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SOME PROBLEMS IN ADDITIVE NUMBER THEORY

P . ERDöS, Israel Institute of Technology, Haifa

1 . Let 1 < al < . . . < ak =< x be a sequence of integers for which the sums

are all distinct . Put nlax k =.f(x) where the maximum is taken over all sequences
satisfying (1) . It is easy to see that

log x

	

log log x
f(x) <

log 2 + lobw
2 ± 0(1),

and Moser and I proved
log x

	

log log x
(2)

	

f(x) <
log 2 + 2 10b~ 2 +

0(1) .

'This is the best-known upper bound for f(x) .
Is it true that

k

u Eiai,

	

c-i = - 0 or 1
i=1

(3) f(x) = (log x/log 2) + 0(1)?

1\Mloser and I asked : Is it true that f(2 11) >_ k+2 for sufficiently large k? Conway
and Guy showed that the answer is affirmative (unpublished) .

P. Erdös, Problems and results in additive number theory, Colloque, Théorie
des Nombres, Bruxelles 1955, p . 137 .

2. Let 1 < a 1< . . . < ak <_ x be a sequence of integers so that all the sums
ai,+ . . .+ais, i 1 <i 2 < . . . =< is,

	

1 < s <r

are distinct . Put max k=gr (x) . Turán and I proved

(4 )

	

92(x) < X"' + O(X14)-

This was recently improved by Lindström to g2(x) <x112+x114+1 . The lower
bound g2(x) _>_ (1-+(1))x1/2 easily follows from a classical result of Singer on
difference sets . Turán and I conjectured

(5) g2(x) = X112 1 - 0(1) .

Bose and Chowla proved that gr(x) ? ( 1 dá--o(1))x 11 ' for each r >_ 2, and they con-
jectured

(6)

	

gr(x) = (1 + o(1))x 11 ' .

This is known only for r = 2 .
R . C. Bose and S . Chowla, Theorems in the additive theory of numbers, Com-

ment. Math . Hel_v., 37 (1962-63) 141-147 .
H . Halberstam and K . Roth, Sequences, Oxford Univ . Press, Oxford 1966 .
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P . Erdős and P. Turán, On the Problem of Sidon in additive number theory
and on some related problems, journal London Math . Soc., 16 (1941) 212-215

J . Singer, A theorem in finite projective geometry and some applications to
number theory, Trans. Amer. Math. Soc., 43 (1938) 377-385 .

B. Lindstrőm, An inequality for B2 sequences, Journal Combinatorial Theory,
6 (1969) 211-212 .

3. Let 1 _< di < • • • be an infinite sequence of integers . Denote by h(n) the
number of solutions of n=ai+a; . Turán and I conjectured that if h(n) >0 for
n > n o then
(7)

	

lim sup h(n) _

	

.
n--

Another stronger conjecture states that if ak<ck 2 for every k then (7) holds .
These conjectures seem very difficult . It is a curious fact that the multiplica-

tive analogues of these conjectures are not intractable .
Let 1 < b l< • • • be an infinite sequence of integers . Denote by H(n) the

number of solutions of n = bib; . Assume H(n) > 0 for n > no . I proved
lim sup H(n) _ o c .

Turán and I further conjectured that the number of solutions of ai+a; <=x
cannot be of the form cx+0(1), where c< cc . In other words

can hold only if c = 0 and the sequence, a, < • • • , is finite. Fuchs and I proved
a very much stronger result than (8) . We in fact showed that if c > 0 then

x

	

x lia
1:h(n) =cx+o

(log x) 12)n=1

is impossible . Jurkat showed (unpublished) that (9) is impossible even with
o(x111) . Perhaps Jurkat's result is best possible and

(9)

x

x
(8)

	

Z h(n) = cx + 0(1)
n=1

E h(n) = cx + 0(x1/,)
n-1

can hold for a suitable sequence a,<
Is it true that the number of solutions of a1+a;+a, <_x cannot be of the form

cx+O(1) ? Our method used with Fuchs does not apply here .
I have several times offered $250 for the proof or disproof of any of the

conjectures (3), (5), or (7) .
Paul Erdős, On extremal problems of graphs and generalised graphs, Israel

Journal of Math ., 2 (1965) 183-190, and On the multiplicative representation of
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integers, ibid ., 2 (1965) 251-261 .
Paul Erdös and W. H. J . Fuchs, On a problem of additive number theory,

Journal London Math. Soc ., 31 (1956) 67-73 . See also the well-known book :
H . Halberstam and K. Roth, Sequences, Oxford Univ. Press, Oxford, 1966 .

A. Stohr, Gelöste and ungelöste Fragen über Basen der natürlichen Zahlen-
reihe, I and II, journal refine u . angew. Math ., 194 (1955) 40-65 and 111-140 .
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Manuscripts for this Department should be sent to David Drasin, Division of Mathematical
Sciences, Purdue University, Lafayette, IN 47907 .

AN EXISTENCE THEOREM FOR NON-NOETHERIAN RINGS

ROBERT GILMER, Florida State University
In developing the theory of Noetherian rings, it is desirable to have at hand

some examples of non-Noetherian rings . One such example is the ring of poly-
nomials in infinitely many indeterminates over any nonzero ring . A second ex-
ample is R [X], where R is any nonzero commutative ring without identity [I],
but in this case, R [X] is also a ring without identity. We present here a theorem
which provides a method for constructing, as subrings of a polynomial ring in
finitely many indeterminates, a wide class of commutative rings with identity
which are not Noetherian. It should be noted that the proof of the theorem given
uses only one result (Lemma 1) outside the basic theory of Noetherian rings,
namely, that a finitely generated idempotent ideal of a commutative ring is
principal and is generated by an idempotent element . An examination of the proof
of this result reveals that even it is obtained as a direct application of Cramer's
Rule for determinants over a commutative ring with identity .

THEOREM 1 . Suppose that R is a nonzero commutative ring, that A is a nonzero
ideal of R distinct from R, and that { XX } XGA is a set of indeterminates over R . The
subring S = R+A [ { Xa } ] of R [ { Xa } ], consisting of those polynomials over R hav-
ing each of their nonconstant coefficients in A, is Noetherian if and only if these three
conditions hold : (1) A is finite, (2) R is Noetherian, and (3) the ideal A is idem-
potent.

Proof. Suppose that S is Noetherian . It is clear that A must life finite, for if
not, the ideal A [ { X x } ] of S would not be finitely generated. The mapping on S
which sends each polynomial fC S onto its constant term is a homomorphism
from S onto R, so that R is Noetherian. If v is a fixed element of A and if aCA,
the ideal (aX₉ aXQ, , aXó, ) of S is finitely generated, so that aXó {-I

E(aX , aXQ) for some positive integer m :
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