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SOME APPLICATIONS OF GRAPH THEORY TO NUMBERS THEORY

P. Erdös
Hungarian Academy of Sciences

Let al < . . . < ak s n be a sequence of integers no one of which divides

any other . It 1s not difficult to see that max k - [Et'-) [1] . Assume now

that no a i divides the product of two others, then I proved that [2]

(r(x) denotes the number of primes

c x2/3
(1)

	

n (x) + - l Z < max k
(t.9 =)

not exceeding x)

x2/3< e(x) +
c2	

(tog =) 2

The proof of both the upper and the lower bound used combinatorial methods .

Probably

X2/3 2

	

[

x2/3
2j(z)

	

max k - w(_) +

	

+ o°
(tag x)

	

(tog x)

for a certain c ; but I could not prove (2) .

Assume next that the products aiaj are all different . Then I proved (3]

c3x 3/4

	

c 3/4
(3)

	

W(x) +

	

3/2 < max k < x(x) +

	

4" 3 2
(.eog x)

	

(tog z)

I expect that here too

3/4

	

3/4
max k - *(x) + ~

(too X)3/2 + ° (log x) 3/2~

but again I can not prove (4) . The proof of both the upper and the lower bound

of (3) is combinatorial and graph theoretic .

Assume that the products taken r at a time six . . .
air

are all differ-

ent .ent. We have no completely satisfactory estimation of maX k if r > 2 .

Assume that all the products

(4)

are different . I proved that [4]
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c x l/2

(5)

	

n(x) + 7r(A) < max k < n(x) + - 2 .
9

The lover bound is obvious, it suffices to take the primes and their squares -

the proof of the upper bound is more complicated . Probably

xl/2
(6)

	

max k

	

71W+ x(Jx) + o

holds and one can make plausible conjectures for sharper results than (6) ]4] .

Let aI < . . . < ak be a sequence of real numbers . Assume that for every

four indices i, j, r, s

(7)

	

1a iaj - aras l t 1,

if the a's are integers then (7) means that the products a ia j are all dif-

ferent . I can not prove that (7) implies k - o(x) .

Let now al < . . . < ak s x and assume that the sum ai + aj are all

distinct . It is known that [7]

Turán and I conjectured

(8)	max k - xl/2 + 0(1) .

(I+o(1))x1/2 < max k < xl/2 + xl/4 + 1 .

(8) if true seems rather deep . Assume now that all the suss taken r at a time

ail + . . . + ai r are distinct . Bose and Chowla conjectured

max k

	

(l+o(1))xl/r ,

but they could only prove sax k t (l+o(1))xl/r [8] .

Let us finally assume that aI < . . . < ak s x is such that the sum

E t i a i, ti ' 0 or I are all different . Moser and I proved that [S]



max k - to x + to9g2x + 0(ío9 x) .

Conway and Guy showed that for~oyx 2- 2r , rr

o

> r0 , max k a r+2 . Perhaps

(9)

	

max k - 140042 + 0(1) .

(9) is probably rather deep .

Let aI < . . . < % 5 x, k > n(x) . Then it is easy to see that the prod-

ucts Ri-I aü can not all be different . Let k > w(x), denote by f(k,x)

the smallest integer so that there always are f(k,x) - r primes p, < . . . < p s

for which more then r a's are of the form Ri-1 pii' Clearly f(k,x) s x(x),

also f(k,x) is a non increasing function of k . Straus and I proved

x1/2
(10)

	

f(m(x)+1, x) - (á+o(1)) (9 x) ,

and in fact we obtained several sharper results than (10) the proof of which

we will outline .

Let k - ex. I proved

(11)

	

f(k,x) - í.09.C09 x + (cl+o(1))(2 809409 x)
1/2

where

l

	

2
(12)

	

11/2íc
ax /2 dx

(2,r)

Now we prove (10),. Let pl < . . . < ps , a - 0(x1/2 ) be the prima not ex-

seeding x, qI < . . . < qv are those primes greater than x12 which divide

more than one a . Since k > u(x) a simple argument shows that more than s+v

a's are composed of the prime& pl ,. .. ' p &' ql ,. .. 'qv (since all the other q's

divide at most one a and k > e(x)) . Thus

1 38

(13)

	

f(t(x)+1, x) 5 s + v .

C .
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Now we show

(14)

	

f(r(x)+1, x) 5 2a + 1 .

The proof of (13) is indeed easy . If a a v, (13) implies (14) . Assume

next v > a, let q 1 < . . . < qs+l be the first s+l q's . Clearly at least

2a+2 a's are composed of the 2s+1 primes p,, . . .,p,, ql.. .. 'qs+l (to each

q there corresponds at least two a's and the a's corresponding to distinct

q'a are distinct) . This completes the proof of (14) .

by the prime number theorem and (14) we obtain

1/2
(15)

	

f(w(x)+1, x) 5 (4+o(1)) x1
x

next we estimate f(w(x)+1, x)

of primes not exceeding (2-c)x l/22

follows :

(16)

from below. Let p l < . . . < pt be the set

We define a set At of t integers as

At ' {p tPl . PtP2' Pt-2r+lp2r-l' Pt-2r+IP2r+I' Pt-2rp2r + Pt-2rP2rt2}
r

	

1, . . .

and we close up the cycle so that eacy P i , 1 5 i 5 t should occur in exactly

two integers of At . Let for example t - 8, then the set A8 consists of

the 8 integers 19 .2, 19 . 3, 17 .2, 17 .5, 13 .3, 13 . 7, 5 . 11, 7 .11 . It is easy to

give a geometric interpretation of At . Consider a polygon of t sides, the

vertices are the primes pl , . . .,pt and the edges which are interpreted as the

products of the vertices are the elements of At , e .g. t - 9

13 11

7

17



140

It easily follows from the prime number theorem that for x > x 0(c) all

elements of A t are less than x.

Now we define a set of w(x) + 1 integers as follows : The primes p j S x,

j 2 t+2, the t elements of At and 2pí+1 . 3pt+1 • For x Z x0(c) all these

numbers are S x and pl,. .. 'pt+, is clearly the smallest set of primes so

that there are more a's composed of these primes than the number of these

primes. Thus by the prime number theorem for x > x 0 (c)

1/2
(17)

	

f(w(x)+1, x) 2 t + 1 - (2-c+o(1))2

(15) and (17) imply (10) . By using the prime number theorem with an error term

the above proof gives

f(r(x)+1, x) - 2a(x1/2) + o	 x	1/2

(lag x)k

for every k .

We also observed that (13) is beat possible for quite large values of x,

e.g. f(26,100) - 9 (x(100) - 25) . To see this take the primes from 29 to

97 and the 10 numbers 34, 38, 39, 46, 55, 57, 69, 77, 85, 91 . In fact there

always is equality in (10) whenever the set of integers (16) formed with the

primes S 2x1/2 are all not greater then x . This certainly happens for very

much larger values of x than 100 but Straus and I conjectured that for

x > x0 this never happens and that in fact

(18)

	

2A (x112) - f(A(x)+1, x) .

We also made the following related conjecture : For every sufficiently

large prime pk there is an index i for which

(19)

	

pk ~ pk+i pk-i'



(19) if true is certainly very deep . There certainly are fairly large

values of k so that for all i < k, pk > pk+ipk-i and we could perhaps try

to find the largest such value by a computer, but even if one would succeed it

will be very difficult to show that one really has found the largest such

value .

Finally Straus and I proved that

(20)

	

f(e(x)+1, x) - t

1 41

where t is the largest integer so that all the t integers of A t are less

than or equal to x . The proof of (20) follows easily from the remark that if

ai - q'z then all prime factors of z are <_ x/q j .

Now we prove (11) . A theorem of Kac and myself states [6J that the number

of integers n s x for which V(n) > 109109 x + a(21og10gx) 1/2 is Mn) de-

notes the number of distinct prime factors of n)

2
(21)

	

x(l+o(1))

	

11 2 Jm ex /2dx .
(2a)

	

a

From (21) we immediately obtain that the number of integers n s x for which

(22)

	

V(n) > 109109 x + (c l- tx)(21oglogx) 1/2

is > cx where c I is determined by (12) and cx tends to 0 as x tends

to infinity. Let now a I < ,,, < ak s x, k > cx be the integers not exceeding

x which satisfy (22) . This set of integers clearly shows that for k - ex

(23)

	

f(k,x) z 1og10g x + (cl+0(1))(2109109x) 1/2

(since no a is composed of fewer than 109109 x + (cl+o(1))(21ogtogx) 1/2

prime factors) .

Thus to complete the proof of (11) we have to estimate f(k,x) from above .

My first results were obtained by combinatorial methods . I proved that if



and integers

1 4 2

a I < ,,, < ak 5 x, k k cx then for every a there is a y and a sequence of

primes

y < p, < . . . < P r < 2y, r > a 109109 x

b

	

< be, a >

	

x

	

k - k(a)
1

	

(~gx)k '

so that all the numbers p ib j , 1 5 1 5 r ; I s j 5 a are a's . From

a > (x/(Logx)k ) I then deduced that there are indices j l , j 2 and primes

so that b jl p l bj 2P2 . But all these results only gave f(k,x) < (2+0(1)) •

4nglag x . Finally I found simpler number theoretic methods which gave the re-

quited upper bound for f(k,x) . I now outline my proof . Let al < ,,, < ak 5 x,

k z cx be any sequence of integers . It easily follows from (11) and (12) that

for every t > 0 there is a 6 = 6(t) so that our sequence has a subsequence

ail < ,,, < air

	

for every 1 5 j 5 r

(24)

	

V(a i ) < Loglog x + (c 1+e)(2.togtogx) 1/2 , r > 6x .
j

Put exp exp (Lag dog x) 1)3 - y (exp s - ex) and denote by Vy(n) the

number of distinct prime factors of n not exceeding y . It easily follows

from the method of Turán[10] (or again from (6J) that for at least 2 of the

a i 's we have
j

(25) Vy(a i ) > 3 (LogLog x)1/3 - 3 Log,09 y .
j

In (25) 3(LogtOgx) l/3 could be replaced by (Logdogx) 1/3 - c(dogdogx) 1/6

for sufficiently large c, but (25) suffices for our purpose .

Denote by a, < . . . < a t , t > 2 the a's which satisfy (25) . Denote

further by b I < ,,, < bZ < y the integere for which

PWpv
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(26)

	

3 (to9tog x)1/3 > v(b i ) > 3 (jogtog x)1/3 .

From Turán's method [10) (or from [6)) z - (l+o(1))y . Consider now the

integers

(27)

	

abj . 1 5 1 5 t ; 1 5 j s z .

Denote by y(n) the number of prime factors of n not exceeding y

where in F
Y
(n) multiple factors are counted multiply . From (25) and (26) we

have

(28)

	

Fy(aib j ) > 3 (£09&q x)
113

.
3 too109 y .

From (28) it easily follows from the method of Hardy and Ramanujan [9)

that the number of integers a s xy satisfying (28) in other words satisfying

(28a)

	

Fy(a) > 3 (togto9 x) 1/3

is less then xyexp(-n(togtogx) 1/3 ) for a certain fixed n > 0. (Turán's meth-

od would give here only (cxy/(tOgtogx) 1/3) which would" not be enough for our

purpose, but by using higher moments we would obtain o(xy/tOgtogx) which would

suffice for our purpose .)

The number of the products of the form (27) is clearly

(29)

	

tz > óxy
4 '

From (29) and (28a) there is an m < xy for which the number of solutions

of a - sibj is greater than (togtogx) 2 , in other words m is divisible by

at least (togtogx) 2 distinct a's . (24) and (26) imply on the other hand

that

(30)

	

v(m) < tagjog x + (c l+1)(109109 x) 1 /2 + 4 (109109 x ) 1/3



1 4 4

Thus clearly

f(k,x) < V(m)

or

(31)

	

f(k,x) < Lo9Ro9 x + (c 1+o(1))(t0gto9 x) 1/2

(23) and (31) complete the proof of (11) .

one could study f(k,x) for k - o(x) and k > x(x)+1, but I have not

yet obtained as sharp results as (10) and (11) .

References

1

	

Problem 3739 Amer . Math . Monthly 4á(l937), 120 .

2

	

P. Erdős, on sequences of integers no one of which divides the product
of two others and on some related problems, MITT . FORSCH . INST . MATH .
u . MECH . UNIV . TOMSK 2, 79-82 (1938) .

3

	

P. Erdős, On some applications of graph theory to.number theoretic prob-
lems, Publ. Ramanujan Institute No . 1(1969) 131-136 .

4

	

P. Erdős, Extremal problems in number theory II . Mat . Lapok 17(1966),
135-155 (in Hungarian) .

5

	

P. Erdős, Problems and results in additive number theory, Colloque sur la
theorie des nombres, BruxeIles 1955, p . 136-137 .

6

	

P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive
number theoretic functions, Amer . J . Math . 62(1940) 738-742 .

7 H . Halberstam and K .F. Roth, Sequences, Oxford Univ . Press, New York-
London 1966, p . 85-86 and B. Lindström, An inequality for B 2 se-
quences, J. Comb . Theory 6(1969), 211-212 .

8

	

Ibid ., 5, p . 81 and 85 .

9

	

G.H. Hardy and S. Ramanujan, The normal number of prime factors of a num-
ber n, Quarterly J . Math . 48(1917), 76-92, see also Ramanujan,
Collected papers 262-276 .



1 4 5

10 P. Turin, On a theorem of Hardy and Ramanujan, J . London Math. Soc . 9
(1934), 274-276 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

