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ON SOME PROBLEMS OF A STATISTICAL GROUP THEORY V

by

P. ERDŐS (Budapest) and P . TURÁN (Budapest)

To the memory o f CATHERINE RÉNYI

1. In the second paper of this series (see [2]) we dealt with statistical
theorems concerning the arithmetical structure of O(P) the order of the
element P in symmetric group S„ of n letters . If w(x) / - with x arbitrarily
slowly and assigning to the phrase "for almost all P's" the meaning "for all
but o(n!) P's" the theorems in question run as follows .

THEOREM A. For almost all P's the order 0(P) is divisible by all prime
powers not exceeding

(1 1)

	

log n 1 + 3 log log log n

	

w (n)
log log n

	

log log n

	

log log n}

The theorem is best possible in the strong sense that the number of P's
whose orde 0(P) is divisible by all primes not exceeding

	 logn
11
+ 3 log log log n + w (n)

log log n

	

log log n

	

log log n
(1 .2)

is only o(n!) .

THEOREM B . The maximal prime factor of 0(P) is for almost all P's
between

(1 .3)

	

>t exp (-- w (n) /log n) and- n exp - (

	

nw n)

	

l .

Though these theorems reveal surprisingly simple statistical laws, they
still leave a big playground for the prime factors of 0(P) . We have found that
formulating the problem in a different form the quantity in (1 .1) can be re-
placed by a much bigger one and those in (1.3) by a much smaller one . Observ-
ing namely that the P 's in a fixed conjugacy class H of Sn have the same
order 0(H) it is plausible to consider the order rather as a function of the
conjugacy class than that of the single P's . Since the total number of con-
jugacy classes in S, is p(n), the number of partitions of n, it is plausible to
mean by the phrase "for almost all classes H" the one "for all but o(p(n))
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classes H". Then we are going to prove in this paper the following analogon
of Theorem B .

THEOREM . Denoting by Q(H) the maximal prime
quality

(1. .4) P (H) - l2~~ Un log n -- 6 V n log log n

holds for almost all classes H if only o) (x) ,f co with x arbitrarily slowly . I

This is indeed much smaller than the quantity in (1 .3) . In the next
paper of this series we are going to prove that O(H) is for almost all classes
divisible by all prime powers not exceeding

(15)

	

2~z Vn ( 1 +5 log log n

	

co (n)
if6 log n {l

	

log n
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with the same convention for o)(n) and this is again best possible in the sense
of (1 .2) . The proof of (1 .5) is rather deep. The quantities in (1 .4) resp . (1 .5) are
surprisingly close to each other .

2. Next we turn to the proof of our theorem . First we have to investigate
p q(n), the number of such partitions of n where no summand is divisible by
the fixed q . Since for y > 0 we have

hq (n) e
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—1 1 -- e

_

	

p (m) e-mY
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µ=1

GVn CO (n)

jj (1 e -1, qY) _
µ=1

and owing to the "Pentagonalzahlsatz" of EULER-LEGENDRE

(2 .2)
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(2.1) gives at once
~-k(2.3)
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factor of O(H) the ine-

Denoting by r q(n) the number of partitions of n such that at least one sum-
mand is divisible by q we get from (2.3)

(2 .4)

	

rq (n) __
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i We assume throughout this paper co(x) = o (log log x) .
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We shall use that classical formula due to HARDY and RAMANUJAiti

(see [1])

(2.5)

	

p (n) -- (1 + o (1)) 4 nl exp
t

	

Vn
V3

	

l

Let now q be an arbitrary prime divisor of O(H) . I£

(2.6)

	

n = m1nl + m,n„ + . . . + m knk

1 <nI <n2 < . . . < nk (<n)

then as is well known the conjugacy classes of S„ are in one to one corre-
spondence with the partitions in (2.6) and

(2 .7)

	

O(H) _ [nl , n .,, . . ., nk ] .

Hence
q<n .

Let first

(2 .8)

	

100 Vn log n < q < n .

Since evidently

rq(n) < 4
I/

p(n - q)
we get using (2.4) 2

(2 .9)

	

rq(n) < c ~ ;
q

exp
6

l% n - 1001/ n log nl <
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< c Vn exp 12,-t -Un 1

	

50 log n < c p(n)n-506

	

jTn ~1
and hence

(2 .10) z

	

rq(n) = o(p(n» .
100yn log n~Sq :~ n

Next let
(2.11)

	

7,I f-n log n<q<100 Vnlogn,

7, positive, to be determined later. First we remark that the contribution of
k's with k > log n to rq(n) in (2.4) is, as before, < cp(n)n-50 and hence

(2 .12)

	

rq(n) < o(p(n)) +

	

S,

	

75,7

	

p(n - k1q) .
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Vn logn

	

n log n

2 The c's without indices mean unspecified positive constants .
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The last sum is

z x
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n loge

which , 0 if

(2.13)
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~' 6 log log n + co (n) .
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log n

Hence the number of conjugacy classes H for which 0(H) is divisible by a
prime

V6 -

	

(

	

log log n

	

w (n)2 n log n I1 2 Iog 1a + log n
s o(p(n)) indeed. This proves the

f
first part of the theorem .

3. Next we turn to the less easy proof of the second part of the theorem
which asserts that putting

Mi = ~2

	

n log n 1 -- 2 log log n

	

(n l
g

	

log
(3 .1)

M2 -VnlognJ
t
1 -2 1g l

g
	 gn --lo(nIg nj

for almost all conjugacy classes H the number 0(H) has at least one prime
actor between Mi and Al- In order to prove it let
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Using (2 .5) the second sum in (2 .12) is
< r,

	

1

	

1
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	 _q - s_lo01< l kj = lognn- k2q

	

V6V-n log n
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~t k`q< - exp
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_
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In log n
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qcp(n)
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exp - l 	_
q> 1~,I/n log n

	

V" 6 V n

(3 .2) i1fl`g1<g2< . . . <q1 : 1VM 2

be all primes between MI and M., and we define the "class function" k(H) by

k(H) _ 2~ j) 1
qll 0(H)



empty suns being 0 . Let
(3 .4)

Then we need the
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SI = 1 ~(H)k(H) .
p(n)

LEMMA I . With w(n) in (3 .1) eve have
i

6 2 w( )

SI = (1 - o(l)) 2

	

e
z

4 . (3 .4) - (3 .3)-(3.2) give at once

	 l

	

t
(4.1)

	

S

	

N

	

~.

p(n) j=1 O(H)=Ornodgl
The inner sum is obviously the number of such partitions of n in which at
least one summand is divisible by q and thus = rgf (n) ; hence

I

		

1

	

~,
= r (n)

P(ee) j=1
and using (2.3)

(4 .2) 1
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9

	 qj
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q

As in 2 . the contribution of k's with k > log n is o(1) and hence

(4 .3)
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1 }

	

}
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1)III p (n

	

3 k2 + k
qjl .

p(n) j=1 1< k~~logn
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Next we consider the contribution of k = -1 . Denoting it by Sí we
have using (2.4)

Si =
1

	

))(n - qj )

	

o( 1 ))

	

n exp ~
n

(V n - qj - V-n)
p(72) i=1

	

j=1 n -- qj
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0(1))

	

exp

	

. .	 g l = (1 + 0(1))

	

1 -exp

	

x-l dx =
n,

	

log x

	

If 6 1/ nn
ml

(4.4)

	

Mz
1 -~ 0(1)

=	2 f exp - ~- •
x

dx
log n

	

,J

	

r 6
M,

from which using (3 .1)

(4 .5)
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2A116 exp 1
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Finally the contribution of the remaining terms in (4 .3) cannot exceed
absolutely

(6.2)

C
log
n,p(n - 2 q,) < c log nZexp 2=n (Vn 2 q, - - V n) <f

p . (n) i=1

	

%1=

def

	

-

1

1 6

< c log n rI exp ~- 2 Tr qj

	

c log n
=1

	

V6Vn
M,

Q 1°g_	 g.( n) = o (1) .f 1, n
This, (4 .3) and (4.5) prove Lemma 1 .

5. Next we are going to investigate

(5 .1)

	

S2 =
p

1
(n)

f(H) k(H)2 .

As to this we state the

LEMMA 11 . With the above co(n) we have

S2 = (l. + o (1)) 2 V6 exp (12 w (n)l ~'

For the proof we observe first that
_ 1

82

	

Z(H) Z(µ)

	

(v)
1 -

p(n)

	

gµ/0(H) qv 0(H)

(5.2)

	

= SI -F
1

Z(H) 1
P(n) gµgv/o(H)µ ¢ v

M,

exp
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x

I
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l~ s 11n
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Z(H)
1 .

P(n) 1 < µ < v r gµgvl0(H)

6. Let at fixed µ v r ,(',)(n) stand for the number of partitions of n
with the property no summands being divisible neither by q, nor by q, . Then
we have obviously putting for y > 0

(6.1)

the relation
,f(J) - —1 1- e-"y

P (y) _

	

r(') (n)e-nY = II(n)

	

-ry

	

f(y)f('I g qvy)

n=o

	

qµ tr 1 - e

	

M,< J) .f(gv 2J)
4v f1

1



Next let r(2),,,(n) be the number of partitions of n with the property that
a) either no summand is divisible by q,
b) or no summand is divisible by qv .
Then we have, using also (6 .2), for y > 0

F2(y)
def

	

r (uv) ( n)e
ny =	 f(y) +	 f(y)

n=o

	

M, A f(qv y)

(6.3)

	

f(y)f(q,.q,. y)
.Í(q,

Y)M, Y)

Finally let r (3,),(n) stand for the number of partitions of n with the pro-
perty that at least one summand is divisible by q, and at least one by q, .
Then we have, using (6 .3), for y > 0

F3(y)
deI

	

r(3) (n)e- r 3' -- f(y) - f(y)	(y)

n=o

	

M, y) f(qv y)(6 .4)

7. Returning to (5 .2) we see at once (owing to (2.7)) that

~(H) 1 = r(3) (n) = coeffs e- 11 Y in
gµgv10(H)

(7.1)
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1
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f(qv y)

	

f(q,, y) f(qv y)

oince for n > c we have owing to (3.1)

qw q, > n.
(7 .1) gives also

(7 .2)
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further
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2 1-	
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f(q
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l J)

which proves

1 SµSI m~#0 m3 #0
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\Tow we have to investigate the power series expansion of the function
in the curly bracket . Using the Pentagonalzahlsatz in (2.2) we have

m, m3

	

3 mÍ	 +mI

	

3 M2+m2
( I )

	

exp -

	

2
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qµ3 ?/
1 Sµ,S! 1Sµ 3 <i m3 0 m,#0

z ,2 G (- I )m3 + m3 eXp

These give together with (7 .3)

S 2 ~ 81 +
Y (- I)m'+ m3 . P (n -

p(n) I ,,~;µ,<µ3 :~ c m,#o m a o

	

1.

From this we can finish the proof of Lemma II quickly . The contribu-
tion of the terms apart from the one corresponding to m1 = m2 = --1 is
o(I) as before. The remaining term results owing to (2 .5)

2
p(n - q, - q,J

2z	_ (1 + o (l) ) 2

	

exp
V 66
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Lemma II owing to (4.5)

3 m+ V ,1	1
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8. The proof of the theorem follows now easily from the investigation of

( 8 .1)
Z aef p (n)

J(H)1'(H)
2.7	 eXp l2 (n), } L

1(1 - j _ ( 1)m+i exp 3
,m2 m

~-

	

qµ
f(qm

and its square

1<µ5( m#0
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Lemma I and II give at once that

(8.2)

	

Z = 0(1) exp o)(n) .

If k(H) = 0 would be for more than xp(n) classes (a positive constant) then
we had

z >1 x p(n) 4 6 exp o) (n)
p(n)

	

~T2

which contradicts to (8 .2) . Hence the theorem is proved .
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