is α and the measure of the set of sequences of n which does not contain n is 1 - α . It easily follows from the law of large numbers that in this measure almost all sequences have density α . We now show that almost all of them satisfy the requirement of our theorem.

For the sake of simplicity assume $\alpha = 1/2$. Then our measure is simply the Lebesgue measure in (0,1) (we make correspond to the sequence $A = \{a_1 < \cdots\}$ the real number $\sum_{i=1}^{\infty} \frac{1}{2^{a_i}}$). Our theorem is then an immediate consequence of the

following theorem (which is just a restatement of the classical theorem of Borel that almost all real numbers are normal). Almost all real numbers $X = \sum_{i=1}^{\infty} \frac{1}{2^{a_i}}$ have the following property: Let $b_1 < \cdots < b_k$ be any k integers. Then the density of integers n for which $n - b_j$ is one of the a's for some $j = 1, \cdots, k$ is $1 - \frac{1}{2^{k_i}}$. For $\alpha \neq \frac{1}{2}$ the proof is the same.

Next we prove Theorem 2. Here we give all the details. Let $T = T(k, \varepsilon)$ be sufficiently large, we shall show that there is a sequence B_k in (1,T)(i.e. $1 \le b_1 < \cdots < b_k \le T$) so that the lower density of $A + B_k$ is less than $1 - \frac{1}{2^k} + \varepsilon$.

First we show

(3)
$$\sum_{n=T}^{X} \overline{A}(n - T, n) = (1 + o(1)) \frac{Tx}{2}.$$

Let $\overline{a_1} < \overline{a_2} < \cdots$ be the elements of \overline{A} . To prove (3) observe that with a number (at most T) of exceptions, independent of x, every $\overline{a_1} \leq x - T$ occurs in exactly T of the intervals (n - T, n), $T \leq n \leq x$ and each a_1 satisfying $x - T < \overline{a_1} \leq x$ occurs in fewer than T of these intervals. Thus the $a_1 \leq x - T$ each contribute T to the sum on the left of (3). Hence

$$o(x) + T\overline{A}(x - T) \leq \sum_{n=T}^{X} \overline{A}(n - T, n) \leq T \overline{A}(x)$$

which by $\overline{A}(x) = (1 + o(1))\frac{x}{2}$ proves (3).

Let now $T \le n \le x$. Clearly we can choose in

$$\binom{\overline{A}(n - t, n)}{k}$$

Ways k integers $1 \le b_1 < \dots < b_k \le T$ so that $A + B_k$ should not contain n. Thus by a simple averaging argument there is a choice of a B_k in (1,T) so that there are at least

(4)
$$\frac{\frac{1}{\binom{T}{k}} \times \binom{\overline{A}(n - T, n)}{k}}{n = T}$$

values of $n \leq x$ not in $A + B_k$. Now it follows from (3) that

(5)
$$\sum_{n=T}^{x} \left(\overline{A}(n - T, n) \atop k \right) \ge (1 + o(1)) \times \binom{[\frac{T}{2}]}{k}$$

since it is well known and easy to see that if Σw_i is given then $\Sigma {\binom{w_i}{k}}$ is a minimum if the w_i 's are as equal as possible. Finally observe that for $T > T(k, \varepsilon)$

(6)
$$\binom{\begin{bmatrix} T \\ 2 \end{bmatrix}}{k} > (1 - \frac{g}{2}) 2^{-k} \binom{T}{k}$$
.

Thus from (4), (5) and (6) it follows that there is a B_k in (1,T) so that more than $x(\frac{1}{2^k} - \frac{\epsilon}{2})$ integers $n \le x$ are not in $A + B_k$. This B_k may depend on x, but there are at most $\binom{T}{k}$ possible choices of B_k and infinitely many values of x. Thus the same B_k occurs for infinitely many different choices of the integer X.

In other words for this B_k the lower density of $A + B_k$ is less than $1 - \frac{1}{2^k} + \varepsilon$ as stated.

It is easy to see that Theorem 2 remains true for all sequences A of lower density α . The only change in the proof is the remark that (3) does not hold for all X but only for the subsequence x_i , $x_i \neq \infty$ for which $\lim_{x_i \neq \infty} A(x_i)/X_i = \alpha$.

Now we outline the proof of Theorem 3. The proof is similar but more complicated than the proof of Theorem 1. We can assume without loss of generality that $f(x) = o(x^{T_i})$ for every $T_i > 0$, but $g(x) = [f(\log x)^{1/2}]$. Define a measure in the space of sequences of integers so that the set of sequences containing n has measure $\frac{1}{g(n)}$ and the measure of the set of sequences not containing n has measure $1 - \frac{1}{g(n)}$. It easily follows from the law of large numbers that for almost all sequences

$$A(x) = (1 + o(1))\frac{x}{g(x)}$$
.

We outline the proof that for almost all sequences A, A + B has density 1

for all B satisfying B(x) > f(x) for all sufficiently large x. In fact we prove the following statement:

For every $\epsilon > 0$ there is an $n_o(\epsilon)$ so that for every $n > n_o(\epsilon)$ the measure of the set of sequences A for which there is a sequence B_k , $k > [f(\log n)]$ in (1, log n) so that the number of integers $m \le n$ not of the form $A + B_k$ is greater than m, is less than $\frac{1}{r^2}$.

Theorem 3 easily follows from our statement by the Borel-Cantelli lemma.

Thus we only have to prove our statement. Let $1 \le b_1 < \cdots < b_k < \log n$ be one of our sequences B_k . If m is not in $A + B_k$ then none of the numbers $m - b_1$, $i = 1, \cdots, k$, $k \ge f(\log n)$, are in A. Thus the measure of the set of sequences for which $A + B_k$ does not contain m equals

(7)
$$\prod_{i=1}^{k} \left(1 - \frac{1}{g(m-b_i)}\right) < \left(1 - \frac{1}{g(n)}\right)^{k} = \left(1 - \frac{1}{\sqrt{k}}\right)^{k} < \frac{e}{4} .$$

Let now m_1, \dots, m_r be any r integers which are pairwise congruent mod [log n]. A simple argument shows that the r events: m_1 does not belong to $A + B_k$ are independent. Then by a well known argument it follows from (7) that the measure of the set of sequences A for which these are more than $\frac{\epsilon m}{2}$ integers $m \equiv u \pmod{\lfloor \log n \rfloor}, m < n$ which are not in $A + B_k$ is less than $(\exp 2 = e^2)$

(8)
$$\exp(-c_n/\log n) < \exp(-n^{1/2})$$
.

From (8) and from the fact that there are only log n choices for u it follows that the measure of the set of sequences A so that for a given B_k there should be more than an integers $m \leq n$ not in $A + B_k$ in less than

(9)
$$\log n \cdot \exp(-n^{1/2})$$
.

There are clearly fewer than $2^{\log n} < n$ possible choices for B_k , thus by (9) the measure of the set of sequences A for which there is a B_k in (1,log n) so that there should be more than en integers not in $A + B_k$ is less than

42

43

for $n > n_0$, which proves our statement, and also Theorem 3.