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1 . In the second paper of this series we proved the following two
theorems . Let Sn stand for the symmetric group with n letters, P
a generic element of it and O(P) its order . Then we have

THEOREM A. For almost all P's in Sn , i .e. with the exception of
o(n!) P's at most, 0(P) is divisible by all prime powers not exceeding

log n

	

1 + 3 log log log n

	

w(n)
log log n

	

log log n

	

log log n

if only w (n) X

	

oc arbitrarily slowly .

The other theorem shows that the theorem is best possible in the
following strong sense .

THEOREM B . If w (n) >r + oo arbitrarily slowly, then almost no
P's (i .e . only o(n!) of it) have the property that 0(P) is divisible by
all primes not exceeding

log n

	

log log log n

	

w(n)
log log n I

1+3	log log n + log log n

Since the P's in a conjugacy class H of Sn have the same order,
we may denote by O(H) the common order of its elements and it is
natural to ask the corresponding statistical theorem for O(H) .
The total number of conjugacy classes in Sn is, as well known, p(n),
the number of partitions of n . As announced in the fifth paper
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of this series (to appear in Acta Math. Hung .) we prove the
following two theorems in the above mentioned direction .

THEOREM I. For almost all classes H, i .e. with exception of o(p(n))
classes, O(H) is divisible by all prime powers not exceeding

2a Vn
i

1 + S log log n

	

w(n)
-\/6 * log n

	

log n

	

log n

if only co(n) + oo arbitrarily slowly .

This is again best possible in the following strong sense .

THEOREM II . If co(n) 1,r + co arbitrarily slowly, then almost no
classes H (i .e . only o(p(n)) of it) have the property that O(H) is

divisible by all primes not exceeding

2a 1/n I+	 5109 log n + w(n)
T6' log n

	

log n

	

log n

The quantity in Theorems I and II is much bigger than in
Theorems A and B. The interest of Theorems I and II is perhaps
enhanced by the theorems proved in the fifth paper according to
which the maximal prime factor of O(H) is for almost all classes

C :~6 -,/n log n 1 - 2 log log n + &)(n)

	

(1 .1)
277

	

log n

	

log n

and this is again best possible in the above sense .

It seems to be possible and would be of interest to prove that for
any real x's the number K(n, x) of classes H in & for which 0(H)
is divisible by all prime powers

27r -,/n I+ 5 log log n - x j}
~/ 6 . log n {

	

log n

	

log n 1

divided by p(n) tends to a distribution function ~ (x) .

2 . Now we turn to the proof of our Theorem I . Let, for y > 0,

f(y) =11 1 le-vv

	

p(n) e
-ny .

V=1

	

n=

For this we have the classical functional equation

(2.1)
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2

	

2

f (y) _
2~
~yf (

4y exp - 24 + 6y

	

(2.2)

and hence for y + 0

f (y) _ ( 1 + 0 ( 1 )) 1/ 2Y exp ( óyl .

	

( 2 .3)

Let Y = Y(n) -~ oe with n to be determined later and let q run
through all prime powers with

q < Y(n) .

	

(2.4)

Let further pq(n) be the number of all partitions of n with the
property that no summand is divisible by q. Then we have for y > 0

pq(n) e`1, _ 1	 1	f(y)

	

(2 .5)
1 -

e-ny

	

f("n-o

	

qín

	

y)

Putting

we get

Putting

pq(n)d--"
hY(n)

hY (n ) e-nv -
n=0

f(y)

s Y f(qy)

Using (2.3) we get for all q's in (2.6)

f(y)

	

1 +0(1)

	

*77 2
(

	

1) 11

f (qy)

	

~/q

	

eXp LL 6 1- q
y

	

(2.7)

if only
qy -~ 0 .

	

(2 .8)

Hence, if y and 1 are sufficiently small, we have

2

n=o h
Y(n) e-nr

< 2 exp ~ ~ ~ 1 ~ 11 1
6

	

q y q-<p q

<5 logY exp j 6 (1-y)
-y



of n ; moreover

which gives for all sufficiently large n,

3 . Now, as is well known, there is a one-to-one correspondence
between the conjugacy classes H of S7, and partitions

n = ml ni -}- m2 n2 + . . . + mk nk

1 < ni <n2 < . . . < nk

	

(3.1)

hY (n ) e-A-Vn = hy (n ) e-ny <

	

h, (m) e-my
M=O

VY

	

- 1exp

	

'Vn< 5 1og -
Y

-,/n
Y

	

6
and hence

hY (n) G 5 1g
Y

exp
~

	

-,/A Y Vn } (2.9)
6

-

eXp

	

1 2Y)
\/n .

Using the

< 5 log Y

	

{ V6 \

classical formula of Hardy-Ramanujan, we have

(2.10)M ^

	

exp (-2~~ Vn)
6

.
4n

.`/3
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rr 1 - Y def . ,~
Y V 6 Vn Vn ,

we get

hy(n) G 40 18 n exp -Y p(n)
~6 Yn

Now choosing
4 -r

	

-\/n
(2.12)

the restriction (2 .8) is satisfied
5 V6 log n'

and hence (2.11) gives

(2.13)
hy (n) -* 0 for n->- oo .
p(n)
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0(H) _ [nl, n2,..., nk] Y .

	

(3.2)

Hence 0(H) is divisible by a prime power q if and only if q is the
divisor of some summand nj and hy (n) is an upper bound for the
number of conjugacy classes H of Sn whose order is not divisible
by some prime power q C Y. Hence (2 .13) means that for almost
all classes H the quantity 0(H) is divisible by all prime powers
not exceeding

4 v

	

-,/n

	

(3.3)
5 V6 log n

4 . Next we consider the divisibility of O(H) by the prime powers
q satisfying

4 7r Vn
G q C 10

7r -,/ n
5 \/6 log n

	

-/6 log n
For this sake, we need a more delicate treatment of pq (n) . Taking
into account the Euler-Legendre "Pentagonalsatz" according to
which for Re z > 0 the relation

	~

	

2

(

1
-)11(1-

e- vz) _

	

1)k exp (- 3k +k z) (4.2)
f(z)

	

v_1

	

2

holds, equation (2.5) gives the representation

to the sum in (4.3) .

and thus

pq(n)=
.G~(k)

( -1)kpp n-
3k2+

Ic q),

	

(4.3)

where the summation is to be extended over the k's with
3k22 F k

<
n

	

(4.4)
q

5 . First we shall estimate the contribution of the k's with

Jk>10 .-~/n

q

Then we have
3k2 + k

	

-,/n
2->k2>10

q
k



ISO

since from (2 .10)t

p(n) < c exp
2v

1/n >

we have for the k's in (5.1)

Hence

p(m) _ .

3k2 +k
< n-- 10 1/7ak<(1~n- 5k) ;

3? 2 +k )

	

( 2~r

(

	

3k. 2 ?c~v ( n -	2 	
1/ 6

< C exp

	

~ i, -- -	
2

	

q

<exp

	

6
(Vib - 5?c)

k .

	

31c 2 =, k
( -- 1) p n -	 q

k] > 10VnIq

	

(

	

2
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exp 76
V(m-1/24)

Noticing the elementary relation

t e means throughout this paper an unspecified (explicitly calculable) positive
constant .

c exp
217

	

exp

	

10 Tr
Iv<

	

G/6

	

-1
~

	

~

	

1/6
k>10~11+/q

< en-6 exp
76

VA 1 < cn p(n)

by (2.10). Hence, from (4 .3),

pq(n)-

		

(
n
_ 31c

2+Ic
g ~

kl-<loVn/q
0(n- °) p(n) .

	

(5.3)

6 . Next we use Hardy-ftamanujan's stronger formula (see [2]) in
the form

4(na-
24) ~3

+0(1)exp {- 0, 49 6 ym { . (6.1)

~r ~2 V(m-1/24)1

	

~ +{1

	

1

	

3

	

1
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exp {cl(~/(x-~/)- ~/x)}
2

x-y
1 - c2- +0(1) ex-p (- c 3 ,lx)vx

	cly
) í

	

yv

	

y

	

}=exp

	

~~x

	

1 c4 xs/2 +

	

5/a + c6 ~~3 +®(x-1 ' 46 )

	

(6 .2)

where the c.'s are positive constants and
0<y<x o.51

1
-'V C2

__y) +0(1)exp(-C3~/(x-y))(x-

we obtain using (6 .1) for the Vs i14 (5 .3) and. q's in (4.1) from (6 .2) with
2n

	

1

	

37c2 + k
cr =

	

~' = n - -> ?~ =

	

q

	

(6.4)~/6'

	

24

	

2
that

~~

	

3k, 2 +1„ q)n-	
= exa - vk 2 +Ic ,r

	

q

V(n)

	

1

	

2

	

-\/6 * V(m -1/24)) x

x { 1 + C
3k2 + k)2	 q2

	

3702 + k) 3

	

q3
4

	

2

	

1 3/2 +
C~	2

	

1 5/2 +

24)

	

~
n- 24)

37o2 + %4	
q	
4

+ cs	2	)	3 +0(n
1,46 ) } .

	

(6 .5)

( 7Z - 214)

Putting this into (5.3), we get at once

pq(n) -_

	

(- 1)k eXp

	

3k2 + Ic 77

	

q
p(n)

	

Ikl,lo,1nlq

	

2

	

~/6 * \/(n-1/24) +

} C	q2		(- 1)k 3k2 + k- 2
X

(7L- 1/24)3/2 Ikl\10,/n/q

	

2

x exp - 3k2 + k ar	 q	 +
2 -/6 V(n- 1124)

f- C5	q3		_ lk
)

~3k2 4- k~3 x((n- 1/24)5/2
Ik[-<IOVnlq

	

2

181

(6.3)
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Obviously the same error term holds completing the sum in (6.6)
to - oo < k < + oc ; putting

(- 1)k 3k

	

k ° exp _ 3k2 k 7r

	

(6.7)
1k)

	

k ( 2 )

	

(

	

2

	

V6 \/n-1/24))

equal to S,(n, q), we get
n _

	

2
p~)

	

So(n, q) +C4

	

q 1 3,2 S2(n, q) +
n 24)

q3 512 S3 (n, q) + r6
	 q4	1 3 S. (n, q) + O (n-1.45 ) . (6 .8)

(n 24)

	

(n 24)

7 . In order to investigate S,(n, q) we take the reciprocal of (2.2)
and apply the functional equation (4.2) . This gives for y > 0

W

k--m

and hence

3k2 + k 7r

	

qX exp ~-	2

	

\/6 V(n-1/24))+

q 4

	

k (3k2 +k) 4
+ c6	3

	

(- 1)

	

X
(n- 1/24)

Ikl<-10VnIq

	

2

x exp (- 3k 2+ k
\/6 -%/(n g1/24)) + 0(n-'-"log n) . (6 .6)

3k2 + k

	

2,r

	

7r2 )
(- 1)k exp

	

2 y = -,/ Y exp ( 24
	 y- 6y X

1) k exp
(- 3k2+k 4 77.2

	

(7 .1)
)

x

	

- 2

	

y

So (n, q) _ N/(2 \/6) (n	
~q

	 4)
1
14 exp T . .	

(n q 1/24)6
~	

7
N/(n- 1/24)

1 {
1 + O(1) exp ( - 4ar , /6 ~/(n g1/24) )

	

(7.2)
6

For our present aims it is enough to write
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1/4

S,(n, q) _ (1 +o(1)) \/(2 \/6)
n exp - 7r .

Vn ) . (7.3)
~q

	

\/6 q

Differentiation in (7.1) leads easily to

S,(n, q) =0 (1og 10 n) exp -
/ 6

.
4n)

	

(7 .4)

and thus (6.8) together with (4.1) gives
1/4

Pq(n) _ ( 1 +o( 1 )) 1/(2 V6) ~q exp \
-

6 . qnlp(n) .

	

(7 .5)

For further aims we shall need a more exact formula for 8,(n, q) .
Let us differentiate the identity (7.1) v times (1 C v G 4) . This is
the sum of (v + 1) terms each of the form

	

4 7r 2
p~(y) eXP( - -

ár21

	

- 1)k
3k2 k) ' exp ~- 3k 2 f k -) (7 .6)

c4 6y

	

2

	

2

	

yy(k)

Hence, for 1 G v G 4 we have

j=0, 1, . . .,v,

where the pj (y)'s are polynomials in ~y of degree < 20 with bounded

coefficients . In particular, for j = 0, we have

27r

	

y

	

772\ ~( )

	

k

	

3k2

	

k 47r 2 1
y
exp

24

	

6y

	

(- 1) exp

	

2

	

yy(k)

whereas for the terms with j > l, since the term with k = 0 is
missing from the sum, we have an upper bound

0(logIO n) eXp { -
r 6

+ 4,7 V 6
~'/n

q } .

27r

	

y

	

.7-2

	

M
Sv(n, q)

	

ex_ ~/ - p -

	

_

	

q +
{

	

y

	

(24

	

6y

	

y - :s

	

(n-1/24)

+ 0(log10 n) exp -

	

6
+ 47r V6' q } .

8 . Now we may complete the proof of Theorem I . Let

(7 .7)
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4 r

	

-\/n

5 V6 ' log n

2 _

	

or

	

1/ 7L
Y

	

A

	

.6 log n

where A will be determined later . Putting

h"(n)'

	

p2 (n)

	

(8 .2)
I i~q~Yz

gives (7 .5) for all sufficiently large
1" z

h*(n) < 3 p(n) n' 4
J -Vx exp

- ~6 x7L)
d0(x) (8 .3)

Yl

where 0(x) stands for the number of prime powers not exceeding x .
Using the prime number theorem in the form

0(x) = Li x + 0(x) exp ( - -,/ log x),

the factor of p ( n) in (8 .3) is
Y z

(1 + 0(1»n, 14

7 --log
exp	n) dx

~- 1

Fz

logn) ~ exp
(- -,/6

xn )dx.

Yl

(5/4) log n
IT

	

-

	

1
6 (l/a) log n

. y z

e- y a'y = o

h*(n ) _
0

á- ",

p(n)

	

(

n

log5/2n)- 0 ( 1 )

A= 2 '
1+ 5 log log 9-b _ to (n)

+

	

log n

	

log n)

n# -1/a
(log 2 n)

(8 .4)
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w(n) /'(+co

arbitrarily slowly. Repeating the reasoning of 3, the proof of

Theorem I is finished .

9. Next we turn to show that the theorem is best possible, i .e. to

Theorem 11 . Let again co (n) oo arbitrarily slowly; further

X

	

27r ~n (1 - 5
log i.og n - w (n)

i

	

-/6 ' log 1a \

	

log n

	

log n '

X _ 2~7

	

~/n 1 -L 5 log log n + co(n)

	

(9 .1)
2 -

ti/ 6 fog n

	

~o n

	

log n
and

X 1 <qi < g2< . ..<ga<X2

	

(9 .2)

all primes of this interval . We define the class-function k(H) by

First we investigate

Obviously

(9 .3)

8, =

	

( Fí) k(H) .

	

(9 .4)

81=

	

1~ ) 1=

k(I)
2,ro(11)

Using the representation (7 .5) (which can be used owing to (4 . 1),

Sl -(1 0( 1 )) 1/(2 -,/ 6)p(n)nk

L v
exh ~-

-7r_ 1/n

V6 q~

X.
exp

_ 77 ~/nl

_ (1 +o(1)) V(2 VI6)p(n) n}
I

	 -V6
x

ry

	

'Vx log x

Since this time we need asymptotic formula for S,, we have to

proceed a bit more carefully than in $ . Now
xz

S, _ ( 1 +o(1)) 2 1/ 6 log n
f exp ( - ~6/

X,

n~ dx

_ (1 + 0 ( 1 )) 8 ViT p(n) exp \ 2 )(--, + oo ) .

	

(9 .5) .

- 1
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10 . Next let

Then

(g)

	

~--~(µ)

	

(U)
4µ 10(H) 4v 10(L)

1 +S

	

1\µ#V\l
qµ,
(~) 1 .

4v10(H)

Fixing µ and v the inner sum is the number of such partitions of n

in which no summand is divisible either by %, or by q~ . With the
notation of (4 .2) this quantity is as easy to see

the coefficient e-n 2 in f (z) f(qµqvz)

	

(10 .3)
f (qµz) f (qUz)

Hence
i

	

1
S, = the coefficient e-n, in f (z)

	

f (q~z) +

The function in the curly bracket is

82 =

	

(H) k (H) 2 .

	

( 10 .1)

f(q qvz)-1
+

	 µ		(10 .5)
f (qµz) f (q,z)

	 f(qµq"z)+

	

(10.4)
1 Vµ yci f (qµz) f (quz)

1

(10 .2)

1- v<_l

and accordingly we split 82 into the parts

St , 821) 822) and SO ) .

	

(10 .6)

11 . Since from (2 .1) and (4 .2)

f(z) {f (qµ q. z) - 1}

	

p (kl )
e-klz

	

(11 .1)
f (qµ z) f (qv z)



we have

S
2
(3)-

{

	

p (k2) eXp (- k2 qµ qv z) }

	

(-
1)k3+k4 X

k z=1

	

k3 , k4 =- w

~_3k3
2

k3gµ+ 3k42
k42

	

gv

)

z ~
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x exp

1 )k3+k4 p(k2) X

3k3 + k3

	

3k2+k4n~k2gN,gv~

	

2

	

qu -

	

2

	

. qv

	

(11 .2)

where the outer summation is to be extended to All (k 2 , k 3 , k 4 )
systems with

k2

	

1

2

	

2
qµ qv k2 +

31c3
2

k3 qµ
+

3k4 2Ic4
qv < n.

2,2
< c

	

exp ~6 { n -
23 log2 n

1 Sµ, v-l }

112

)

pqµ (m)
e-mz

/ ( L-a(k)
(- 1)k+1 exp _ 3k2

2
k

Using (5 .2) and (9 .1) - (9 . 2), the inner sum in (11 .2) is quite
roughly

27r

	

n co (n) 2

	

27r 3

	

1/n< c exp
(-,/6 1/n loge

n exp

	

3 1/6 loge n)

< c p (n)n 2 eXp -	 27r3 1/n l

(

	

31/6 loge nl

	

(11 .4)

Since roughly k2 takes at most O (log 2n)-values, further k 3 and k4
each at most O(ni log n)-values, we get from (11 .4) at once

S(2 ) = o (p(n)) .

	

(11.5)

12 . Next we consider S(2) . Since from (10 .5) and (4 .2), we have
f (z) _ - f (z) )

	

1

f (gµ z) 2

	

f (qµ z)

	

f(qµz)
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we get

S(22)=
LaLa(k)(

- 1)k+1~Jg~(n
3k2 +k gµ )

2u=1

The contribution of terms with I k ~ > 10 log n is absolutely
2P

(1i
_'3k

2+
k

qµ ) =
o
(p(n))

g=1 101og n <_ Ik j <Vn1gµ,

as in 5. For the remaining terms in (12 .1) we can apply the repre-
sentation (6 .8) - (7 .2) - (7 .4) in the form

pg(n)-1/ (2 ,/6) of p(n)
exp

( ~/6 qn ) {
1+0

(lo t ) }' (12 .2)
g n

The contribution of the error term to (12 .1) is absolutely
3k2 + k

	

112
n -	 qµ

n '
0(1 ) p(n)

	

exp ( :6'

	

q

	

) = o(p(n))
I- ~qµ Ik151o Jnl9µ

	

µ

using (9 .1) . Hence, from (12 .1) and (12 .2), we have

S'22) =o(p(n)) + ~,/(2 ~,/6)

	

áqg
(-

1)k+1 X
µ ks101µ-on

(
n -

3k2 + k )
p (n -

3k2 + k
q

)
2

	 qµ

	

2

	

~ X

n -
3k2 + k

q
1

1 / 2
~

X exp(- ~6 .	) . (12 .3)
w

Rough estimations show that replacing

(n-3k2
2 +

k
qw

)114by
n 114

and

In

	

3k2 + k q, 1 112

_

	

I/nexp ( - ~	2	) by exp

	

17

( -

	

)1/6

	

q,

	

V6 q,

the error is again o(p(n)) and hence

x

a
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~r ~/n. exp -

	

X
1Iqµ

	

/ 6 qµ

(n

	

3 k2 + lc( - 1)k+1 p

	

-

	

2

	

qµ)

	

(12.4)

W_< 10109n

Completing the inner sum means again an error of o(p(n)) and

using (4 .3) we get

822) = o (p (n» + 1/ ( 2 1/6)

5(22,) = o (p (n)) - V(2116)

	

pq(n) X
V qµ

µl=1 µ2=1 Ik2 1_<101ogn

X exp
1
- ~6

q,un
} G o(p(n)) t (12 .5)

13. Next we consider S21) . Using (4 .2) and (2 .1)

a 2
f(z) ( : f(q1 z) - {

	

p(M)
g=1

	

m=0

2

	

2
X

	

1

	

ex ( -
3k 1 f Ic1

	

3ík2+ k2

	

z
}

(- ) kl-i-k2

	

p

	

2

	

qµl -

	

2

	

qµ2
91 =1 92=1 kl k 2

and hence the representation
a

	

a

821)

		

X

µ1- µ2=1 kl k2

189

( n - 3k1	
c5

+ kl q, .

	

3k2 2 k2
X p

	

) . (13 .1)
1 -

	

qµ2

One can see easily as in 5, that the contribution of k2 's with

I k2i m > 10 log n is o(p(n)) and hence using also (4 .3)
t a 3k2 + k22qµ2).

(13 .2)

To go further, we shall need for pqul(m) an asymptotic repre-

sentation which is finer than the one in (7 .5) (even the one in (12 .2)) .

( 2 )
tIt would be easy to show f = o(p(n)) but, for our aims, (12 .5) is enough .

2
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Using (6 .8) and the formula (7 .7) we get

2 ) -S° (m, q) + { 04 (m-124)3/2

	

y
exp ( 24 -

7T 2))'

	

y+
P(M)

3

	

27

	

_7r 2»(3)
+

c5
(m -1/24)5 /2 (Vy

exp (2 6 y

	

+

2-7r

	

7r

	

j
1~-+~6 (m --1/24) 3 ( y

exP
(24

	

6y ) ~( ~ y=njVO 41VM-1124

+ o (m -1,45 ) .

The contribution of the error term in (13 .3) to SO in (13 .2) is seen

to be by (9 .1) easily o(p(n)) . Further we shall discuss in detail the
contribution of the S° (m, q) . p(m)-term . The others could be dealt
with quite analogously; their contribution will be o(p(n)) owing to

the factors

q 2

	

q 3

	

q 4

(m- 124) 3/2' (m- 1/24) 512' (m- 124) 3

(13 .3)

which are by (9 .1) of order 1/Vn, if only

oj(n) = o (log log n) .

The contribution U ofp (m) S° (m, q) is by (7 .2)

k2

(

	

3k2 + w2

	

1
n

	

2

	

qµ2 24
(-1)o(p (n)) + ti/ ( 2 1/6 )

µ i =1 µ2=11k21-10109n
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qµ2 24
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qµ1

(

	

3k2	
+
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/
.X p n -	

2

	

qµ2

X

qµ2

(13 .4)
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By the elementary formula (with suitable numerical constants d,)

(x
-y )~ exp

I c,l ~(q
	 y) _1~(xq y) ) I = xf exp I c ~~x

	

qx) I X
x-

valid for

Using it with

2

	

2

x{
1+dlx~q +d 2 yq2 + d3Yq+d4 q

12
+

{ ds
qx

+d6
x + 0 1 Y912 1 + 0 V 4 Y512 1 } ,

	

(13.5)

o < y E x0,51 , q < Vx.

_

	

1

	

3k2+lk 2C

	

,/6'x-n

	

24' y	 2

we obtain analogously as in 6 and 7,

i
a

	

n 24)
U = 0(p (n)) + 1/ (2 V6)

	

x
l+l°1 qµ1

x exp	77

	

qµ1

	

1/(n - 1/24) 1
\/(n-1/24) qµ1

`

	

3k2 { k
x {

	

(- l)k2 p (n-	
22

	 2 q;") ~ .

"2°1 k 2

The sum in the curly brackets is by (4.3) (or (5.3))

µ2a1

and the sum with respect to µl is

p"2(n) = Si

P(n)
(1+0 (1 A

by (6.8), (7 .2) and (7.7) . Thus using (9.5), we have

µ2 , q = qµ1 ,

x

(13.6)
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S21> _ (1 + o (1 )) p(n) Si

= (1 + o ( 1 )) p(n) { 8 N/a exp
(CO)

1 2 .

	

( 13 .7)

Collecting (10.2), (10 .6), (9 .5), (11 .5), (12.5) and (

11

13 .7) we get for

82 in (10.1) the inequality

82 G (1 + 0 (1)) p(n) { 8 -,/ or exp
(,,) 12 .

	

(13.8)

By Cebysev's inequality, in order to complete the proof of
Theorem II, it is enough to show that

defZ- p(n)

	

k(H) - 8 N/ or exp 2 2
- o (1) exp w .

But this follows from (9.5) and (13.8) at once .
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