some applications of graph teeory to numbers theory

P. Erdös
Hungarian Academy of Sciences

Let $a_{1}<\ldots<a_{k} \leq n$ be a sequence of integers no one of which divides any other. It is not difficult to see that $\max k=\left[\frac{n+1}{2}\right]$ [1]. Assume now that no a_{i} divides the product of two others, then I proved that [2] ($\pi(x)$ denotes the number of primes not exceeding x)

$$
\begin{equation*}
\pi(x)+\frac{c_{1} x^{2 / 3}}{(\log x)^{2}}<\max k<\pi(x)+\frac{c_{2} x^{2 / 3}}{(\log x)^{2}} . \tag{1}
\end{equation*}
$$

The proof of both the upper and the lower bound used combinatorial methods. Probably

$$
\begin{equation*}
\max k=\pi(x)+\frac{c x^{2 / 3}}{(\log x)^{2}}+0\left(\frac{x^{2 / 3}}{(\log x)^{2}}\right) \tag{2}
\end{equation*}
$$

for a certain $c ;$ but I could not prove (2).
Assume next that the products $a_{i} a_{j}$ are all different. Then I proved [3]

$$
\begin{equation*}
\pi(x)+\frac{c_{3} x^{3 / 4}}{(\log x)^{3 / 2}}<\max k<\pi(x)+\frac{c_{4} x^{3 / 4}}{(\log x)^{3 / 2}} . \tag{3}
\end{equation*}
$$

I expect that here too

$$
\begin{equation*}
\max k=\pi(x)+\frac{c x^{3 / 4}}{(\log x)^{3 / 2}}+0\left(\frac{x^{3 / 4}}{(\log x)^{3 / 2}}\right) \tag{4}
\end{equation*}
$$

but again I can not prove (4). The proof of both the upper and the lover bound of (3) ia combinatorial and graph theoretic.

Assume that the products taken r at a time $a_{1} \ldots a_{1}$ are all differ ent. We have no completely satisfactory eatimation of $\max k$ if $r>2$.

Assume that all the products
are different. I proved that [4]

$$
\begin{equation*}
\pi(x)+\pi(/ x)<\max k<\pi(x)+\frac{c_{5} x^{1 / 2}}{\log x} . \tag{5}
\end{equation*}
$$

The lower bound is obvious, it suffices to take the primes and their squares the proof of the upper bound is more complicated. Probably

$$
\begin{equation*}
\max k=\pi(x)+\pi(\sqrt{x})+0\left(\frac{x^{1 / 2}}{\log x}\right) \tag{6}
\end{equation*}
$$

holds and one can make plausible conjectures for sharper results than (6) [4].
Let $a_{1}<\ldots<a_{k}$ be a sequence of real numbers. Assume that for every four indices $1, f, r$, s

$$
\begin{equation*}
\left|a_{i} a_{j}-a_{r} a_{s}\right| \geq 1 \tag{7}
\end{equation*}
$$

If the a 's are integers then (7) means that the products $a_{i} a_{j}$ are all different. I can not prove that (7) implies $k=o(x)$.

Let now $a_{1}<\ldots<a_{k} \leq x$ and assume that the sums $a_{i}+a_{j}$ are all distinct. It is known that [7]

$$
(1+o(1)) x^{1 / 2}<\max k<x^{1 / 2}+x^{1 / 4}+1 .
$$

Turkn and I conjectured
(8) $\quad \max k=x^{1 / 2}+0(1)$.
(8) If true seems rather deep. Assume now that all the sums taken r at a time $\mathbf{a}_{1_{1}}+\ldots+\mathbf{a}_{\mathbf{i}_{r}}$ are distinct. Bose and Chowla confectured

$$
\max k=(1+o(1)) x^{1 / r},
$$

but they could only prove $\max k \geq(1+\infty(1)) x^{1 / r} \quad[8]$.
Let us finally assume that $a_{1}<\ldots<a_{k} \leq x$ is such that the sums $\sum_{i} \varepsilon_{i}, \varepsilon_{i}=0$ or 1 are all different. Moser and I proved that [5]

$$
\max k=\frac{\log x}{\log 2}+\frac{\log \log x}{2 \log 2}+o(\log x)
$$

Conway and Guy showed that for $x=2^{r}, x>r_{0}, \max k \geq r+2$. Perhapa (9) $\quad \max k=\frac{\log x}{\log 2}+0(1)$.
(9) is probably rather deep.

Let $a_{1}<\ldots<a_{k} \leq x, k>\pi(x)$. Then it is easy to see that the products $\pi_{i=1}^{k} a_{i}^{a_{i}}$ can not all be different. Let $k>\pi(x)$, denote by $f(k, x)$ the smallest integer so that there alwaya are $f(k, x)=r$ prises $p_{1}<\ldots<p_{s}$ for which more than r a's are of the form $\prod_{i=1}^{r} p_{i}^{a_{i}}$, Clearly $f(k, x) \leq \pi(x)$, also $f(k, x)$ is a non increasing function of k. Straus and I proved

$$
\begin{equation*}
f(\pi(x)+1, x)=(4+0(1)) \frac{x^{1 / 2}}{(\log x)}, \tag{10}
\end{equation*}
$$

and in fact we obtained several sharper reaults than (10) the proof of which we will outline.

Let $k=c x$. I proved

$$
\begin{equation*}
f(k, x)=\log \log x+\left(c_{2}+\infty(1)\right)(2 \log \log x)^{1 / 2} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{(2 \pi)^{1 / 2}} \int_{-\infty}^{c_{1}} e^{-x^{2} / 2} d x=c \tag{12}
\end{equation*}
$$

Now we prove (10). Let $\mathrm{P}_{1}<\ldots<\mathrm{P}_{\mathrm{g}}, \mathrm{s}=\pi\left(\mathrm{x}^{1 / 2}\right)$ be the primes not exceeding $x, q_{1}<\ldots<q_{v}$ are those primes greater than $x^{1 / 2}$ which divide more than one \underline{a}. Since $k>n(x)$ a simple argument phowa that more than s+v s's are composed of the primes $p_{1}, \ldots, p_{s}, q_{1}, \ldots, q_{v}$ (since all the other $q^{\prime} s$ divide at most one a and $k>\pi(x))$. Thus

$$
\begin{equation*}
f(\pi(x)+1, x) \leq s+v \tag{13}
\end{equation*}
$$

Now we show

$$
\begin{equation*}
f(\pi(x)+1, x) \leqslant 2 s+1 \tag{14}
\end{equation*}
$$

The proof of (13) is indeed easy. If $s \geq v$, (13) implies (14). Assume next $v>s$, let $q_{1}<\ldots<q_{s+1}$ be the first s+1 $q^{\prime} s$. Clearly at least $2 s+2$ a's are composed of the $2 s+1$ primes $p_{1}, \ldots, P_{g}, q_{1}, \ldots, q_{g+1}$ (to each q there corresponds at least two $a^{\prime} s$ and the $a^{\prime} s$ corresponding to distinct q^{\prime} s are distinct). This completes the proof of (14).

By the prime number theorem and (14) we obtain

$$
\begin{equation*}
f(\pi(x)+1, x) \leq(4+o(1)) \frac{x^{1 / 2}}{\log x} . \tag{15}
\end{equation*}
$$

Hext we estimate $f(\pi(x)+1$, $x)$ frombelow. Let $p_{1}<\ldots<p_{t}$ be the set of primes not exceeding $(2-\varepsilon) x^{1 / 2}$. We define a set A_{t} of t integers as follows:

$$
\begin{array}{r}
A_{t}=\left\{P_{t} P_{1}, P_{t} P_{2}, P_{t-2 r+1} P_{2 r-1}, P_{t-2 r+1} P_{2 r+1}, P_{t-2 r} P_{2 r}, P_{t-2 r} P_{2 r+2}\right\} \tag{16}\\
r=1, \ldots
\end{array}
$$

and we close up the cycle so that eacy $P_{i}, 1 \leq i \leq t$ should occur in exactly two integers of A_{t}. Let for example $t=8$, then the set A_{8} consists of the 8 integers $19 \cdot 2,19 \cdot 3,17 \cdot 2,17 \cdot 5,13 \cdot 3,13 \cdot 7,5 \cdot 11,7 \cdot 11$. It is easy to give a geometric interpretation of A_{t}. Consider a polygon of t sides, the vertices are the primes P_{1}, \ldots, P_{t} and the edges which are interpreted as the products of the vertices are the elements of A_{t}, e.g. $t=9$

It easily follows from the prime number theorem that for $x>x_{0}(\varepsilon)$ all elements of A_{t} are less than x.

Now we define a set of $\pi(x)+1$ integers as follows: The primes $p_{j} \leq x$, $j \geq t+2$, the t elements of A_{t} and $2 p_{t+1}, 3 p_{t+1}$. For $x \geq x_{0}(\varepsilon)$ all these numbers are $S x$ and P_{1}, \ldots, P_{t+1} is clearly the smallest set of primes so that there are more $a^{\prime} s$ composed of these primes than the number of these primes. Thus by the prime number theorem for $x>x_{0}(\varepsilon)$

$$
\begin{equation*}
f(\pi(x)+1, x) \geq t+1=(2-\varepsilon+o(1)) \frac{2 x^{1 / 2}}{\log x} . \tag{17}
\end{equation*}
$$

(15) and (17) imply (10). By using the prime number theorem with an error term the above proof gives

$$
f(\pi(x)+1, x)=2 \pi\left(x^{1 / 2}\right)+o\left(\frac{x^{1 / 2}}{(\log x)^{k}}\right)
$$

for every k.
We also observed that (13) is best possible for quite large values of x, e.g. $f(26,100)=9(\pi(100)=25)$. To see chis take the primes from 29 to 97 and the 10 numbers $34,38,39,46,55,57,69,77,85,91$. In fact there always is equality in (10) whenever the set of integers (16) formed with the primes $\leq 2 x^{1 / 2}$ are all not greater than x. This certainly happens for very much larger values of x than 100 but Straus and I conjectured that for $x>x_{0}$ this never happens and that in fact

$$
\begin{equation*}
2 \pi\left(x^{1 / 2}\right)-f(\pi(x)+1, x)+\infty \tag{18}
\end{equation*}
$$

We also made the following related conjecture: For every afficiently large prime p_{k} there is an index 1 for which

$$
\begin{equation*}
p_{k}^{2}<p_{k+1} P_{k-1} \tag{19}
\end{equation*}
$$

(19) if true is certainly very deep. There certainly are fairly large values of k so that for all $1<k, p_{k}^{2}>p_{k+1} p_{k-1}$ and we could perhaps try to find the largest such value by a computer, but even if one would succeed it will be very difficult to show that one really has found the largest such value.

Finally Straus and I proved that

$$
\begin{equation*}
f(\pi(x)+1, x)=t \tag{20}
\end{equation*}
$$

where t is the largest integer so that all the t integers of A_{t} are less than or equal to x. The proof of (20) follows easily from the remark that if $a_{i}=q_{j} z$ then all prime factors of z are $s x / q_{j}$.

Now we prove (11). A theorem of Kac and myself states [6] that the number of integers $n \leq x$ for which $V(n)>\log \log x+a(2 \log \log x)^{1 / 2}$ is $\quad(V(n)$ denotes the number of distinct prime factors of n)

$$
\begin{equation*}
x(1+o(1)) \frac{1}{(2 \pi)^{1 / 2}} \int_{\alpha}^{\infty} e^{-x^{2} / 2} d x \tag{21}
\end{equation*}
$$

From (21) we immediately obtain that the number of integers $n \leqslant x$ for which

$$
\begin{equation*}
V(n)>\log \log x+\left(c_{1}-\varepsilon_{x}\right)(2 \log \log x)^{1 / 2} \tag{22}
\end{equation*}
$$

is $>c x$ where c_{1} is determined by (12) and ε_{x} tends to 0 as x tends to infinity. Let now $a_{1}<\ldots<a_{k} s x, k>c x$ be the integers not exceeding x which satisfy (22). This set of integers clearly shows that for $k=c x$

$$
\begin{equation*}
f(k, x) \geq \log \log x+\left(c_{1}+o(1)\right)(2 \log \log x)^{1 / 2} \tag{23}
\end{equation*}
$$

(since no a is composed of fewer than $\log \log x+\left(c_{1}+o(1)\right)(2 \log \log x)^{1 / 2}$ prime factors).

Thus to complete the proof of (11) we have to estimate $\mathbf{f}(\mathbf{k}, \mathbf{x}$) from above. My first results were obtained by combinatorial methods. I proved that if
$a_{1}<\ldots<a_{k} \leq x, k \geq c x$ then for every a there is a y and a sequence of primes

$$
y<p_{1}<\ldots<p_{r}<2 y, \quad r>\alpha \log \log x
$$

and integers

$$
b_{1}<\ldots<b_{s}, \quad g>\frac{x}{(\log x)^{k}}, \quad k=k(\alpha)
$$

so that all the numbers $p_{i} b_{j}, 1 \leq 1 \leq r ; 1 \leq 1 \leq a$ are a's. From $s>\left(x /(\log x)^{k}\right)$ I then deduced that there are indices j_{1}, j_{2} and primes $P_{w} P_{v}$ so that $b_{j_{1}} p_{1}=b_{j_{2}} p_{2}$. But all these results only gave $f(k, x)<(2+o(1))$. $\log \log x$. Finally I found simpler number theoretic methods which gave the required upper bound for $f(k, x)$. I now outline wy proof. Let $a_{1}<\ldots<a_{k} \leqslant x$, $k \geq c x$ be any sequence of integers. It easily follows from (11) and (12) that for every $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)$ so that our sequence has a subsequence $a_{1_{1}}<\ldots<a_{1_{r}}$ satisfying for every $1 \leq j \leq r$

$$
\begin{equation*}
v\left(a_{i_{j}}\right)<\log \log x+\left(c_{1}+\varepsilon\right)(2 \log \log x)^{1 / 2}, r>\delta x \tag{24}
\end{equation*}
$$

Put $\exp \exp (\log \log x)^{1 / 3}=y\left(\exp z=e^{z}\right)$ and denote by $\nabla_{y}(n)$ the number of distinct prime factors of n not exceeding y. It easily follows from the method of Turan[10] (or again from [6]) that for at least $\frac{r}{2}$ of the $a_{i_{j}}$'s we have

$$
\begin{equation*}
v_{y}\left(a_{1}\right)>\frac{2}{3}(\log \log x)^{1 / 3}=\frac{2}{3} \log \log y . \tag{25}
\end{equation*}
$$

In (25) $\frac{2}{3}(\log \log x)^{1 / 3}$ could be replaced by $(\log \log x)^{1 / 3}-c(\log \log x)^{1 / 6}$ for sufficiently large c, but (25) suffices for our purpose.

Denote by $a_{1}<\ldots<a_{t}, t>\frac{\delta x}{2}$ the $a^{\prime} s$ which satisfy (25). Denote further by $b_{1}<\ldots<b_{z}<y$ the integers for which

$$
\begin{equation*}
\frac{4}{3}(\log \log x)^{1 / 3}>v\left(b_{i}\right)>\frac{2}{3}(\log \log x)^{1 / 3} . \tag{26}
\end{equation*}
$$

From Turan's method [10] (or from [6]) $z=(1+o(1)) y$. Consider now the integers

$$
\begin{equation*}
a_{i} b_{j}, 1 \leq i \leq t ; 1 \leq j \leq z \tag{27}
\end{equation*}
$$

Denote by $F_{y}(n)$ the number of prime factors of n not exceeding y where in $F_{y}(n)$ multiple factors are counted multiply. From (25) and (26) we have

$$
\begin{equation*}
F_{y}\left(a_{i} b_{j}\right)>\frac{4}{3}(\log \log x)^{1 / 3}=\frac{4}{3} \log \log y \tag{28}
\end{equation*}
$$

From (28) it easily follows from the method of Hardy and Ramanujan [9] that the number of integers $m s x y$ satisfying (28) in other words satisfying

$$
\begin{equation*}
F_{y}(m)>\frac{4}{3}(\log \log x)^{1 / 3} \tag{28a}
\end{equation*}
$$

is less than $x y \exp \left(-n(\log \log x)^{1 / 3}\right.$) for a certain fixed $n>0$. (Turán's method would give here only $\left(c x y /(\log \log x)^{1 / 3}\right.$, which would not be enough for our purpose, but by using higher moments we would obtain o (xy/Roglogx) which would suffice for our purpose.)

The number of the products of the form (27) is clearly

$$
\begin{equation*}
t z>\frac{\delta x y}{4} . \tag{29}
\end{equation*}
$$

From (29) and (28a) there is an $m<x y$ for which the number of solutions of $m=a_{i} b_{j}$ is greater than $(\log \log x)^{2}$, in other words m is divisible by at least $(\log \log x)^{2}$ distinct a's. (24) and (26) fmply on the other hand that

$$
\begin{equation*}
v(m)<\log \log x+\left(c_{1}+\varepsilon\right)(\log \log x)^{1 / 2}+\frac{4}{3}(\log \log x)^{1 / 3} . \tag{30}
\end{equation*}
$$

Thus clearly

$$
\mathbf{f}(\mathbf{k}, \mathrm{x})<\mathbf{V}(\mathbf{m})
$$

or

$$
\begin{equation*}
f(k, x)<\log \log x+\left(c_{1}+o(1)\right)(\log \log x)^{1 / 2} . \tag{31}
\end{equation*}
$$

(23) and (31) complete the proof of (11).

One could study $f(k, x)$ for $k=o(x)$ and $k>\pi(x)+1$, but I have not yet obtained as sharp results as (10) and (11).

References

1 Problem 3739 Amer. Math. Monthly 44(1937), 120.
2 P. Erdös, On sequences of integers no one of which divides the product of two others and on some related problems, MITT. FORSCH. INST. MATH. u. MECH. UNIV. TOMSK 2, 79-82 (1938).

3 P. Erdös, On some applications of graph theory to number theoretic problems, Publ. Ramanujan Institute No. 1(1969) 131-136.

4 P. Erdös, Extremal problems in number theory II. Mat. Lapok 17(1966), 135-155 (in Humgarian).
P. Erdös, Problems and results in additive number theory, Colloque sur la thiorie des nombres, Bruxelles 1955, p. 136-137.
P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62(1940) 738-742.

7 H. Halberstam and K.F. Roth, Sequences, Oxford Univ. Press, New YorkLondon 1966, p. 85-86 and B. Lindstrom, An inequality for B_{2} sequences, J. Comb. Theory 6(1969), 211-212.

Ibid., 5, p. 81 and 85.
9 G.H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quarterly J. Math. 48(1917), 76-92, see also Ramanujan, Collected papers 262-276.

10 P. Turan, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276.

