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In this note I discuss problems in number theory most of which have a
combinatorial flair . Section 2 is a joint work with A. Sárkőzi and E. Szemerédi .

First we introduce some notations which will be used frequently in this
paper. The sequence al, a2 , . . . , will be denoted by A, A(x) = & S., 1 . The
limit, lim x~„ A(x)/x, if it exists, is called the density of A (the upper density
is the lim sup of the same expression) . The term V(n) denotes the number of
prime factors of n, and V(n,1), the number of prime factors of n not exceeding
I (in both cases multiple factors are counted multiply) . The symbols c, cl , . . . ,
will denote positive absolute constants not necessarily the same at each
occurrence ; s, 6, q denote positive numbers which can be chosen arbitrarily
small. The letters a, b, t,1, . . . denote integers ; p is a prime ; P(t) is the greatest
and p(t) the least prime factor of t .

1
Denote by f(k, x) the maximum number of integers al < . . . < a, :!5 x

so that no k of them have pairwise the same common divisor . I have proved
[6] that for every k if x > xo(k)
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log
(1)

	

exp(ck log log x) <
f (k, x) < x 3 /4+e, where,exp z = eZ.

It was conjectured in [6] that the lower bound seems to give the right order of
magnitude for f(k, x) .

Denote by F(k, x) the maximum number of integers al < . . . < a$ <_ x so
that no k of them have pairwise the same least common multiple . I con-
jectured that F(k, x) = o(x) for every k Z 3. Recently, I proved that for k 4
this conjecture is certainly false . At present I cannot disprove this conjecture
for k = 3 .

The falseness of the conjecture will easily follow from the following
result which is of independent interest :

Theorem 1 . The density of integers having three relatively prime divisors
satisfying b l < b 2 < b 3 < 2b, exists and is less than 1 .

I have proved [7] that the density of integers having two relatively prime
divisors bl < b 2 < 2b, is 1. The proof has not been published and is quite
complicated, but we will not need this result here .

Let us assume that Theorem 1 is already proved . Then consider the
integers x/2 < a l < . . . < a., < x no one of which has three pairwise relatively
prime divisors bl < b 2 < b 3 < 2b l . By our theorem s > cx. Now we show
that there are no four a's, say a l < a2 < a 3 < a4 , satisfying

(2)

	

[ai,a;]=T,

	

1<-i<j<_4.

To see this assume that (2) holds. Put T/a; = b i , 1 <_ i <__ 4 . Clearly b j I a ;
for j # i and (bi , b;) = 1, 1 <_ i < j <_ 4. Finally from x/2 < a l < a 2 < a3
< a4 < x we obtain b2 < b3 < b4 < 2b2 . Thus a l would have three divisors
b2 < b 3 < b4 < 2b 2 l (bi , bj) = 1, 2 <_ i <j :5 4, which contradicts our assump-
tions. Hence F(4, x) > cx as stated .

Thus we only have to prove Theorem 1 . First we show the following :

Lemma 1 . Let 1 < ul < . . . be any sequence of integers. Denote by d the
density, and by d(u l , . . .) the upper density of the integers having at least
one divisor amongst the u's . Assume that for every a > 0 there is a k satisfying

(3)

	

d(uk+i, . . .) < e .

Then d(ui , . . .) exists and is less than 1 .

A theorem of Behrend [2] states that if al < . . . < ak and b l < . . . < b i are
any two sequences of integers then

(4)

	

1 - d(al , . . ., ak , bl, . . ., b) ? (1 - d(al , . . . , ak))(1 - d(b l , . . . , b)) .
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From (3) and (4) we obtain by a simple limiting process that

(5)

	

1 - d(ul , . . .) > (1 - q)(1 - d(ul , . . . , uk)) .

Inequality (5) easily implies Lemma 1 . (The term d(u l , . . . , uk) clearly exists
for every finite set u l , . . . , uk .)

Now let ul < . . . be the sequence of integers which can be written in the
form

(6)

	

b lb2 b3i b l < b 2 < b 3 < 2b1 , (b t , b;) = 1, 1 <_ i <j :5 3 .

To prove Theorem 1 it suffices to show that the u's satisfy (3) . Denote
by ml < . . . the integers which are divisible by at least one ut , i > k; we
have to show that for k > ko(s) the upper density of the m's is less than s.
A theorem of mine states [8] that for every s and S there is an 1 such that the
density of integers n which for some t > I do not satisfy

(1 - 6)log log t < V(n, t) < (1 + 6)log log t

is less than s/2. Thus to prove that the u's satisfy (3) it will suffice to show that
for sufficiently small 6 and k > ko(s, 6,1) the upper density of the m's satisfying

(7) V(mt , t) < (1 + Slog log t

for every t > 1 is less than s/2 .
Showing that this statement is true will be the main difficulty of our

proof. First of all observe that for k > ko(1) (6) implies that every m; has a
divisor of the form

(8) b lb2 b3 ,1<2s<bl <b2 <b3 <2s +2,(b t ,b;)=1,1<_i<j<_3 .

We now prove

Lemma 2. The upper density of the integers mj satisfying (7) and having a
divisor of the form (8) is O(1/s'+`)

Since E I 1Is` converges, it immediately follows from Lemma 2 that
the upper density of the m's satisfying (7) is less than a/2. Thus to complete
the proof of Theorem 1 we only have to prove Lemma 2 . Some of the ele-
mentary computations needed in this proof, we will not carry out in full
detail .

Clearly every m; satisfying (7) can be written in the form

(9) bib2b3t,t2, P(tl) < 2s+2' P(t2) > 2s+2

where the b's satisfy (8) and

(10)

	

V(blb2 b 3 t l ) < (1 + 2S)log s,
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It easily follows from the sieve of Eratosthenes and the well-known
theorems of Mertens that the upper density of the integers of the form (9)
and (10) is at most

'

	

1

	

r
1

	

c

	

1( 11 )

	

Y- blb2 b3 tl p<2'+= 1 p) < s

	

blbe b3 t l

where the prime indicates that bl b e b3 satisfies (8) and b l,b2, b 3 tl satisfies (10) .
Thus to complete the proof of Lemma 2 we only have to prove that for

a sufficiently small c

o
blb21b3 t1 = (s`) .

Now clearly (in ~,. V(t) = r, t < 2s +2)
(13)

	

1 < (

	

1
)/r! < (log s + cl)'/r! .

t

	

pa<2 •+ Z p

(12)

A well-known theorem of Hardy and Ramanujan states [13] that

(14)

	

II (x) < c x (log log x + c3 )'-1

'

	

2

	

(r - 1)llog x '

where II,(x) denotes the number of integers t < x satisfying V(t) = r .
From (14) we obtain (in I: r 'V(b) = r, 2s < b < 2s+2 )

(15)

	

E' 1 < II (2s+2)/2s < c (log s + c3)'-1
r b

	

4

	

(r - 1)!s

From (13) and (15) we obtain

(16)

	

E, b,b2

1

	

;5b3 t' ~1(rl / bl r'
b2 r' b3 1)

where in E1 r l + r2 + r 3 + r4 < 0 + 26)log s. Using (13) and (15) we
obtain by a simple calculation that the terms of the inner sum on the right
side of (16) are maximal if

(17)

	

r, _ (1 + o(1))(j + 6/2)log s,

	

i = 1, 2, 3, 4.
From (13), (14), (16), and (17) we easily obtain by a simple computation

(r i = (1 + ó(1))(I + 6/2)log s, n = q(6) tends to 0 as 6 -+ 0)

(18)
1

	

(log s)` 6 ~-47 (log s)"
bl b 2 b3 11 <

C5

	

g3

	

i

	

r,l

	 °g3
16 a (log	 '' l e'+ sn I< ;14('+0('))(1 +2a)logs <

s

	

i=1

	

r,'*'

	

s C
< es
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for sufficiently large s if S and n = n(S) are sufficiently small . Relation (18)
proves (12) and thus the proof of Theorem 1 is complete .

It is easy to see that by our method we can construct a sequence A of
positive upper density so that there are no four integers ai e A which have
pairwise the same least common multiple . On the other hand, it is easy to
see that if x > xo(c, k) then

1 1 >clogx
q,<x a j

implies that there are k a's which have pairwise the same least common
multiple . In fact (19) implies that for x > xo(c, k) there is a t such that

(20)

	

t = a ip

has at least k solutions . To see this observe that if (20) had fewer than k
solutions we would have

k~ 1 >

	

1

	

1 >clogxloglogx,
t<x= t

	

a,<x aj p<x P

an evident contradiction.
I do not know how much (19) can be weakened so that there should always

be k a's every two of which have the same least common multiple. This
question seems connected with the following combinatorial problem : Let
9 be a set ofn elements, Ai e .50, 1 5 i 5 m(n, k) . What is the smallest value
of m(n, k) for which we can be sure that there are k A's which have pairwise
the same union? An asymptotic formula for m(n, k) would also be of some
interest .

Before concluding this section I would like to say a few words about
equation (20) . Assume first that our sequence is such that (19) has only one
solution for every t, in other words the integers ai/p;, p; I a i are distinct for
all i and j. It is not difficult to prove that in this case

(21)

	

max A(x) =	
x

exp((c + 0(1))(log x log log x)i12)

The proof of (21) uses methods similar to those in [9] and will not be
discussed here .

By the methods used in proving Theorem 1, it is not difficult to prove that
there is a sequence A of positive upper density such that (20) has for every t
at most two solutions.

It would be of some interest to obtain best possible (or at least good)
inequalities on „<x 1/a i which ensure that (20) has at least k solutions for
some t.
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2.

Let ai < . . . be a sequence of integers no one of which divides any other.
I proved [10] that there exists an absolute constant c such that

(22)

and Behrend [3] proved that

(23)
a{<x

1
i a t log aí

-<c

1

	

clogx
ai (log log x)"'

Alexander [I] and later Sárközi, Szemerédi, and I strengthened [22] in the
following sense : There is an absolute constant cl such that if ai < . . . is any
sequence such that

(24)

	

ai t = a!,

	

p(t) > a t

is unsolvable, then
(25)

	

1
< cl .

i a t log a t

Inequality (25) easily implies that if a sequence of integers satisfies (24) then
it also satisfies

i(26)

	

- = o(log x) .
ai<x a t

Now we show that (26) is best possible. In other words if f(x) -+ oo as
slowly as we wish there always exists an infinite sequence satisfying (24)
such that for infinitely many x

(27)

	

I log x
ai<x a t AX)

Equation (27) is indeed very easy to see . Let xl < x2 < . . . tend to infinity
sufficiently fast. Let our sequence A consist of the integers in (xi112 , x) which
have no prime factor less than x i_ 1 but have a prime factor greater than
xi1/2 . A simple argument shows that our sequence satisfies (24), and if x i -+ 00
sufficiently fast then it also satisfies (27) for x = xi .

We can now ask, if al < . . . < a t < x satisfy (24) what is the value of

max I

	

,A log xa,<xai
where the maximum is taken over all such sequences? The maximum is
clearly less than 1 .
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It is well known that the upper density of any sequence of integers no
one of which divides any other is less than I and any number a < I can be
the upper density of such a sequence [4]. Similarly one can show that the
upper density of any sequence satisfying (24) has upper density less than 1
and any P < 1 can be the upper density of such a sequence .

It is well known and is easy to see [l0] that if a, < . . . < ak <_ x is such
that no a divides any other then

max A(x) = rx + 11
L

	

J2

Now let a, < . . . <a, <= x be a sequence which satisfies (24) . We outline
the proof that

(28)

	

max A(x) = x
- exp((log x)1/2+0(1))

We can in fact easily write down the sequence A = {a, < . . . < a, 5 x}
which maximizes 1L a ; s A if and only if ai = AI P2, . . . , pi , p, < . . . ::!g pj and
p, . . . P; < x <p, . . . P; p; + 1 where pj+ , is the least prime greater than p; .
Our sequence clearly satisfies (24). To show that it maximizes 1, let A' _
{a,' < . . . < a, , < x} be a sequence of integers satisfying (24) . It suffices to
show that if A' contains r integers not contained in A then A contains at
least r integers not in A' . To see this let u, < . . . < us be the integers not in A.
There clearly is a p( ` ) > p(u ;) so that u;p ( `) a A . Now these integers must be
all distinct. To see this observe that

(29)

	

u,pl u;p2 where pl > P(uj), p2 > p(ui)•
To prove (29) observe that we can assume p, # P2 . Thus without loss of

generality we have p2 > p, . But then if (29) did not hold we would have
P2 I u ; which contradicts p2 > p, > p(ud .

Now it is easy to prove (28) . On the one hand consider all the integers n
satisfying

(30)

	

n < exp(2(log x)12) >

	

P(n) < exp((Iog x) 112 ) .

It is easy to see that none of the integers (30) belong to A and a simple
computation gives that their number is greater than x/exp((log x)i - ") for
every r. > 0 if x > x o (a).

To prove the opposite inequality split the integers not in A into two
classes . In the first class are the integers n with P(n) < exp((log x) 1 / 2 ) . By the
results of de Bruijn [5] and others the number of these integers not exceeding x
is less than x/exp((log x)'/2+&(1)) . If n is in the second class we have P(n) >_
exp((Iog x) 112) . But then since n is not in A we must have nP(n) < 2x, or
n < 2x/exp((log x) 112 ), which completes the proof of (28) .
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3.

In this section we investigate some properties of the divisors of n. Let
1 =U, < . . . < u&") = n be the net of all divisors of n . Denote by A, the set
of those n for which t can be represented as the distinct sum of divisors of n.
Clearly if n is in A, then any multiple of n is also in A„ and it is easy to see
that every integer in A, is a multiple of an integer in A, not exceeding t! .
Thus it easily follows that A t has a density d, . It is a little less easy to see that
d, -+ 0 as t -i oo . To see this we split the integers of A, into two classes . In
the first class are the integers which have a divisor in (t/(log t) 2 , t) . I proved
[1 l ] that the density of these integers tends to 0 as t -i oo (in fact the density
is O(1/(log t)") . The integers of the second class have no divisor in

(t/(log t) 2 , t),

Thus if t is the sum of divisors of n we must have (d,(n) denotes the number
of divisors of n not exceeding t)

(31)

	

dt(n) > (log t) 2

But clearly

(32)

	

d,(n) 5_ E x < 2x log t .
X=1

	

W=1 u

From (32) we obtain that the number of integers n S x satisfying (31)
is less than 2x/log t, or the density of integers of the second class is not
greater than 2/log t. Hence d, -• 0 (and in fact d, < 1 /(log t)` 1 for t > to .
We can prove that for t > to , dt > 1 /(log t)`2 . Perhaps

(33)

	

dt = 0 + o(1))c 3/(log t)",

but (33) if true may not be quite easy to prove .
An integer n is said to have property P if all the 2d(" ) distinct sums formed

from its d(n) divisors are distinct . One's first guess might be that the integers
having property P have density 0 . But we prove

Theorem 2. The density of integers having property P exists and is positive .

The proof will be similar to [12]. Clearly if m does not have property P
then all the multiples of m also do not have property P. Let m, < m2
be the sequence of integers which do not have property P but every divisor
of them has property P. (m l = 6 .) n has property P if and only if it is not
divisible by any of the m's . Thus to prove Theorem 2 we have to show that
the density of the integers not divisible by any of the m's exists and is less
than 1 .
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If we could prove that

(34)

(36)

and

(37)

(39)

1 < ao
i=1 mi

d(m1 (1), m2 (1) , . . .) = a < 1

d(m1(2) , m2 (2) , . . .) _ p < 1 .

~m„<ao.

To prove (39) it will suffice to show that

(40)

	

E 1 = O((log
JG) 2)mj" < s

To prove (40) we split the mi" < x again into two classes . In the first
class are the mi " satisfying

(41)

	

P(m,") < exp(log x/(log log x)2 ) .

It is well known [12] that the number of integers m," :!9 x satisfying (41)
is O(x/(log X)2 ) .

Thus henceforth it suffices to consider the integers of the second class
(not satisfying (41)) . Consider the integers m,"/P(m,"). They are all less than
x(exp(log x/(log log x)))-1 = x/L .

131

then as in [12] it would follow that the density of integers having property P
exists and is greater than 0. Inequality (34) is quite possibly true but I cannot
prove it. Thus we have to argue in a more roundabout way . We split the
m's into two classes. In the first class are the mi ( 1)'s satisfying

(35)

	

V(m,(1)) > (1 + E)log log m,M.

The mi( 2), s of the second class do not satisfy (35) .
Now we prove (see [3])

Using (4) (as in Section 1) we obtain from (36) and (37) that d(m1, m 2 , . . .)
exists and satisfies

(38)

	

1 - d(m1i m 2 , . . .) Z (1 - a)(1 - P) > 0.

In other words the density of integers having property P exists and is positive .
Thus to prove Theorem 2 we only have to prove (36) and (37) . Expression

(36) indeed follows from my result in [8] as in Section 1 . Expression (37)
will follow as in [12] from
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Now we prove that for every t < x/L the number of solutions of
(42)

	

mi"Mm,„) = t

is less than exp(log x/2(log log x) z) = L,
Suppose we already proved that (42) has fewer than Ll solutions ; then

we evidently have (in Y', mi " belong to the second class, i .e ., they do not
satisfy (41))

(43)

	

~' 1 < xL1 = O(x/(log x) 2) .
m ;" < x

Expression (43) completes the proof of (40) and hence of Theorem 2 .
Let

(44)

	

mi'"/P(mi"„) = t,

	

r = 1, . . . , s

be the set of all solutions of (42) . Put P(m ir ") = pr , r = 1, . . . , s . These s
primes are clearly all distinct. By our assumptions t has property P but the
integers

m i,"=tpr ,

	

r=1, . . .,s

do not have property P. Hence for every r there are divisors di (') of tpr
satisfying

(45)

	

Ei di (') = 0, E i = ± 1,
i

and in the sum (45) at least one di ( ' ) must be a multiple of pr (for otherwise
all the di( ' ) would be divisors of t and t would not have property P) . Thus
for every pr there is a sum (different from 0) satisfying

(46)

	

I E. dú' ) = 0(mod pr), d,(,r ) I t, E„ _ ± 1 .
V

Now since mi " does not satisfy (35) we have V(t) < (1 + s)log log x. Hence
the number of sums (46) is less than
(47)

	

3°c'> < 3 2 " +t"" ° "< exp((log x)

Each of the sums (46) has fewer than log x prime divisors, thus from (46)
and (44) we have

s < log x exp((log x)1- `) < L l
which completes the proof of Theorem 2 .

By the same method we can prove that the density of integers n for which
n is the sum of distinct proper divisors of n exists and is between 0 and 1 .
Several other related results can be proved by this method .
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