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DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH DIAMETER TWO

JURAJ BOSÁK, Bratislava, P kL ERDÖS, Budapest (Hungary)
and ALEXANDER ROSA, Hamilton (Canada)

In the present paper the question is studied from three points of vieAv
whether to any natural number k _> 2 there exists a complete graph decom-
posable into k factors with diameters two . The affirmative answer to this
question is given and some estimations for the minimal possible number
of vertices of such a complete graph are deduced . As a corollary it follows that
given k diameters di, d2 , . . ., dk (where k 3 3 and di > 2 for i = 1, 2, 3, . . . , k) ,.
there always exists a finite complete graph decomposable into k factors with
diameters di , d2, . . . , dk . Thus Problem I from [I] is solved .

1

In this paper we deal only with nonoriented graphs . By a factor of a graph G
,ve mean any subgraph of G containing all the vertices of G . By a diameter-
of G we understand the supremum of the set of all distances between the
pairs of vertices of G (e . g . a disconnected graph has the diameter or,) . Tile
symbol <W', denotes the complete graph with n vertices .

Let to be a natural number . By a decomposition of a graph G into k factors,
we mean a finite system {T1, (f,2, . . . , Tkj of factors of G such that every edge
of G belongs to exactly one of the factors ~z , (P2 , . . . , TA, The symbol
Fk (d i , d2, . . . . dk) denotes the smallest natural number n, such that the complete
,graph <n.> can be decomposed into k factors with diameters d l , d2 , . . ., dk
if such an n does not exists, we put Fk(dl, d2, . . ., dk) _ oo . Further, put
f,(d) = Fk(d, d, . . ., d) . The main aim of the present paper is to find estimations
for fk (2) . From [I] it follows that f2(2) = á, 12 < f3(2) < 13 .

Theorem 1. For any integer k > 3 we have :

6k - 7
4k - I < fk(2)

9j, - 9
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Proof. To prove the upper estimation it suffices to decompose the graph

6k

	

7
G-

2k - 2

into k factors with diameters two . The vertices of G can be represented by
(2k - 2)-tuples formed from elements 1, 2, 3, . . ., 6k - 7. The íth factor
(i. = 1, 2, . . . . k) consists of all edges joining (2k - 2)-tuples with just z - 1
common elements . The remaining edges can be added to any factor . It is
easy to prove that all the factors have diameter two .

Suppose that for some k > 4 we have fk(2) < 41 , - 2 . Then, according
to Theorem I of [1], <4k - 2> is decomposable into k factors rl?r , d-2, . .- 9~'k

with diameter two . Put n = 4k, - 2 . None of the factors (Fi (i = 1, 2, . . . , k°)
inay- have a vertex of degree n - 1 (otherwise the other factors are not con-
nected), therefore, by [4], Tr has at least 2n - 5 edges. The number of all
edges of < n' is

whence it follows that

(1)

	

». { l0k > 4kn + n. .

But
n. 2

	

IOk - 16k2 - 6k -}- 4,

4kn+n=16k' -4k- 2,

thus for k > 4 we have )2 2

	

10k < 4kn + n, which contradicts (1) . For
k = 3 our assertion follows from [1], Theorem 7 .
Remark. The upper estimation given in Theorem 1 is too high . Therefore

we later present some methods enabling to improve it, namely for a „small" 4 .
in the second part of this article, and for a „great" k- in the third part .
Lemma 1. Let k > 2, 2 = rlr <- d2 <- d3 ~< . . . - dk < 30- 11 'e leave

Fk(dr, d2, . . ., dk ) < fk(2) -(- dr T c1,2 T . . . + dk - 2k .
Proof. From Theorem 1 it follows that fk(2) is a natural number. If dl =
d2 = . . . = (h = 2, the assertion of the lemma is evident . Thus we can

suppose that there exists an integer is (1 5 i < k - 1) such that r1r = d 2 _
_ . . . = d 2 = 2 < d ,_ r S . . . dk . Let us construct a decomposition of the
graph

into k factors with diameters d1,, d2 , . . ., dk .

(n)

Z
> k(2n - 5),
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The vertex set of G consists (as we may suppose) of vertices ui, u2,

213, . . ., u),{'_) and of vertices 2'j , r, wj , 2, Vj,g, . . ., vjdj-2 (i + 1

	

j <1 lt) . Ob-
viously, the total number of vertices is fk(2) + d i = d2 + . . . = dk - 2k.
The complete subgraph of G generated by the vertices U1, V2, UP3, . . . I u,x(2)
according to the definition offk (2) can be decomposed into k factors T1, ff 2 , . . . ,

uk with diameter two. Define a decomposition of G into factors (f,~,, (in =
= 1, 2, . . ., k) thus : Into (', there belong (i) all the edges of (P „ ; (ü) all the
edges a,v ; .t (1. < s < fk(2), i + 1 5 j < k, 1 <, t < dj - 2) such that the
edge it,ul belongs to .,n. and j * m:; (iii) all the edges of the path uiv.m,jv,,,,2 . .v
z~,,; ,,,z ., (if nz > i + 1) . 311 the remaining edges are placed into T,, .

It is easy to show that T,,, has diameter d,-„ (m = 1, 2, . . . , k) . The lemma
follows .

Lemma 2. Let k > 3, 2 < di ~< d2 < . . . dk < co . Then we have
Gk - 7

Fk(di,d2, . . .,d1) <_
2k

	

+di+d2~- . . . +dk- 2k .
- `?

Proof. Distinguish two cases :
L di = 2 . Then the assertion follows from Lemma 1 and Theorem 1

11. di > 2 . By [11, Theorem 4, 11-e have :

Fk(di,d2, . . .,dk) < d_=d 2 =, . . .+dk -k.

-Since for any k > 2 we have

the lemma follows .

6k - 7 ~
k

2k - 2

Corollary. Let, k > 3, 2 < di < d.,

	

. . .

	

dk

	

oo . Then. Fk(di, (7z, . . ., dk)
is a natural )number.

Proof. If dk < ac, our assertion follows from Lemma 2 . If d2 = x, , the
assertion follows from [1], Theorem 3 . Therefore we may suppose that d 2 < ~ .
dk = co, i . e . there is an integer i (2

	

i

	

k - 1) such that 2 S di S d2

If i > 3, according to Lemma 2, Fz (di , d 2 , . . ., dr) is a natural number .
Therefore the finite complete graph

G = <FZ (d i , d2 ; . . . ; d2)

is decomposable into i factors with diameters di . d2, . . . , d 2 . If we add k - i
null factors (i . e., factors without edges), we obtain a, decomposition of G
into k factors with diameters dl , d2 , . . . , dt , d, + i, . . . , dk .
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If i = 2, then according to Theorem 8 of [I] F 3(di , d2 , d3 = oo) is a natural
number. Since

F k(d i , d 2 , d3 = oo, . . . ; dk - oo) S F3(di, d2, d3 = ca),

then Fk(dl, d 2 , . . ., dk:) is also a natural number. The corollary follows .
Remark . As the supposition di < d2

	

. . .

	

dk is not essential, the
preceding corollary completely soles Problem I from [1], p. 53 .

Let a natural number n and a set A c t1, 2, . . ., n} be given. A is called
an S,,,-set if each x c- {1, 2, . . . , n}, a 0 A can be written in at least one of the
following forms

x = a b,

x=a:-b,

x=2n+I-(a.+b),
where a, b E A .

Let k be a natural number . Denote by g(k) the least natural number I such
that the set {1, 2, . . . . I} can be partitioned into k disjoint SI-sets . (If such
<i natural number I does not exist, put g(k) = oo .)

Lemma 3 . fk(2) < 2g(k) + 1 for any integer k _> 2 .
Proof. Let natural numbers na and n be given . We shall call a finite graph

(without loops or multiple edges) with m labelled vertices V1, V2, . . . , v„2 cyclic .
if it contains with each edge vzv; (i, j e {1, 2, . . ., na}) the edge vi- iv, ._i (the
indices taken modulo nz.) as well. By the length of an edge a vj we mean the
number

min {Ii-j',7n- la-j1J .

Evidently, a cyclic graph contains either every or no edge of length i for
each i c- 11, 2, . . . , [ nal2]f .

Assign to a given S,,,-set A a cyclic graph with 212 1 vertices containing
edges of length i if and only if i E A (i = 1, 2, . . ., n) . It is clear that thus
a one-to-one correspondence between cyclic graphs with 2n + 1 labelled
vertices with diameter two and S,,-sets is defined . Further, it is obvious that
to different [disjoint] S,,-sets different [edge-disjoint, respectively] cyclic
factors with diameter two of <2n + 1 ; are assigned . Therefore the assertion
of the lemma follows immediately from the definitions of fk(2) and g(k) .

Let natural numbers n, i, integers c, d and a set A c {1, 2, . . ., n.} be given .
Denote by red„c the (uniquely determined) integer r such that
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Further, put

rM = jred,,rij,

c - d = Ired,,cdl,

c-A=le-d dEA} .

Evidently, we always have

( :`)

	

0<c~d<n,

c

	

A

	

{0, 1, 2, . . ., n} .

Lemma 4 . If it and r are such natural nunz.bers that the greatest cornrrzon• dh?isor
(2íz. + l, r) = 1 and A is an S,,-set, then r o A is an Sn-set ccs aoell .
Proof. Choose x c {1, 2, . . ., n} . It suffices to prove thatt either :r c r

or there exist a, b E A such that one of the equalities

is

r - e (mod 22n --IL- 1),

rj < -n .

x=r-a+r b,

x= .r-a-r~b,

x=(2n.+1.)-(roa+r2b)

holds .
It is easy, to see that there is a y c {1, 2, . . ., n} such that r

	

In fact,
as (r, 2n + 1) = 1, the congruence

rz - .x (mod 2n

	

1)

has a solution z c t1, 2, . . ., 2n} . If 1 < z < zz, we put y - z, and if n + 1 <
< z < 2n., we put y = 2n + 1 - z .
Since A is an S .-set, either y c- A or there exist a, b c- A such that one of

the following eases occurs

y =a.-b,

y=a+b,

y=2n!, 1-(a+b) .

If y e A, then evidently x - r - y c r - A . Let us analyze the other cases
(all the following congruences arc related to the modul 2n + 1) .

(1) y -= a - b. Obviously + r - y =_ ry = ra - rb, where ra - J- í • a,
rb-+. r-b .



By examining all 8 possibilities for choice of signs we find that one of the
following 4 cases occurs (we use inequality () )

x=ray- roa+rob, hence x=raa+rob,

x=ro y- raa-rab, hence x=roa-rab,

x=ray- -roa=, rab, hence x=rab-roa.,

x=ray--raa-rob-(2n 1)-roa-rob,

so x=2n.+1- (roa+rab) .

(II) y = a + b . Evidently

±ko y- ky=ka-kb- -koa4_kob,

where the again have 8 possibilities for choice of the signs . Further procedure
is the sauce as in case (1) .

(11I) y = 2n + 1 - (a + b) . We have : -j-k- o y - ky = k(2n 1) - ka -
- kb - -ka - kb - =k a a --k o b . Further we proceed as in case (1) .
The lemma follows .

Lemma 5 . Let r •, n and k be such natural numbers that

(l) 2n + 1 is a pri-rrte munber,
(2) k divides n-,
( .3) r is a prinr.itive root of 2n + 1, ( 1 )
(4) A = { q(k) , -r(zk) , y(3k), . . ., r(n)

	

is an S .-get .

Then g(k) < n .
Proof. From (1) and (3) it follows that (r, 2n + 1) = 1 and that the numbers

r, r'	r'?? , . . . , r •2 1 ? represent all non-zero residue classes modulo 21?

	

1 .
From this fact it can be easily deduced that {r('), r°( 2), . . ., r( 701 - {1, 2, . . . . nI .
From (2) and (4) it follows that the sets A, r o A, r2 o A, . . . , rk- i o A are
mutually disjoint. They are 5n-sets, as it follows from (4) and Lemma 4 .
Therefore the set {L 2, . . ., n} can be decomposed into k; disjoint S,z -sets .
consequently g(k) < n .

Lemma 6 . li'e have : g(1) < 1, g(2) < 2 ; g(3) < 6, g(4) < 20. g(5) < 35,
g(6) < 78, g(7) < 98, g(8) < 96, g(9) < 189, g(10) < 260 .
Proof. We use the method from Lemma 5 : we look for such a multiple 11

of k that (1) is valid and the least primitive root r of 2n - 1 satisfies (4) .

With the help of tables of the least primitive roots of primes (see, e . g . [5])
we can construct the following S, t -sets A

(i) 3 natural number r is called a primitive root of a prime number p if the numbers
,r, r 2 , r3 , . . , r-1 = 1 represent all'non-zero residue classes modulo p .
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87 . 93{ .
k = 8, n = 96, r = 5, A = 11, 7, 9, 12, 16, 43, 49, 55, 63, 81, 84 . 85` .
k = 9, n = 189, r = 2, A - {1, 5, 25, 39 . 51, 52 . 57, 68 . 76, 86, 91, 93 . 94,

119, 124, 125, 133, 138, 162 . 163, 1841 .
7, = 10, n = 260, r = 3, A = {1, 10, 18, 29, 32, 42, 52 . 55, 62, 74, 98, 99,

100, 101, 106, 114, 176, 180, 197, 201, 219, 226. 231, 235, 237, 2551 .

To check that they- are S .,,-sets is a matter of routine . The rest of the proof
follows from Lemma 5 .
Remark. It can be easily- found that even g(1) = 1, g(2) = 2, g(3) = 6 .

By a systematic examination we can also establish that g(4) = 20, but, on
the other hand, g(5) = 30 . (The inequality g(5) < 30 follows from the fact
that A = { 1, 5, 6, 11, 14, 29}, 3 - A, 3 2 c A, 33 - A and 3 4 A are disjoint
~~sets.)

Theorem 2. We have : f2(2) < 5,f3(2) < 13,f á (2) -< 41,fá(2)

	

61J6(2) -< 157,
f, (2) 5 193, f8 (2) <, 193, f9 (2)

	

379, fio(2) <, 521 .
Pr oo f. For k -+ 5, k -+ 7 the upper estimation of fA (2) follows from Leinnias 3

and 6 . For k = 5 it suffices to apply Lemma and the preceding remark .
For L- = 7 «e proceed thus : Evidently f,(2) S f8(2), because from a decom-
position of a complete graph into 8 factors with diameter two we obtain
a decomposition into 7 factors with diameter two by unifying edges of any
two of the 8 given factors leaving the other 6 factors without any change .
Since f3(2) S 193, we have f,(2) 5 193 as well .

3

Lemma 7. There exists a natural number Lh such that for all natu ats n > 1"
ure_ have : The number A, of all factors of <n y with t = [ 1- 30 log n] edges and
u.-ith a diameter greater than tuvo is less than

1

	

~ 7z }
2

n t

Proof uses methods similar to those used in [2] .

2 0

4 = 1, >a 1, 2' = 2, A = { 11 .
1'=2, ~z= 2, r=2, A={1} .
k = 3, ~a = 6, r = 2, A = {1, 5} .
k = 4, n = 20, r = 3, A = {l, 4, 10, 16 . 18} .
1' = 5, n = 35, r = 7 . A = 11, 20, 23, 26, 30, 32, 34Í .
k = 6, n = 78 . ' = 5, A = {1, 4, 14, 16 . 27, 39, 46 . 49,556 . 58, 64, 67, 751 .
1• = 7, .rz = 98 . 7 = 2, A = {l, 6, 14, 19, 20. 33, 36, 68, 69, 77, 83, 84,



(I) Pick a vertex x of ;n. , . Let i be an integer for which

0

	

i

	

t

holds. Denote by a t the number of factors of <n) with t edges, in which the
degree of x is i . Evidently, we have :

(II) Put 1 = [ I/ 3n log n] . Prove that there is a number X, such that for
i = 0, 1, 2, . . . .1 and for every natural n > , we have

It is easy- to see that for any natural n the inequalities

nl S t,
21 -< t

are valid. Now, we have :

n - 1
n

	

1

	

2 )
ai

	

( i }

	

t-i

a2a

	

ln - 1,
YL - I

	

+\

	

//2
21 )

	

t - 21

2) . . . 21

2 - 2) . . . (,1. - 21)

?L-1

	

t_`l

	

n-1

	

t

	

- 1

	

n-1

	

t 2

X ~~ J	 , ~~ ,	
T 21

	

«	 2

	

+
(t-2l=1)(t-21+2) . . .(t-

n2

)

21 -i

(i = 1)(i 1 2) . . . 21

	

2(n-i-1)(n-i-2)...(n-21)(t-21+ 1)(t-2l

	

2) . . .(t-i)

(i - 1)(i -1 2) . . . 21

	

n 21-i

	

n21-i

221-2

	

t

	

(n - i - 1)(n-i-2) . . .(n-21.)
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X
(i

	

1)(i - 2) . . . 21

( -21

	

1)(t-21+2) . . .(t-i)

	

(21)21-i
t=

n,

	

-i

	

t

	

21-i

	

1

	

1

	

1 -- 2

	

21

	

n,

	

21

X

	

, --
(n-21)

21

	

~t-21

	

l

	

21

	

21

	

>1

	

n-21

4
t

	

21

	

3 )1-1

	

21

X

	

5
~t - 2l + 1

	

4

5

	

15 bri

	

1
<

	

<
4

	

16

	

»3

for every natural n > N1, if ?4'1 is a sufficiently large constant .
(III) Let us prove that the number B.,&) of the factors of 62' with t edges,

in which the degree of x does not exceed 1, is less than

(2} \
1

	

t

2

	

n2

« 1~~

	

«n»

for every sufficiently large n. .
Obviously, according to (II) for n > AT, we have :

n2Bn.(x)

	

ao + a1 -]- . . . + ai
n 2

2i

	

E)

	

15 i-1

4

	

~16

1<

ao -{- a1 -{- . . . + ai

	

ao

	

a1

	

al
n 2	= n 2

	

1

	

<
a21

	

a21

	

a21

	

a,i

1 r [1/3n log r1 ] = 1
< n2(1 + 1}

	

-
n3

	

n

Evidently, the last expression tends to zero for r1.

	

oo . Therefore

[~1 3n log n ] + l

	

1
71

	

2

-- -- X

X



for is > ái'2, where 11:2 is a sufficiently large constant so that

n2Bn(x)

	

1
<

2

1
B'.(x) <

2

	

n. 2

for n > max {Z1-i, 2} .
(IV) j 'e prove now that the number B,,, of the factors of <n with t edges

containing a vertex of degree < l, is less than

1 ((n)) 2Z

2n

	

t

for it, > inax {Xj X,
Evidently. we have

B n < >7 B,z(x) ,
z

where x runs through the vertex set of <n> . Therefore, using (111) we obtain

B.n,

	

B,,(x) < n 1 1

	

2} = 1 ~2}
2 n2

	

t

	

2n

	

t

for iz > mix { - i ., X2} .

(V) Fix now two different vertices x and y of <n/, and two integers i and j
satisfying the relations l < i < n. I < j < n. .
Denote by D,,(x, y,, i, j) the number of factors of <n, with t edges in which x

has degree i, y has degree j, and x is not joined with y by an edge. We have :

(n-2l n-2

	

n
99
- 21

D. (x, y. i, .7) _

	

a / i

	

t-i-j

Further; denote by E,,(x, y, i, j) the number of factors of <n. , with t edges
in which x has degree i, y has degree j, and the distance of x and y is greater

3



than two. Evidently,

zt-?( it -2~ln - ,2 -i, (

	

)E.

	

i j)

	

t-t J

We shall find a natural number l"3 such that for every

En, ( x, s, i, j)

	

1
&(x, y, i, j)

	

n3

Obviously, 'we have

E,(,y,z,J)

	

zz-i-2 n - i - 3 ?é.-i-j-1
D,, ( .r, ?/, i, j)

	

v, - 2

	

n - 3

	

. . .

	

n - j - 1

it,

	

2

	

n-3-1 z-i
1<

(it -2

	

n-2

n > 1 3 «-e have

It is easy to see that there exists a • natural number L%3 such thatt for all
n. > 1"3 Ave have

Evidently, it suffices to prove that for every n > X1'3 we have

But for zt > 13 we have

It follows that

2 4

n-3-1

í

at-?
->1 .

n.- 3-l

1

	

n-2

zZ - .,
- 1

l=1

> zz, 3 .

> e.

1

	

ti-2

	

(1+1)'
I T 1

	

n-? >

n -2
l -}- 1

Q+1)'

	

(13n log n ),
> en-2 > e

	

'6

	

= n3 .



(VI) Let C,z be the number of factors of <n> with t edges in which all the
vertices have degrees greater than t and with diameters greater than two .
From (V) it follows that for every n . > N 3 we have :

The lemma follows .

)Lemma 8 . A v-atural n.2cm,ber lI exists such that for every irzteyer n . > ,lI

zce have : <n ;~ eoz2tains

C,, <-

	

Fn(x, y, 2, j)

D,,(x, y, i,j)

	

1

-)2 3

I ]~/
n-?

L

	

12 log n

I!'-'I

	

I'''I

D, (x, y, i, j) <

7t

n3- < _~7L

where (x, y) runs through the set of all unordered hairs of different : vertices
of <n) (-i, j ) runs through the set of all ordered pairs of integers such that
1<i<n, l<jGn .

(VII) Put ti = rna.x {l'i , l'2, Ll'3} . Their, according to (IV) and (VI) for
every natural number ra > -Y we have

'»n

«2» «2»

	

(2
t

A n <, B12 =, C 7z <
?n

	

?n

	

z.

edge-disjoirat factors with diameter t2c~o .

Proof . According to Lemma 7 there exists a positive integer l% such that
for every integer n > V we have

	

(
721

1

	

22
An <

11

	

t
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Put

p=

U =

Evidently there is a natural number 1Y4 such that for every n > A'4 we have
it < it . Put 117 = max f Y, N4} . Obviously for n > 2 we have :

n(n - 1)

	

n(n - 1}

2[V3n3 log n]

	

[_2 V3n3 log n

/[J

	

12n log

n2

	

2n--, 1
>

n

n
2

t

n2-2n. 1 [

1211, log n

Therefore it suffices to prove that for n > X the graph <n ; contains u. edge-
disjoint factors with diameter two .

If we assume the contrary, then each of the

Y4-1

	

i,)~.-o
1 (n) t

n t

	 4-i1 (2) _ it

	 -i	t
q

(~~-1)!

n.

	

rt
p - 1

	

> 1 2
q

	

ec

	

t

	

n

	

t

which contradicts Lemma 7 . Thus Lemma 8 follo-vvs .

Theorem 3 . There exists a positive integer K such that for any integer k- > K
u±e have

12 log n '

systems S consisting of it edge-disjoint factors of <n>, each with t edges,
contains at least one factor with diameter greater than two . Any such factor
with t edges and with diameter greater than two occurs just in

systems S. Therefore the number of factors of <n) with t edges and with a dia-
meter greater than two is at least



Proof . Pick a natural number K, such that for

where -11 is the constant from Lemma 8 .
Pick a natural number K 2 in such a wav that for any k > K2

1,2 log k > 750,

and, consequently .
1

- 3 > - -

	

k:2 log k .
250

Further, pick a natural number K3 such that for every integer k > Ií3
we have

It follows that

49 2
fk(2) ~ 10) k2 log k .

10 '
--) u k2 log kl > -ll ,

~491 2

10f
I log k

	

k2000 .

Put K = max {K1 , K2 , K3} . Pick an integer k > K. Put

n =
\19l2Vlog

k .

Then we have

Z

	

,
k2 log k - 1 - 2

	

10)	
k2 log k - 3

2

log n

	

4 09 2

	

4log

	

k-2 log kl

	

21og k + log
1

	

log k
1

	

109)

49 2

	

1
k2 log k -

	

- k2 1og k-
(10)

	

250
= 12k2 .

2 log k + log (k2000 )

k S
n-2

12 log n:

every k - Ki « ,e have

.
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where n > 11. From Lemma á it follows that <n, can be decomposed into
k edge-disjoint factors with diameter two (the remaining edges may be added
to any factor) . Consequently,

The theorem follows .
Remark . It can be proved that there exist positive constants Ci and Cz

such that

Cik2 < g(k) < Czk 2 log k

for every sufficiently large 1- : the left inequality is obvious ; the right one cann
be obtained using similar methods as in our Theorem 3 and in [3] ; this re-
mains true even if we do not allow representations of the form 2n --- 1 -
- (a -}- b) . Now, using Lemma 3 we can again obtain that f2(k) < Ck 2 log k
for certain constant C and all sufficiently large k.

Problem 1 . Is g(k)11,2 bounded?

Problem 2. Determine lim fk(2)
z"~

	

le

2 8

49
ft.(2)

	

-n

	

10)
k2 log k .
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