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1. INTRODUCTION 

A set mapping on a set 5 is a function f from S into the set of 

subsets of 5 such that u+f(ti) (YES); AcS is called a free set (for the 

setmapping)if yqf(u> forall x,yeA, i.e. Anf(A)=c#, Itwasanold 

conjecture of Ruziewicz cl] that, if IS] = rn’ H, , and if IfcY)I< h (reS), 

where n is a fixed cardinal less than m, then there is a free set of cardinal m. 

D. LazLr [2] proved this in the case when m is a regular cardinal and Sophie 

Piccard [3] proved the conjecture for those cardinals m which are the sums of 

%I smaller cardinals. Erd& [4] gave a solution of the complete conjecture 

using the generalized continuum hypothesis, and finally Hajnal [S] proved the 

result without this hypothesis. 

It is very easy to see that the result is no longer true if the 

hypothesis If(w)1 < n < m is weakened to simply IfcX)l < m (&e-S). 

For, let x0 c x, < ..* < L, c a . . (V c ‘h) be a well ordering of S, where 

X is the initial ordinal of cardinal m. If we put f(aP) = (L* : v < p) (,.A c A), 
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then f is set mapping on S suchthat Ifcx)I < [S\ (a6 s> and there is no 

free subset of 5 containing more than one element. It will be noted that in this 

counter example, the order types of the image sets f ( u) are not bounded below 

1. This suggests the following strengthening of Ruziewicz’s conjecture proved 

by Erd& and Specker Co]. If 1 is an initial ordinal number and f is any set 

mapping of order CYC CC 3) on a set 5 of type X, then there is a free set of the 

full type !A. The set mapping f has order o( if the order type of f(u) is less 

than o( for all y. E S . 

In this paper we shall consider set mappings on a well ordered set 

5 in the case when the order type of S is not necessarily an initial ordinal, In 

particular, we examine the truth status of the following statement SM COC, ‘h), If 

f is any set mapping of order cl on a set of type 31, then there is a free subset 

having the same order type 1. The Erdiis-Specker generalization of the 

Ruziewicz conjecture asserts that SM(rz,%) holds if % is an infinite initial 

ordinal and ti c 2 . We only examine the problem for the case when I’hl = H 1 

although some of our results hold more generally. * We will prove (Theorems 

4, 5 dr. 6) that SM (or,4) holds in the following cases: (i) o( c W, and 

a;+1 
‘h = w, 

CQ+l 0+2 
f .,. + WI < WI (k finite); (ii) o( = w,, and 

$7 = 0,)~ < c,J~+~ ; (iii) o(cwoj ‘x=wQ , where 0 is arbitrary. Note that the 

form given for ‘A in (i) is the most general for which SMCor,‘h) is true with any 

c!l<w, . For example, SM (w,uy) is false if u < o! c C.J, . The condition 

3rd cd;+* is (i) and (ii) is also essential for we show (see Theorem 3) that 
WC2 

SM(o,A) is false if ~3~ 5 ‘xc 02, 

There is a connection between set mappings and polarized partition 

relations. The symbol 

*This is the first of a sequence of forthcoming papers by the three of us. In these we 
shall consider similar problems for types with higher cardinals. Many new phenomena 
and new difficulties appear already for types of power *, which 1s why they will be 
treated separately. 
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(1.1) 

first used in [7] means, by definition, that the following is true: If A, 6 are 

ordered sets with types d, p respectively, and if AX B = K, u K, , then there 

are i<2 and sets A;cA and 6;C E such that tpA; = cx[xi, tp B;= f5; and 

A;xB;CKi s The negation of (1.1) is expressed by replacing + by h in the 

symbol. 

We prove (Lemma 2) that SM(ot,~) implies the relation 

I:H :1 

but we do not know if the converse implication is also true. Using the 

HO continuum hypothesis 2 = a, , we will show (Theorem 2), if w, 5 y and 

8 =E(nnw)xn, where 2~ 1X,1< 8, , then 

This easily implies that 

!sT+’ :I 

and hence that SM(w+i,y) is false. This confirms our remark about (i) above. 

We will also prove (Theorem 3) that, 

From this, it follows that 

and hence that SM(o,P) is false. The relation (1.2) is a little surprising for it 

is equivalent to the following seemingly paradoxical statement: If 5 is an 
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ordered set of type p ( p < 0~1 , then there are M, subsets of type less than 

~j;)+~ (i. e. their order type is small compared with the order type of S ) such 

that the union of any Ho of these subsets is the whole set 5. This is closely 

related to the negative partition relation p -* C I, w, , w: ). . .)L proved by Milner 

and Rad6 [s] . 

In contrast to (1.2) we prove (Theorem 1) that 

[:I 4: :; 
holds if Q < w, , p < ti(;)‘* and 8 is a finite sum of order types so+...+ xk 

which are expressible as an w,-sum of increasing ordinals, i.e. 

xi= t(v<w,)c$, with di, 5 di,s . . . (isk). 

As an application of the set mapping theorems we shall prove the 

following result about transfinite graphs (Theorem 7). If S is an ordered set 
or2 ofordertype oO<o, , and if G is any graph on S , thein either there is an 

infinite path in G or there is an independent set (i.e. a set containing no edges 

of G) of the same type 05. To prove this we make use of (ii) above. We know 

by (1.2) that (ii) is false for order types greater than or equal to a:+’ , but it 

is possible that Theorem 7 is true for arbitrary Q . 

2. ADDITIONAL NOTATION 

Greek letters denote ordinal numbers and capital letters denote 

sets. The obliterator sign * written above a symbol means that thar symbol is 

to be disregarded, e.g. I*, ,..., &] = {3~,: P-C 3r) . We write 

5 =(x0”‘. zl], to indicate that the elements of S are ordered so that 

x <“,<...<jll 0 ; similarly, fx,, . . . ,2x) + means that zP,p xy (p<vex). 

If 5 is an ordered set, then tp 5 denotes the order type of S. If X , Y are 

subsets of 5, then x c Y means that JC < y holds for all Y E X and y e Y . 

We write 
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s = SQJ 5, u . . . u sx (-cl 

if S is the disjoint union of the sets SP t p c ?,> and So < S, c . . . < .$x , 

If S = A u B (< > , then A, 6 are respecitvely called initial and 

final sections of S; they are proper sections if non-empty. If x E S , the 

section { y E S : x < y ) is denoted by R tx). More generally, if Xc 5 , then 

R(X) = n (aeX) R(z) . An interval of S is a set I such that S-AuIuB (z), 

The interval of ordinal numbers {V : M ‘: v < B ) is denoted by ~OC, p) . 

A subset X of the ordered set 5 is cofinal with S if X < {a] is 

false for all a E S . If X is not cofinal with S we write X !! S . If tp 5 = o( , 

then CO(D() denotes the least ordinal /3 such that tp 8 = p for some cofinal 

subset B of S, Thus, if o( z 0 , then co&) is either 1 or an infinite initial 

ordinal. The ordinal o( is indecomposable if the equation o( = p + 3 implies 

that either p-o! (and 1( = 0) or 4 = o( . It is well known that the 

indecomposable ordinals are 0 and the powers of w and that every ordinal 

o( > 0 has a unique representation as a sum (the Cantor standard form) 

d = ao+ ,..+a n' 

with n<w,ol; indecomposable (is_?) and uu 5 a,? . . . 2 o(, > 0 , 

The cardinal of .S is 151 . If m is any cardinal, we write 

CSl”= jxcs: IEl = m) and CS]im=iXCS: IX!=mf . Agraphisan 

ordered pair of sets G = (S, E) with E c CS12 . The elements of E are called 

the edges of the graph. XcS is called in independent set if [X]*n E + r$ . An 

infinitepathinG isaset {Y,,...,~~]+CS such that {x,,,)L,+~] c E (n<o). 

The ordinary partition symbol 

CL 1) o! + (d:,f 

means that the following is true: If tp5 = Q and [S)’ = Ku u . . . u i?A , 

then there are ILL<% and AcS such that tpA =cxP and [A]‘c K P . If 

d,, = p <p< ‘h) , we write (2.1) in the alternative form o( -t(p)‘, . In this paper 

we only require some special relations of the form (2.1) when r = 1 . If n 4 o 

and d is indecomposable, then 
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(2.2) cd -4 Ml, ; 

if n<~) and %<~s+, , then 

(2.3) 

Also, we need the negative relation 

(2.4) 

in [71. 

d + (w~)~su if o( c ++4 . 

The above results are all easy to prove, but details can be found 

The Cartesian product of two sets A, B is denoted by A* 6 . If 

Ax6 = KouK, in any partition, then we write 

F;(a) = {be 8 : ta,b)c Ki) (atA; ic.2) 

F;(b) is similarly defined for b E B and i z 2 . If D c A or DC B we define 

Fi ID) = $ F;(l) . 

3. CONSTRUCT’ION OF SETS WITH PRESCRIBED ORDER TYPE. 

We now desc’ribe a systematic procedure, which we follow in later 

parts of the paper, for constructing a subset of a well ordered set so that this 

subset has prescribed order type o,@, where @ is a fixed ordinal less than 

IJ~+,. In the applications we are concerned only with the special case ox = I , 

but it seems worthwhile formulating the procedure in more general terms. 

For a set S of type 0~0 we shall describe a standard sequence 

I(S) = (I*, I,, .I. ) zw,> of intervals of S whose essential features are 

that (i) every one-element subset of 5 appears as a term and (ii) if two intervals 

Ip,I, (,p< v c OJ of the sequence overlap, then I,c I ~ . In the applications 

the set Z of type o,O which we want to construct will have certain special 

properties peculiar to the particular problem. What we do is to construct by 

transfinite induction a sequence ( 2, , Z, , . . , , ioL 1 of subsets of the given 

set so that the terms have certain properties relevant to the problem and at the 
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same time imitate precisely the order structure of the standard sequence I(S). 

That is to say, the sets Z, are constructed so that tp Z, = tp 1, (9 < 0~1 

and 

hold for ~<VCW~ , where a denotes any of the binary relations c, >, c or 

2 . This will ensure that, in addition to certain other properties, the set 

z = lJt12,t =l)Z, will have the required order type o,Q . 

We first make the trivial observation that, if 1 < 0 c w&+( , 

then there is x = ~(8) CC& such that @ has a representation as a sum of 

powers of w, , 

in which the terms are all strictly less than 0. We assume that ~(9) is the 

minimal value of x for which there is such a representation (3.1) for 0. Note 

that x(&I =co(wf),l if l<p'od+, . In general, however, ~(0) differs from 

cd@), e.g. xCo,2)=2. 

Let tpS = 0~0 , where i c_ 0 c mot+9 . We assert that there is a 

sequence of intervals of S, I(S) = ( I,, . . . , i,,s , and a regressive function 

C$ = r$, : [I, 0,) + [O, w,> such that the conditions (3.2) - (3.8) are satisfied: 

(3.2) I, = s; 

(3.3) if x6-S then 1x3 = I,, for some v < wd ; 

(3.5) 

(3.7) if p*<v and J?(/.L*, = $(v); 
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(3.8) Q+: #(v)<p<v,I ~c)L,=~(Y))<X(tpI~(“,)) (15vco,). 

For Q = 1 this is obvious. We simply put 

I,=S= {YO’x,,..Y iod3, 14+v={xy] (v<o,) and +crr>=O (~c-Ycc+). 

In this case x,(tp I,) = wo( and (3.2) - (3.8) all hold. We now suppose that 

@ > 1 and use induction. 

By (3. l), if tpS = w,@ , then 

‘9 
where x=xC@) and tp-St.=o, F~ w,@ CT< ~1. Sy the induction hypothesis 

there are sequences 1~5~) = ~~~~ , . . . , ?50aJ and regressive functions 

such thar the stated conditions are satisfied. Let 

be any bijection which satisfies 

(3.9) fr$,o, < f(S“lo) 

(3.10) f(F,v, < fcF,v’l > * 

(For example, .such a mapping is defined by putting 

ftl,v) = I + (t.Lv>, where 54~ denotes the natural sum. ) Now put 

10 = s, I, = Jp(,) (0 <U<Wdl. Also, if OC p < oti and f-‘Cp) = ( F, Y), 

then we define &pu, = 0 if v = 0 and 4(y) - f(k,$(v)) if I,> 0 . This 

defines the sequence I(S) = ( I, , . , . , 1,) and the regressive function 

4,=b 

From (3.10) we see that I(5) contains each ICSg) (5~ X) as a 

proper subsequence. Therefore, since the sets St are mutually disjoint, the 

conditions (3.2) - (3.6) follow from the corresponding statements for 

Ic+ CF<X> . Similarly, (3.7) and (3.8) hold when c$(Q) , o . Since (3.9) 
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holds and S, 5 S,< . . . < $, , it follows that (3.7) and (3.8) also hold when 

C$CV) =O . This proves our assertion. 

Now suppose that ICS) and Q = bS have been defined in the 

manner just described. If VC<O~ , put I$,(v) = v . Also, if k <w and I$,($) 

has been defined and is positive, put $k+,(v) % +(+kcV)) ; if I$,(v) = o , then 

$+,.[Y) i.s not defined. Then, since $ is regressive, for v d oc( there is a 

non-negative integer L = L(D) such that v = +otv) > 4,(v) > . . . > $L(v) = 0. 

By (3.5) it follows that: 

1,c I@(,)C . . . c I+p, = I(). 

Now suppose that i< L and +i-,(~) > p > c$;(v) . Then, by (3.6) 

$l n I+i-,“” = cp and hence I? n I, = # , Therefore, if p < v c We , then 

either I, c I P or I P <I, or 1,cI 
P - 

In fact, apart from one possible 

exception, if I, c IP holds we can make the stronger assertion that 

(3.11) I, 2 Ip . 

This follows from the fact that, by (3.5), I, is a sub-interval of 

IF of smaller type and so it cannot be cofinal with IP unless tp CIP) is 

decomposable. By (3.2) and (3.4) the only possible exception to the above 

remark is when xCw,O) = &+I , in which case Id+, is cofinal with IO. 

We make one additional minor remark. From the inductive manner 

in which we defined I(5) and C$ = bS, it is apparent that, if tp S = o&B ) c& , 

then 

(3.12) II,1 = N, if $(uJ = 0 and 1 c v c ~3~ I 

In the special case when tp S = wti , (3.12) does not hold. 
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4. POLARIZED PARTITION RELATIONS 

In this section we establish some positive and negative polarized 

partition relations. The positive result (Theorem 1) will be used to establish 

the set mapping theorems in the next section. The negative relations 

(Theorems 2 & 3) show that Theorem 1 is best possible in certain senses and 

they also show that the set mapping results (Theorems 4 80 5) cannor be 

improved. 

We say that 8 is an increasing w,-sum if I= x0+ x,+ . . . + a,, 

and xoC s,C- . ..C- i 
WI * 

w+2 
THEOREM 1. If 0~ < w, ; p< ~3, i y= xo+““xI,> 

where k e w and each xi is an incereasing w,-sum, then 

Theorems 2 and 3 show that the conditions placed upon p and 8 

in Theorem 1 cannot be relaxed. We use the continuum hypothesis to establish 

Theorem 2, but this is not needed in Theorem 3. 

THEOREM 2. If p’o = H, and 1 = p0 + . . . + SW , where 

2’- l&Is Hf (new) , then 

(4.2) 

THEOREM 3. If k < o2 , then 

(4.3) 

As we remarked in the introduction, Theorem 3 is equivalent to 

the following statement: If tp 5 = p < w2 , then there are 8, sets 
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FpcS (pew,) suchthat tpFtL<uyc2 and such that the union of any U, of 

these H, sets is the whole set 5. 

PROOF OF THEOREM 1. We first prove that 

which is weaker than (4.1). 

Let A, B he ordered sets with types o, and 0:: respectively. 

Let Ax6 = K,u K,. In order to prove (4.4) we shall assume that 

tp F,Cako; for all as A and deduce that tp F,I. b) >- d for some be B. 

Case 1. ~CCJ . Let N be any subset of A of type o( . Since 

tp F,(a)< Wt for asN , it follows from the partition relation (2.3) that 

tp(U(a.EN) F,hJ] < cd;. 

Therefore, thereis beB-U(atN) F,(a) and tp F,(b) 1- d 

since NC Fe(b). 

Case 2. ‘A = w . In this case, there are A,E CA3 
*1 and new 

such that tp F,(a) c WY ((IE A,) and the result follows from Case 1. 

Case3. ‘x= o+i . We may write B = B,u 6, u . . . u gm, cc), 

where tp B,= KIT (v<‘o,). Since tp F,(d)eo!f+’ for at A , it follows that 

there are ~l(a)<o, and nCa)co such that 

There is A, e [AlHI such that n(a) = n for all a~ A, , Let N 

be any subset of A, of type o(. There is )I< w, such that p*ca) < p for a6 N 

and, as in Case 1, there is 
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This implies that N c Fo<b) and hence that tp FoC b)z d . This 

proves (4.4). 

We now extend (4.4) slightly and prove 

(4.5) 

Wemaywrite o-e w,‘h+p , where Asw+? and qcw,. If 

p=o, then (4.5) is the same as (4.4). Now assume p > 0 and use induction 

on e. 

Thereare ~,,<q (new> such that wp = Z(n<o) sn . Then if 

tp6 = t,f, E = B,u...u~, , where tp8,= ~$o? (new) . Let tpA=G, 

and let Ax6 -- K,uK, . Suppose that tp F,(a) c w” (acs A). 

Then for each ae A there is n(a) < CCI such that 

tp c F&al n ES,,(~)) c tp B ,.,(*, . There are A, E tA3” and n ~C,J such that 

nla)= n(aeA,). 

Applying the induction hypothesis to the partition induced on 

A,*B, > it follows tnat there is b c B, such that tp F~ C b) z o( and (4.5) 

follows. 

(4.5) to 

The main step in our proof of Theorem 1 will be to strengthen 

(4.6) 

Let tp A = w, , tp 8 = o” and consider any partition 

A*6 = K,uK, . We will assume that t p Fg C b ) < ti for all b c B and deduce 

that there are A,cA and B,c 6 such that tp A, = CL,, tp0, = o” and 

A,w 6,~ K, . 

If 06< o, the resulr is obvious. Simply put 8, = 6 and 
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A, = A- U(bc 6; Folb) . Therefore, we may assume that au= o,@ , where 

0 is indecomposable and less than ay+2 . 

Let C be any subset of B whose order type is a power of w, say 

c=2 . Then there is a countable set DtC>C A such that 

(4.7) 
IH, 

tp (C- FcCD)) = tp C for DE CA-D(C)] . 

For, if there were no such set D(C), then there would be an 

uncountable sequence of countable sets D, < D, c . . . < 6 
WI 

such that the 

order type of each of the sets 

E, = C- F,CD,) (vc cd,) 

is strictly less than tp c . Applying (4.5) (with G = p) , it follows that there 

are beC and Nc[o,w,) suchthat tpN=cx and b&E, (v&N). This 

im$ies that Folbl n D, + $ (v6N) and hence that F,(b) t tp N = (Y . 

This contradiction proves the existence of a countable set D(C) c A such that 

(4.7) holds. 

Now let I(B) = (1,) . . . . and 4=4B be as defined in 03. 

We are going to define sets ZPc B and elements uE* E A (p 6 0,) such that 

the conditions (4.8) - (4.11) hold: 

(4.8) tP zp =tp1 ; 
P 

where Q denotes 4, b or z ; 

(4.10) $3 Fo(ap) = $ (pep); 

(4.11) ~p~A-“(zp)u U(~~~)(lap)uD~zP)). 
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Put Z,= i3 and choose a06 A-D(Z,) . Now let D< Y < o, and 

suppose that ZP,ay have already been chosen for p < v so that (4.8) - (4.11) 

hold. We want to define Z, , aY so that these relations remain valid with 

Since $(v>i 3 , it follows from (4.10) that 

z~(vlnF~(~a~,...,~~(Y,)) = 4. 

Also, by (4. ll), la$cV, ,..‘, kI’] is a countable subset of 

A -D (Z,+ and therefore 

If Q={p: +cv)=$(~)~~<v~ , then 

by (3.7), By (3.5) and (3.11) it follows that IPz IgtO, (P*E. Q ) and therefore, 

by (4.9)s 

By (3.8), tp Q c X(+1+,,,,,) = co( tp Z+(,)) , and hence 

(4.13) it!‘= u(peQ’) Zv&bC1ll . 

From (4.12) and (4.13) we see that there is Z, such that 

z’c~,~Z~(,,-F~(~a,,....~,)) and tpZ,=tp~,(ctpI~(v)=tpZ~(v)). 

It is obvious that (4.8) and (4.10) hold for p = v with this 

definition of Z,. We now verify that (4.9) also holds. 

Let p<v . Case 1. $4 14Ly) . Then I+(V,>~ Ig , where 4 

denotes <, > or 2 . Therefore, with the same meaning for u , we have both 

1, dlIp and Z, u Zp since 1, and Z, are respectively subsets of I+,[,,,> 

and Z$,,, . Case 2. 19 c I+,,) . Then either (i) p = +(Q> or (ii) Ip c I, for 
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some 6 E Q (see the remark preceeding (3.11)). If (i) holds, then I, 2 Ip 

and, by the construction, Z,,$ z+(,, = Zp . If (ii) holds, theh Ip c I6 c I, 

by (3.7), and by (4.9) with p = 8 and the definition of Z,, we also have 

zpcz,<zy . This shows that (4.9) holds with p = v . 

Finally, we choose ay E A - D(Z,1u U(pr~~)(Ca~j u D(Zpl) 

so that (4.11) also holds with p = v . 

Since (4.8) and (4.9) hold, it follows that the set 

B,= U(lz,l=l)Z, hasthesameordertypeas B =U(lf,l =l)I,, 

i.e. tpB, =a” . Also, by (4, ll), A, = Cao, . . . . kD,]+ has type 0,. 

The proof of (4.6) will be complete if we show that A, Y 6, c K, ‘ 

Let p,v c w, , and suppose that I z,I = 1 . If p c v , then (4.10) shows that 

Z,n Fo<aP)= $ . If 35~ , then by (4.11), uPeA - D(z,) and so 

tp(Z,-FoCaPC)I = tp2, = 1, 

i.e. Z, n Fo(aP) = $ . Thisimpliesthat A,xB,cK,. 

The generalization from (4.6) to (4.1) is sttaightforward. First 

we extend (4.6)to 

(4.14) 

Toseethis, let tpA = wl, tpB=@, AxB=K,uK, and 

assume that tp Fe(b) < d for bcB . We may write B = 8, u . . . u B,,,(d) , 

where n<ti, tpBi = pi and 

in the standard decomposition of p as a finite sum of non-increasing 

indecomposable ordinals. Applying (4.6) we find successively sets 

A;, 82 (icn) suchthat A,DA,s . ..3A.-,, B;cB;. tpA;= o,, 
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tp; = (3; and A;xB;cK, , The set B’= 5; u ._. u B’,-, has type p and 

A n-,x@=% This proves (4.14). 

We now show that if CA c o, ; @ < CJ;“~ and 2 is an increasing 

w, -sum, then 

(4.15) 

Let tpA=l(, tpB=p, AxB= K,uK, and suppose that 

tp F,(b)-=d (b&B) . We may write A = A,, u . . . u io, c<) , where 

tpA, = & and 0 < lo’ x, C- . . . 5 iw,d 2( . Comsider the partition 

[0,0,)x8 = K; u K; . 

where Iv, b> c; Kb ifandonlyif Fe(b) nA,f$ . Then, for br8, 

F;(b) = {Y’ CJ,: (v,b> e K;) 

has type less than or equal to tp Fo( b> , i.e. tp F;(b) <:d . It follows from 

(4.14) that there are NC CO,o,) and B’c 5 such that tp N = o, , tp 6’~ f3 

and td*B’cKi . This implies that A’x B’c K, , where A’ = U(v,c N)A,. 

This proves (4.15) since 

Finally, (4.1) follows by a finite number of applications of (4. 15). 

This completes the proof. 

PROOF OF THEOREM 2. Let tpA = 1, B = ro,w,I . By the 

hypothesis, we may write A = A,u . . . U A, (~1 , where tp A,, = 8, (ndca). 

Since 25 lxnlc H, , it follows from the continuum hypothesis that there are 

2*0 = M, sets CGA such that tp~ = w and ICnA,I 5 1 (new) . Let 

c,, c,, .‘., L, be a well ordering of all these sets C s 

Let {EB andlet f=fF be any mapping (not necessarily l-l) 

from [o,w) onto [o,t+r) . Since each set Cfc9, Cg < WI has a non-empty 
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intersection with infinitely many of the A, (n e 01 , there is an increasing 

sequence of integers no c n, : . . . suchthat C+,p,nA,p # $ C~CW). Put 

Then FoCr> is a subset of A of type w and 

(4.16) Fo($) II Gl# cj+ Cq~l>. 

Now consider the partition A x B = Kg u K, in which I ,u , k > E K, 

ifandonlyif psA, \EB and p e FoC F) . Suppose that A, is a subset of A 

of type 8 and that B, E LB] u+ . Then there is 7 c w, such that C, c A, . Also 

there is F E 8, such that 7 c- 5 and (4.16) shows that A, x 8, c$ K, . 

Since tp F. (5) cm+1 for 1 G B , this proves (4.2). 

PROOF OF THEOREM 3. In order to prove (4.3) it is enough to 

show that if tp B = p LI cd2 , then there are H, sets F,(t) c B (f-c 0,) such 

that tp F,(F) c w, wc2(pW,) and the union of any Ho of these sets is the 

whole set B. (4.3) follows from this result by considering the partition 

A*0 = K,UK, , where A = [O,ol) and C~,P)G K, if and only if PG F,(s). 

There is no loss of generality if we prove the result stated in the 

last paragraph only for the case when p = 0: -Z o2 , If 8 c 0+2 , the result is 

obvious, we just put F,(y) = B (5 <0,1 . Now assume that oc2 <- 8 < o2 

and use induction on 8. 

Casel. CO(U~)=W. Then B=~,u...u~,CC~, where 

tp 8, = CJ;” < cd; (n c 01 . By the induction hypothesis, there are sets 

F,(n,i)cB, for nco and FcA suchthat tp F,(n,j)C WY+’ and 

u(fcN> F, (n,kl = B, for nca and NE [AJHo . The sets 

clearly have the required properites. 

Case 2. co(ot) = 0, . In this case we may write 
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B = B,v...u&,, (-=I , where tp BP= C.J~CG~ Cpco,). Bythe 

induction hypothesis, there are sets 
0+2 

F,(,u,~) c BP (,uco,; F&A) such that 

tp F, oJ>t,< w, and 

U(grN) F&,5> = BP NE [A]” , 

By the partition relation (2.4) of Milner and Rado, there is a 

partition of BP (p <: w,) , 

8p = u OpL” 1 
new 

inwhich tp BPnc CJ: (t~.cw,; n<w). 

For O<~CO, , let [o,pl= {QPO,vP1~...,GPo] (the v 
P 

are 

not necessarily different). Then, if f -z p , there is some integer n = n ( EJ ) 5 ) 

such that I= v 
P” * 

Now define 

Also, if N is any infinite subset of A, then N contains an 

increasing sequence to , F1 , . . . , :, of ordinals with limit ‘$j*= lim ‘in c o, . 

If pcs*, then PL< 5, for some rn< o and 

If /L ? ‘5” , then the integers n ( )L ,I i ) ( i < 0) are all defined and 

distinct and therefore 

U(~E N) F,(y)> U U 
iCW n<nC~,~;J 

BP” = BP . 

This shows that IJ ( 5 G N ) F, (5 ) = 5 and the proof of Theorem 3 

is complete. 
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5. SET MAPPIZS 

Let SM(ci,P) denote the following statement: if tpS = p and f is 

any set mapping of order o( on 5, then there is a free subset of S of the full 

type p. Lemma 1 establishes a simple connection between SM(cx,P) and the 

polarized partition symbol. Note that, if cx > i , then SM(cx,g+l) is trivially 

false and so ir is only necessary to consider the statement .SM(o(,p) in the case 

when p is a limit number. 

LEMMA 1. SM(oc,fN implies 

PBOOF.Ifoc=1, then (5.1) certainly holds. Therefore, we may 

assume that d > 1 and that p is a limit number. 

Let tp B = @ and let B x 0 = K, u K, . We will assume that 

t&to: (xL,b)c Koj iti for all b6 8 and deduce that there are sets 

B,, B,C 0 which both have type p and are such that 5, x 8, c K, . 

Consider the set mapping f defined on 0 by putting 

f(b) = {XLEB: n# b, tx,b) E Ko) (bcB1. 

By assumption f is a set mapping of order ti and the hypothesis 

SM (~,p) implies that there is a free set 8’ of type p. Since p is a limit 

number, 28 = p and therefore B ) is the union of two disjoint sets 8, , B, 

each of type p. If 6, c 8, and b,r B, I then b, # b, and b, 4 f(b,) - 

Hence (b,, b,l c K, . This proves the lemma. 

We do not know if SM(ci,pI and (5.1) are actually equivalent. If 

1 = x*+ ..‘+ Xk 9 where k is finite and 8; = w, %+i, $J+2 
1 ii.sk>, 

then it follows from Theorem 1 that 

[;] -(; ;] (o(<W,l. 
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In Theorem 4 we show that the corresponding set mapping 

statement SMCa,a ) iS true. 

THEOREM 4. If o( < CJ, ; x< UT+’ and 8 is a finite sum of 
a+? ordinals of the form w, , then .SM(cc,~) holds. 

In particular, Theorem 4 implies that 

(*) S~(oc,oT’) holds if o(< o, and 65 w . 

If IC~CWp , then the conditions on 8 stated in Theorem 4 are 

necessary for SM(~,J) to hold for any cxco, . From Theorem 2 we see that if 

8 isanordinaloftheform x = x0+ x1+...+ f, with 0~ xi< w2 , then 

[:]+tw: :1 

and this implies that 5M (w+i ,x 1 is false by Lemma 1. For example, in 

contrast with (w) the last remark shows that SM(ot1 ,oy) is false. As a special 

case of Theorem 5 we know that SM(w,u~) holds and this result is best possible 

in the sense that o cannot be increased. 

UC2 
THEOREM 5. 9-l lo,o,x) holds for any 8 c w, . 

by Theorem 3. Therefore, SM(u,b) is false if CJ~+*~ y < oz . This shows 
w+2 that the condition 8 d w, in Theorems 4 and 5 is necessary. For set 

mappings of finite order n , we have a very general positive result. 

THEOREM 6. If n < u , then SM(n,w@) holds for arbitrary 0. 

PROOF OF THEOREM 4. Let tpS = 8 and let f be any set 

mapping of order d: on S. We want to show that there is a free set S:c S 

having the same type 8 . 

Casel. x= ti?<~1; 
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The set mapping f induces two auxiliary mappings g and h 

defined by putting 

g(X) = jljEf(r): gcY3, her, = {ye f(x): rs< y) - 

Thus, for any Y 6 S , we have 

(5.2) g(w)< 1%) c hlr) 

The set mappings g and h are also of order d and it is 

convenient to consider these separately. We will show that there are sets 

S,c S and S,c So suchthat tpS,= tpS,=m:, S, is free in the set 

mapping g and S, is free in the set mapping h . This will give the result 

sincewethenhave fCS,)nS,=$s 

We first show that there is S, c S such that tp S, = 0: and 

(5.3) s, n g CS,) = 6. 

If n = 0 then (5.3) holds with 5, = S , for in this case S has a 

single element. We therefore assume that n > 0 and use induction on n . 

that 

We begin by showing that there is a set S’c 5 of type 0; such 

(5.4) tp (s’- g-‘(X 1) = CJI; whenever x : s’. 

Suppose there is no such set S’ . Then we define sets X, : S 

and Y,,cS for VCW, in the following way. Let p -C w, and suppose we have 

already defined X,, Y, for v c p , Since the sets X, C v c TV) are non-cofinal 

with S and )IC w,, there is a proper final section T of S such that X, < T 

(V < p) . By our assumption, (5.4) is false with S’ = T and hence there is 

Xp@T such that tp CT- cj-‘tXP)) < WY . Since T is a proper final section of 

S, this implies that 

(5.5) Yp = S-g-‘rxg 

also has type less than CA:. This defines the sets Xp,Ypc S for ,u c w, . 
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Note that, by the construction, X, < X, < . . . < iw, , tp YP c WY 

holds. 

and (5.5) 

By (4.4) we have 

(5.6) 

Therefore, since YP< w: ( ,u < U, ) , the polarized partition 

relation (5.6) implies that there are z c S and N c [ 5, w,) such that tp N = ti 

and 

24, B yp (p&N). 

According to (5.4) this means that g(g) n XP # @ (,ue N) and 

hence tp g(x)? tp N = cx . This contradiction shows that there is a set S’C S 

of type 07 such that (5.4) holds. 

We now define non-cofinal subsets G, of S’. Let )L c ti, and 

suppose that we have already defined G, 2 S for v < TV . BY (5.4) 

Qj(S’- 9-y U(v c fLxy1J f 0:: 

and therefore there is “;I: S’ - g-‘~U(v~~)C,,)) such that C, < cd (9 cI*) 

and tpC;=w, ‘-’ . By the induction hypothesis, there is a q-free set CP c Ck 
II-l having the same type w, . This defines the sets C, for Y <w, . Clearly 

s, = C,UC,“...“~ w, (<) 

has order type 0:. If v 5 p .Z w, , then G, n g(Cpl= I#I by the construction. 

Also, by (5.2), g(C,) c CP . This shows that (5.3) holds. 

We now consider the set mapping h restricted to ‘3,. First we 

observe that, if T is any non-cofinal subset of S, such that tp T = car;” 

with m< n , then there is a proper final section F(T) of So such that T< F(T) 

and 
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(5.7) tp(T- h-‘(D)) = tpT whenever D c!? F(T). 

Suppose this is not the case. Then since* R(T) is a proper final 

section of S, , there is D, z R(T) such that tp CT- h”‘(Do)) d a5y . More 

generally, if PC ~3, and D, , . . . , s, have been chosen so that 0,: S, Cvcp), 

then R’= R(Tu U(~,<pr.)D~l is a proper final section of S, and, by the 

assumption that (5.7) is false, there is DP 2 R’ such-that 

(5.8) tp CT- h-‘(D/J) < wT . 

In this way, we define sets DP (p c 0,) so thar D, < 0, c.. . .C b,, 

and (5.8) holds. The relation (5.6) applied to the sets T- h-‘(Dp) (p c w,) 

shows that there are N c [O,O,) and x E T such that tp N = o( and 

x+T-h-‘IDp) (~6 N) . Therefore, h(x) nDP# C$ (pcN> and 

tp h (x) ? ti , This contradiction proves that there is a final section F CT ) of S, 

such that (5.7) holds. 

We want to prove that there is a set S, c S, of type CJ~ such that 

(5.9) S,n h(S,b$. 

If n= 0 , (5.9) holds with 5,= S, . We shall therefore assume 

that n > 0 and use induction on n . 

Let ICS,) and 4 = @s o be as described in §3. We are going to 

define sets 2, c S, IV c CJ,) such that (5.10) - (5.14) hold for r, < ~3, . 

(5.10) tp Zy = tp 1, j 

where a denores < , > or !! ; 

* 
Here R(T) = {y ESO: T< (Y’11 . 
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(5.12) z, n hci!,) = Q Cv#Ol i 

(5.13) Z,: ~tocpc~‘)F~Z~~ if i#(v)=O; 

(5.14) gtz,w+ = $9 if q<v and I,< I,. 

Put z,=s, . Nowlet Ocp<w, and suppose that 2, has been 

defined for v <p so that (5.10) - (5.14) hold, We want to define ZP so that 

these relations remain valid with I, = p . 

Let K = (B: 4(p) <aup-*; t+(G) = 0) ‘ 

Case (i) $fp) = 0. If 0 i v < p , then by (3.5) there is some 

tie;l( such that I,cI, . Therefore, by (3.7), I, c I6 L IP . Since (3.11) 

holds, I,: I, . Therefore Z y E Z 0 by (5.11) and F C 2 V,) is a proper final 

section of Z, = 5,. By (3.5) we have that tp II, c tp I o = 0: and therefore 

Z’ can be chosen so that 

and tp Z’= tp II* . Since tp 2’ = tp 1P = wt L 01 , it follows from the 

induction hypothesis that there is an h-free subset Zp of 2’ having the same 

order type. With this choice for fP it is clear that (5.10) - (5.13) hold with 

v =p, In this case (5.14) holds vacuously for v=p , since Ip c IP Cp’p1. 

Case (ii) 4(p) > 0. Let A = U(ps K 1 zp . Since K is countable 

and, by (5.13), Zp z FCZ +cP,) (qr K), it follows that A z F(Z*cp>> . 

Therefore, by (5.7), 

(5.15) tp(Z++,- h-‘(A)) = tpZ,+cPo-, . 

Let L = {u : 4(y) = $Cp) < u ‘~1 . By (3.5) and (5.11) we have 

1,: I&,u) and 2,: Z&p for v E L and therefore 
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(5.16) 

It follows from. (5.15) and (5.16) that ZP can be chosen so that 

I3 c zp: Z+(p) - h-‘(A) 

and. tp Z+ = tp IP ( c tP I&p> = tP Z@p,’ * 

It is clear that (5.10) and (5.11) both hold for Y = p with this 

definition of ZP. Also (5.12) holds since ZP c Z++, and Z++) is h-free. In 

this case (5.13) is satisfied vacuously when v = p ‘ It remains for us to verify 

that (5.14) also holds for v=j~ , i.e. we have to show that 

(5.17) hlZp,)nZp = rj if p<p and IPcITq. 

If ocv<q then, as we observed in 13, there is an integer 

i,(v) such that u = +0(w1 > +,(v) > $,(v> z . . . > +L(~) = 0 . Put 

g(v) = (bb-,C~). Then 0 c q(v) L-v, I, c Iscy) and bI$(v)) = 0. Note 

that, since +(p]>O , we have $(p> < F . 

Let e<p and suppose that IP< Ip . If &cp)=$(p), then Z,+ 

and ZP are subsets of Z$,P, and (5.17) holds since ZqCP, is free by (5.12). 

Therefore, we can assume that $Cg1# &EL). If $Cp> c 6~~1 , then 

%cp>( $Cp> 
by (3.7) and this contradicts the assumption that I < 1 

!‘ 9 
(for Ipc I+) and Iq c Iqrp, . Therefore, 4, (+cP)) = 4tk) c ~CQ> and 

Q,,~,c lpp, c Iqcp, . If +cp) c $+I, then 

since (5.14) holds with 9 = 4Cr-1, and this implies (5. 17) since zpC Z 4CPL) 

and Zp c ZJCp) . If, on the other hand, &,u1 c $(91 , then &Q) E K and 

Zp c ZqCp,C A and (5.17) holds since Zy, n h-‘(A) = $ by the definition of ZP. 
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This shows that there are sets 2, IV c w,) satisfying all the 

conditions (5. 10) - (5.14). 

By (5.10) and (5. II), it follows that 

-5, = UCIZJ =I; vcw,')z3 

hasthesametypeas So= lJ~II,I=l)I, . To complete the proof of Theorem 

4 for Case 1 it remains to show that S, is h-free. 

Let ~,,v<o, andsupposethat IZP\=lZ,,\=i and ZP<ZV. 

In view of (5.2) it is enough to show that 

(5.18) hlzpz, = 9 * 

If LP c Z-+(,,, , then (5.18) holds since $co> # 0 and Z3(,, is 

h-free by (5.12). Therefore, we may suppose that &~3) # p and ZPc Z$(,) , 

If &)ql I then h ( Zp) f~ Z$(,,) = d, by (5.14) and this implies (5.18) since 

Z,c Z&(,) . If p< g(v) , then by (5.13), Z, c Z&I,)z FCZP) . Therefore, 

bu (5.7)s 

tpczp- h-? Z&,,‘)) = tp ZP . 

But since tp ZP - - 1 , this simply means that h-‘(Z$Cv,) is 

disjoint from Zp and (5. 18) follows. This completes the proof of (5.9) and Case 

1 of the Thekern. 

Case 2. 8 = a:+’ . 

lemma. 

To prove the Theorem in this case we require the following 

LEMMA. Let tpS = cay*’ and let T,,T,,... be cofinal 

subsets of S such that tp T, = cay+’ 
o+l 

(rt<.O) * Then tp lJ(ndw?T, = o, . 

PROOF. For PL<(~, we may write p = L~%[PL) t r(p), where 

1h(p)1t~, and r(p.)<w . We define non-cofinal subsets .Sp of S for p< w, in 
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the following way. Let p c w, and suppose that 5, z S has been defined for 

vc u . Since Trtiu, 
rtp)+i 

is a cofinal subset of S of order type w, , there is a 

non-cofinal subset Sr- of T r(p) with type U;(P) such that S, < SP holds for 

icy. . Then 

This proves the lemma. 

w+l Let S be an ordered set of type w, and let f be a set mapping 

on S of order 0: C<o,). We are going to define sets T,, , S, c 5 for n < w 

such that 

(5.19) 
ncl 

T* is cofinal with S and tpT,., = ~3, l 

(5.20) 5 n+l ,Tn “n a 

(5.21) T,, nf(S,+1)=$, 

(5.22) fq.p(T,US,+,b#. 

This will prove the theorem for Case 2 since (5.‘20), (5.21) and 

(5.22) imply that T= U(ncolT, is a free set for the mapping f and (5.19) 
o+l 

and the lemma imply that tp T = a1 . 

Put so= S . Now let n c o and suppose that a subset S, of S 
ocl 

has already been defined so that tp S, = 0, . We want to show that there 

are sets T,, and Sn+, such that tp Sn+, = u:*’ and (5.19) - (5.22) are 

satisfied. 

Since tp 5, = Oy+’ , we may write .S, = P, U . . . .u i‘w, Cc > , 

where P, = Pva u . . . u +vw Cc) and tp Py; 
i+4 

= 0, (3c0,; i< w). 

PutA=U(vco,;I,~n)PVC andlet B=S,-A.ThentpA=~, n” and 
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tp B = 0, *‘I . Consider the partition An B = K, U K, , where (a,b) E K, 

if and only if ae f(b) . By Theorem 1 we have that 

Therefore, since tp FoC b> C- tp fC b) c d ( bc 8) , it follows 

that there are sets A’C A W+l and B’c B such that tp A’ = my”, tp B’ = o, 

and A’u B’c K, , i.e. A’n f(B’) = @ . 

Now consider the partition A’w B’ = Kb u K; , where Ca,b) t Ki 

if and only if b G f(a) . Again by Theorem 1, we have 

and this implies that there are sets A”c A’ , B” c 6 such that 

tp A” = w, n+‘, tp B” = gL;)+’ and f(A”l/7B”= f$ . By Case 1 of the present 

theorem, there is a free set T, c A” of type o;+‘. Now (5.20) - (5.22) hold 

with this choice for T,, and Sn+4= 6”. T,, is cofinal with A since it is a 

subset with the same ordinal number and similarly S, is cofinal with 5. 

Therefore, (5.19) also holds since, by definition, A is cofinal with 5,. It 

follows by induction that there are sets S n ,T, satisfying (5.19) - (5.22) and 

the proof is complete. 

co+ 1 
Case 3. & = o, + . . + a?” , where k <o and bi L- w 

(is kl. 

Let tpS = 8 and let f be a set mapping on 5 of order ti. We 

want to show there is a free subset of S of type 1( . If k = 0 , this follows from 

Cases 1 and 2. Now assume that k > 0 and use induction on k. 

We have S = So u S, (<) 
CiCi 

, where tpS,=~.(i<k)w, = x0 
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andtpS, =q =x, . By the induction hypothesis, 

sb c S, and S; c S, suchthat tpst = tpS; (i<2) 

relations 

there are f-free sets 

. By Theorem 1, the 

hold and by succesively applying these in an obvious way we c?nclude that 

there are sets SE c SL ( i < 2) such that tp 5: = 8; and Si u S: 

is f-free. This concludes the proof of Theorem 4. 

w+2 
PROOF OF THEOREM 5. Let tp 5 = 0,~ < 0, and let f be 

any set mapping of order G) on 5. Then ftx) is finite for ?L e S . We want to 

show that there is a free set which also has type till . If 8 = i this is a 

consequence of Theorem 4 and SO we assume 8 > 1 . 

We observe first that whenever A c S and the order type of A 

is a power of w, , then there is a countable set C(A) c S such that 

(5.23) tp (A-f-‘(D)) = tpA whenever DE [S-C(A)] 
5H, 

. 

If this were not so there would be disjoint countable sets 

D, (~4~~1 suchthat tp(A-f-‘CD,)> c tpA (u,< 0,) . This leads to a 

contradiction since, ,by (4.4), there are x E A and an infinite set N c [ 0, 0,) 

suchthat x$ (A-f-‘(D,J) (u&N) , i.e. f(%L) isinfinite. 

This shows that there is a countable set C(A)c S such that 

(5.23) holds. 

Let IISI = II,, . . . . iD1) and +=+s be as described in 03. 

We shall define by transfinite induction sets Z, c S ( v < w,) such that the 

following conditions hold for v < U, : 

(5.24) +Ps, = tp1, . 
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(5.25) Z,d z*c’j Iv4 1 P (p<9) 

where d denotes c , > , or ? , 

(5.26) Z, n Cczq) = d, (ocg~v). 

(5.27) z, n w, ‘, =p if 7-z~ and lzgl =I. 

(5.28) vlv if $(v> = 0. 

Put Z, = S . bet p > 0 and suppose that Z, has been defined fo 

v,cP so that the above relations hold, Put U = U ( Y < p; 1 2, ) = 11 2 v  , 

V= ti(O<uv(~u)C(Z,) andlet K = Iv: $(v,> = $(p)cv<p). 

Case 1. la(p) = 0 . By (5.28) and (3.7) we have in this case that 

z, c I, < Ip (v&K). 

Since tp $3 > w, , the remark (3.11) applies and therefore 

zp = Ip- f(U)-v 

has the same type as IP because U and V are both denumerable sets. It is 

easy to see that (5.24) - (5.28) hold for v - p with this choice for ZP. 

Case 2. $Cp) > 0 . In this case, I, < IP C I+rP, (YC K > by 

(3.5) and (3.7). Also, tp K < x (tp I++,) = co(tp I,+,,P,,l by (3.8). By 

(5.25) we have that Z v 2 Z ++, (v&K) and hence Z’= U(v&K) z,?z Z,gPl. 

Since U and V are denumerable and tp Z,+(P,, = tp I,+,,, is a 

power of 0,) there is a set Zy such that 

z’c z,: z+,p - f(U) - v 
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and tp+ = tp1j.L (4tPqq.d I . It is obvious that (5,24), (5.26), (5.27) and 

(5.28) now hold with v =p and routine to verify that (5.25) also holds. This 

defines the sets Z, for v c O, . 

By(5.24)and(5.25)weseethat Z*= U(V<CJ,; IZ,l =412, 
has the same type as S = U(I IV I = I) L, . Also 2’ is a free set. For, if 

cJcpcvcw , and Izpl = IZ,\=f, then 

f(z,>nZ, =$I 
by (5.27) and 

fCZ,lnfg = q5 

since tplZ,- f-‘(Z,)) = tp Z, = 1 by 5.26. This completes the proof of 

Theorem 5. 

PROOF OF THEOREM 6. 

Let tpS =ud. and let f be a set mapping of order n (< w> 

on S. We have to show that there is a free set of type ~a(. 

Case 1. wd is indecomposable. By a theorem of Erd& and de 

Bruijn [9] , S is the union of 2n- t free sets. Since oo( is indecomposable it 

follows by (2.2) that one of these free sets has type WD! . 

Case 2. wc( is decomposable. Let wol = 0~~ + . . . + TV k be the 

Cantor standard representation for oo( as a finite sum of non-increasing 

indecomposable ordinals. Then k 2 f and HL is indecomposable. We shall 

give details of the proof only for the case k = 1 . The general result follows 

by an obvious extension of the argument. 

Then S = 5, v 5, (<> , where tp Si = (xi is indecomposable 

and infinite ( i r: 2 1 . By case 1 we can assume that each .Si is a free set. 

Since mO is infinite, S, is the union of n disjoint sets Ai (i-z I-I) each 

having the same type 01~. Then for Y E S, there is an index i(x) c n such 

that f(n) iI S;(,,, =i$ . Put 6; = {w.eS,: i(r)= i3 . 

Then there is i,< n such that 01, has type o(, and 
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Ai, n f(BQ = d, . 

Applying a similar argument to the sets A;o and BiO we find that 

there are sets A’c Ai, and B’c B; o such that tp A’= [x0, tp B’ = CL, and 

{(A’) n 6’ = qi . 

Then A’ u B’ is a free subset of type o(s +ti, . 

6. GRAPHS WITHOUT INFINITE PATHS. 

In this final section we apply the results of this paper to prove 

the following theorem. 

THEOREM 7. Let 5 be an ordered set of type 00 -Z my+2 ati let 

G = (S, E 1 be any graph on 5 which does not contain an infinite path. Then 

there is an independent set S‘c S with the same type ~8. 

REMARK. In our proof of Theorem 7 we employ Theorem 5 and 
w+2 this explains the restriction on the size of S (i,e. tp S c 0, . While 

Theorem 5 is false for larger order types (of cardinal ti,), we suspect that 

Theorem 7 holds for arbitrary (3 but we are unable to prove this. 

PROOF OF THEOREM 7. 

We shall prove the theorem in three stages. 

Case 1. 0 = 0,x. 

We claim that if T is any subset of S, then there is an element 

x = n(T) ET with finite relative valence, i.e. such that 

(6.1) E(w) nT is finite. 

For suppose this is false for some Tc S , Then we construct an 

infinite path in T as follows. Choose xc ET . If n < w and sun has been chosen 

then, since Eln,)nT is infinite, we can chose x.,,, E ECJL,) nT-{xO ,...,L,). 
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Then ~~,x,, ..” is an infinite path contrary to the hypothesis. 

Hence there is Y = r(T) c T such that (6.1) holds. 

Now define a well ordering of the elements of 5 in the following 

way. Put a0 = u(S), a, = xIS-{a,\) , etc. This process must terminate 

after 1 stepsforsomeordinal Ix<wz. Wethenhave S=(a,,a,,...,&h’jf. 

Now define a set mapping on S by putting flap’ = ElaP,) n {cxp+, , . . , Lx]. 

Then, by (6. l), f is a set mapping of order w and, by Theorem 5, there is a 

ii-ee set .S’c S of the same type w,x . The set S’ is also independent in the 

graph G. For, if aP,ay ES’ and r.4’~’ , then {+,a,,\ is not an edge of G 

since a94 f(ap). 

Case 2. 0 c 0, . 

In this case we shall apply the construction described in 63. Let 

ICS) = (I,, ‘.‘, 1 w) and Q = 4, be as defined earlier. 

If T is any subset of 5 of tp 0% 2 o , then there is a finite set 

F(T) c 5 such that 

tpCT- E(X)) = tpT for all XE CS- F~T)I 
<HO 

For, if this were not so, there would be infinitely many disjoint 

finite sets Xc, X,, . . . suchthat tp(T-E(X,I) c tpT (ndo) . Since 

o?+ (~‘1’~ holds for any finite k, it follows that there are elements 

JL~E X, (nco) such that tp(T- E(r,l> c 0’. Each &L, is joined by edges 

of G to almost all the points of T (all but a set of type less than w’) and hence 

tpE({&;,xj])nT:a’ for i,j<w . Nowdefineintegers bi andelements 

yc (in 0) as follows: Put n, = 0, n, = 1 and choose yoe E(Cx.o, r&) . 

If 15kcw and ni (i%k), y; (ick) have beendefined, choose nk+, 

and gk so that 

- 359 - 



and IJ~E E (x,,~, xnk+,) - Zk . Then the graph G contains the infinite path 

*no’ Yo 3 Xn, 7 y1 7 .*- ) a contradiction. 

Put Z, = S . We are going to define sets Z; c 5 c i c w> such that 

the following conditions hold: 

(6.21 tpZi = tp 1; ) 

(6.3) Zid Zj ~ Ii4 Ij Cjz 0, 

where Q, as usual, denotes either c, > , c or 2. 

(6.4) Zc n F(Zj) = 4 if jc i and tp Zj = o?lj >- 0, 

(6.5) z;n E(Zj) = $ if j<i and lZ;l = 1, 

(6.6) z; c I; if 4 ( i) = 0 and w Q is decomposable. 

Condition (6.6) is rather special and is introduced only to take 

into account the case when WQ is decomposable. But, in this case, by the 

definition of I(S), we have 

5 = I, u 1,u .., u Ix Cc) ) 

where x = ~(~01 is finite, and we define 

zi = I; - FCI,)u...w k;) 

fir i c x . With these definitions, it is clear that (6.2) - (6.6) hold for i L_x 

We can now assume that n > 0 (and n > x if x is finite) and that Z i has 

been defined for ir n so that the above conditions are satisfied. From our 

assumption we have that tp 1 b(,.,) = tp Z +(n) is indecomposable. We want to 

define 2, so that (6.2) - (6.6) remain valid. 

Let K=ii: c+(i) = 4(n) c i <n), Z’= U(i&K)Z; .Then 
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1;: 14(,)) 2;: Z~,,, (ieK) and, since t p 2 e(n) is indecomposable and 

K is finite, 2 
,N 

C Z+(P’, . 5 Put J = {jcb: tpZj = o ?w), 

L= U(j<b(n>,IZjl=l)Zjl M=U(4(n><jcn, IZj\ =I)Zj - 

By (6.5), Z,+,(,) n E(L)=$. By (6.4), M is a finite subset of S- F(Z+(,)) 

and therefore 

tpo($,,,- E(LLJM3= tp-q$l(,) * 

It follows that there is a set Z ,, having the same type as I ,, 

(< tp z4& such that 

Z’C Z,~Z+(,)-E(LUMI- UCjEJ)F(Zj). 

With this choice for 2, it is obvious that (6.2), (6.4) and (6.5) hold, and routine 

to verify that (6.3) also holds for i = n . (6.6) holds vacuously for I = n (from 

our assumption about n). 

From (6.2) and (6.3) it follows that S’ = U ( I Zb I = 2) Z i has the 

sameordertypeasS.If lZ;\=IZjl=l and j<i ,then Z;fiECZj)=$ 

by (6.5). Therefore, S’ is an independent set of type 00 . 

ot2 Case 3. w0 = (J,~+o@, where 0 < 8 < w1 and O<@cw,, 

Let S=AuB Cc) , where tpA=o,y and tpB=wp. Inview 

of cases 1 and 2 we can assume that A ,B are actually independent and the 

edges of G join points of A to points of B. We want to show that there are sets 

A’c A and B’c B such that tp A' = ti,~ and tp 6 = up and A’ u 8’ is 

independent. 

We shall assume first that 8 is indecomposable. Consider a new 

graph G’ = ( B, E’) in which two points b, b' E 6 are joined by an edge if and 

only if E(b) n E(b') is infinite. If G’ contained an infinite path b,, b, , . . . 

then we should be able to find distinct points a D , Q., , . . . in A such that 

a,(:.E(b") n E(b,+,). Then b,,a,, b,, a, , . . . is aninfinite path in G 

contrary to the hypothesis of the theorem., Therefore, G’ contains no infinite 
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path and, by Case 2, it follows that there is a set 8, c 0 of type op which 

contains no edge of G’ . This implies that EC b) n E (b’) is finite for every 

distinct pair of points b, b’ E 8, . Therefdre, since [ B, I = HO , the set 

A, = IacA: )E’(a)nB,)r2] iscountableandhence A)1 -A-A, hastype 

0,~ and each point of A; is joined to at most one point of B,. 

Since tp8, = up and 2.0~0 , it follows that B, is the union of 

two disjoint sets B: , B; having the same type op. Let 

A’; = { a e A; : ElaZfi Bt= $1 (i=4,2) . Then A’, =A’;uA’; and, since 1 

is indecomposable, there is i E { f ,2 ] such that tp APi = O, x . Then A’\ u B\ 

is an independent set of type w, 1 + up . 

Now suppose that 5 is decomposable. In this case we have that 

A=A,uA,u...uAk(c:) , where k<o, tpA;=u,xi and 8; is 

indecomposable. Applying the previous argument k times we find sets A’; c A; 

and B’C B such that tp A’; = 04 ~; (ii k), tp B’= w@ and A’,u...uA’,u B’ 

is independent. This completes the proof. 
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