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ORDINARY PARTITION RELATIONS 
FOR ORDINAL NUMBERS 

P. ERD& and A. HAJKAL (Budapest) 

To RICHARD RADO for his 65th birthday 

Q 1. Introduction 

The ordinary partition symbol invented by R. RADO and first introduced 
in [l] enables us to study systematically the possible generalizations of 

RAIXSEY’S theorem. 
Let 01, PO, . . . , BY be either order types or cardinals y an ordinal and 

r a cardinal and assume that B,, , . . . , &, are cardinals if uz is a cardinal. Then 

(1.1) cc + (fi, , . . . ,/j,)’ or equivalently a - (BA, 

denotes that the following statement is true. 
Let (S, -< ) be an ordered set; tp S( -< ) = ,z or let S be a set 1 S 1 = a 

if CL is an order type or z is a cardinal respectively. Let [Sir = {X : X c S// 

A I X I = r} = u (v < Y) J, b e an arbitrary r-partition of length y of S. 
Then there exist a subset S’ c S and an ordinal v < y such that 

[S’lr c J,, 

and tp S’ (-0 = ,9,, if /?,, is an order type or / S’ / = la,, if /3,. is a cardinal 
respectively. z ++ (fi, , . . . , j’,)’ denotes that t,he negation of the above 
statement is true. 

In [ 1 ], [2] and [3] several generalisations of (1. I) had been defined 

and a general partition calculus had been developed. In [3] an almost complete 
discussion of (1.1) is given in case the entries a, PO , , . . , &, are cardinals and 
G. C. H. is assumed. In a forthcoming book of R. Rado and the authors this 
discussion wiI1 be given without using G. C. H. 

In this paper we will consider some special problems for the ordinary 
partition relation in case the entries are ordinals. We will only consider the 
case r = 2, and in most of the cases we assume y = 2 too. 

Even the problems concerning these special cases are rather ramified. 
In our paper [4] we gave a collect,ion of t’ypical unsolved problems. Here 

we will consider only one type of these problems. 
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We will investigate the problem 

(1.2) = - MY)’ 

where z, 8, y are ordinals. We will assume 1 c1 ; = &, b > y . It is easy t,o 
see that if in this case b = o, the problem (1.2) can be reduced Do a problem 
involving only cardinals. In case /? < w, difficult problems arise which we 
do not consider here. See Problems 10, 10/A, 10/B of [4]. ITTe will consider 
the problems where fi > u)~ . 

On the other hand with an easy SIERPI&KI-type argument one can 
est’ablish t,he negative relation 

(1.3) x -+ (OE + 1, NJ2 for every E 2 0. 

Thus we will be interested in problems of the following type 

y. - (B, kY, 3<k<ao, ,t>u 

(1.4) 

There are many results and problems concerning (1.4) even in the 
simplest case t = 0. We collected these results and problems in [4] 3.2 and 
Problems 6 and 7. We only mention that one of the most difficult problems 
(Problem 7) of [4] has been recently solved by CHANGE. He proved mw -+ (ww, 3)2 
but his proof does not yield 

cow + (OP, 4) 2* 

All the positive results for (1.4) in case Z = 0 make use of Ramsey’s 
theorem 

&J -+ (it”); r,k<w. 

This is the case with SPECKER'S result ~2 + (02, k)‘; k < o. For references 
see [4]. Thus in case E > 0 one of the first questions was if 

w’i 4 (o$, 3)2 holds or not ? 

See problem 13 of [4]. 

The second author proved recently the following result (see [?I]): 

(1.5) 0; -t- (cd;.. 3)2 

provided 6 = r) + 1 and x,, is regular. 

On the other hand, P. ERD~S and R. RADO proved in [6] the following 
result 

Let ,t be arbitrary, k, 2 < o. Then there is f(k, 2) < ~0 such that 

(1.6) LO,. f(k, I) + (cot k, E)“. 

l See C. C. CH~NG, A theorem in combinatorial set theory (to appear). Using 
CHANG'S method E. MILNER pro-c-ed mm-+ (Q~,~C)~ for all Ltw. 



ERD6S, HAJNAL: OBDINARII PARTITION RELATIOHS 173 

Our real aim in this paper is to push further t,he results (1.5) and (1.6) 
for Dhe cases 5 > 0, to est,ablish several consequences and to fill up some 
of the gaps. We are going to state a number of related problems and results 

which can not be formulated in terms of the ordinary partition symbol. 
In certain cases we only outline or entirely omit the proofs. 
We use the usual notation of set theory. We mention that each ordinal 

is considered to be the set of smaller ordinals. The notation oi and X: 
mean the same (w, = w). We agree that CD~T denotes the ordinal power 
while NY” denotes t,he cardinal power i.e. ww = w? is a denumerable ordinal 
while @ is t,he cardinalitp a.nd the initial number of Dhe continuum. 

0 2. Some negative results using G.C.H. 

First we introduce some special notation. Let 5, ~1 be ordinals and f 
a cardinal valued function with D(f) c mu17 , f(v) 5 wp for 1’ E D(f). Put A = 

= O( x WV, Ay=coS x {Y} for v Ew,, S(E, q,f) = {X c A: I x f-l A, I = 

=f(v) for v E Wf)). 
We further put 

We prove 

THEOREX 1.’ Assume G.C.H. Ler 6 = q + 1, q arbitrary. Pzct S, = 
= X(7 -L 1, 7, q + 1, 11). Then there exists I c [A]2 satisfying the following 
conditions : 

a) XcA, [Xl2 c I impty 1 X 1 < 3 

b) Xc A, X ES, imply [Xl2 (7 I # 0, 

Theorem 1 is obviously equivalent to 

COROLLARY 1. Assume G.C.H. and Q < w7+r . Then 

C’4)fl &y ++ (c+l wq’ 3F. 

This should be compared with (1.5) and (1.6). 

We will also prove the rather special result 

COROLLARY 2. Assume G.C.H, 0 < o2 _ Then 

The proof of Corollary 2 will be given on p. 17.5 

2 This result was already stated in [4] without proof. See the remarks concerning 
Problem 13. 
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Strangely enough this result does not generalize and e.g. it is not known if 

holds for CO? < (T < CO, . We shall return to this problem on p. 176. 
Instead of Theorem 1 we prove the stronger 

THEOREM I/A. Assume G.C.H. Let t = q + 1, 7 arbitrary. Put 8, = 
= S(q + 1, q, 7, q). Then there exists I c [A]* satisfying the following cm.- 
ditions 

a) X c A, 1 X I = 3 imply [Xl” Q 1, 
b)XcA, IXnA,I=N,+,for.~ome v<o, and YES,for some 
YCX 

imply LU n I# 0, 
c) Foor every u < v’ < coq andfor every x E A,, th.ere is at most ofae y E A,. 

with (x, y} C 1. 

Theorem l/~ is obviously st,ronger than Theorem 1 since X c A, X E S, 
implies both 1 X n A,, 1 = N,+~ for some t’ < w,] and Y E S, for some Y r X. 

PROOF of Theorem l/a. 

(1) Let hJ,,us+l = A be the well-ordering of A satisfying 2, = (p,, yd) 

for a <0111-I and CL < @ iff either ,u~ < pfi or ,u, = ,u~ and vz < 17~. The type 
of this well ordering is indeed 09+r . 

For every a < wqfl we put 

We are going to define a function f such that j’(x,) c 2, for every ~1. < w~+~ 
by transfinite induction on Z. Our intention is to put 

(2) 1 = {{x,1 qd : B < z I\ “6 Efk)). 

By G.C.H. there is a well-ordering {Yr}reW7)+1= S’, of type wViU1 of Xi. Put 

&= {Y,ES,:~<cr/\Y,cZ,}. 
Assume that tc < ollfl and f(xa) is defined for every p < a in such a 

way that f(z,+) c Zs and 1 f(z& n A,, / 5 1 holds for every v < u)~ . 
Now we cla.im that there exists a set B satisfying the following con- 

ditions 

B c Z,, lBnA,I<l for every v<cc),,, 

(3) 
B n Y, f 0 for every Y, 6 ‘de, 

and 2, af(za) for every pair /?, y < cc, 5, 5 E B. 
We only outline the proof of (3). By a well-known theorem of BERK- 

STEIN and by ] ‘de, 1 < X, the elements of %, can be represented in different 
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A,+, i.e. For every vtl < v < orl one can define a subset E’, c A,,, 1 F,( = g, 
such that for each Y, c ‘be,, F, c Y, for some V, < v < We. Then by trans- 

finite induction on P, one can pick an element b, of F, in such a way that 

b, E F, - IJ (v’ < v)f(bV,), b, E-Z,. The set B = {bv},.,~,,<~v obviously satis- 
fies the requirements of (3). 

W7e now put f(xJ = B for a set B satisfying (3). Then f(2,) c 2, and 

Ifwn4lIl f or v < wV hence f(xJ is defined for every 5~ < wV +1 . 
We prove that the I defined by (2) satisfies the requirements a), b) 

and c). Assume X r A, / X 1 = 3, [Xl? c I. We can put X = {x=, xB, z,,} . 

We can assume that V. = min {v,, vg, v,} . Then, by (2), (3) and by [Xl? c I, 
we must have x0, xy of c 2,. Thus P,~, pLv < ,u~, and as a corollary ,9. y < z. 

Then, by (3), xb $f(x,A xy MyA h ence by (2), {x8, D+} 4 1. This contradicts 
[Xl2 c 1 and a) follows. 

Let now X c A, v < oV, Y c X be such t,hat ] X n A, j = N,-~ 

and Y E S, . Y E S, implies that there are Y, c Y and ,a < wtl.+r such that 

y, c Z,“, xzo = (~1, Y). By ( X fl A, ( = xpI-i , there is E > r with tr, E 

E X n A,, and ,u, > ,D. Then V= = v, hence Y, c 2, andthus Y, E %Je,. By (3), 
f(zJ n Y, + 0 and, by (2) this means [Xl2 n I # 0. This proves b). c) follows 
from (2) considering that, by (3), ]f(zJ n A,, [ < 1 for every v < orl. 

To prove Corollary 2 we need the following result often cited as the 

MILNER ~ RADO paradox [ 71. In terms of (1.1) this can be expressed as follows 

MILNER-RADO THEOREM. Let cz >O, (I.<cI.I,+~. !Z%en 

(2.1) c -i, W),',, . 

To prove Corollary 2 we apply (2.1) in its first nontrivial instance z = 1. 

PRooF of Corollary 2. 
Let now 0 < wp . Let B, lJ . . U 2, be a disjoint l-partition of e 

establishing the negative relation (2.1). We can assume 1 B, 1 = pi for every 
12 < o, and that t,he B, are disjoint. 

By Theorem 1, there is an 1 c [a]’ such that 
(i) X c 0, 1 X I = 3 imply [X]’ Q I, 

(ii) X c 0, [Xl2 n I = 0 imply I X i-J B, I < & for all but finitely many 
?a < co. 

Put a, = [G]’ - 1, El1 = I. Then the partition [a]’ = 3, iJ a1 establishes 

[r -I- (co? , 3)“. 

By (i) it is sufficient to see that 

X c 0, [Xl2 c 3, imply tpX (<) < w;” . 

By (ii) [Xl’ c 3, implies that X = X, lo . . . u X,-r lo Y where I Y j < wl; 
tp Xi (<) < wi for i < n wr being indecomposable this yields tp X (<) < w;“. 
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Remarks and problems. 

PROBLEM 1. Assume G.C.H. Is it true that 

Is it t,rue that 

a + (0~2, 3)2 for w> < a < 0~~ ? 

This would be a straightforward generalization of the special result 
stated in Corollary 2. 

PROBLEM 2, Assume G.C.H. Is it true that 

Is it true that x w + (Z o, 3)2 for every cardinal o < a < 01~) cf(x) f w 

where tiO is the first cardinal > o for which x0 ++ (x, , x0)? 1 

The first part of Problem 2 was already stated in [4] Problem 13. It is 
obvious that a positive solution of the first part of Problem 2 would imply 

a positive solution of the first stronger part of Problem 1. It is easy to see 
that uOo~ -+ (x00, 3)2 holds. It is intrigueing that we have no information for 
any smaller cardinal with cj(r) 7 4 0;). ‘Vl’e mention that as a genernlisation of 

Specker’s result o2 ----t (0~‘~ I?)~ for 15 c 03 we can prove 

THEOREM 2. Let x ha Q .d~o~~y limif rardiml (i.e. 21Dl < x fog ,% < x) 

and rissume Q(u) = 0). 

Then 01 w ---f (x ro, La)’ Jrolds fm k < w. 

The proof can be rarried out using the canonization method described 
in [3], Lemma 3 and applying 09 ---f (02, k)“. JVe omit the details but we 
mention that the argument breaks down if we want to apply it for the 
proof of 

G.C.H. --j W; ---t (CL),, 3)? 

and we can not decide if this relation holds or not. 
As to the second part of Problem 1 we mention that assuming G.C.H. 

a t> (u$ ,3)” 

holds for a < wgZ. This is connected with a possible generalization of (2.1). 
To be able t,o formulate this we define another symbol. 

(2.2) DEFIXITION. Let x, p, yq b be ordinals r a cardinal, z --t [fi]I,,d 
denotes the following statement. If [a]’ = U (11 < y) 3, is an arbitrary r-l’arti- 
tion of length y of E then there are 

Rca, Dcy 
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such that’ tp II(<) = S, tp B (<) = b and 

For t,he definition of this symbol see [3] and [4]. 
~2 being indecomposable (2.1) can be written in t,he following form. 

Let a > 0, IT < w,+~ then 

(2.3) fJ ++ WI’,, n for every n < w. 

In the proof of Corollary 2 we applied that (T -H [WY]:, n holds for 

every ‘n > 0 and for a < ct.+ 

A straightforward generalisat’ion would be the following assertion. 

Bssume G.C.H. TheIt 

\Ye have discussed this problem in [4], see Problems 19-21/A. We 
know that (2.2) is true for a < w2 . As we have mentioned in [4] for g = cog1 
(2.4) seems Do be independent of the axioms of set theory. Obviously, if for 
a given a t’here is a positive answer to (2.4) then this together with Theorem 1 

gives a posit’ive answer to t,he second part of Problem 1. 
We did not investigate if Problem 1 is equivalent to the corresponding 

case of (2.4) or Do any of the known unsolvable problems. Finally we discuss 
a. further possible refinement, or Theorem 1 by st’ating some results without 
proofs. 

THEOREM 3. 
A) A~ume G.C.H. Let : = 1, 17 = 0. Put 

S, = U (f : D(f) C w  /\ 1 B(f) 1 = w  11 V k(E <w* 3 n(w>f(-n)>k)))S(l, 0, f). 

Th.e?z there i.s I c [-4]’ satisfyiny th.e requirements 

a) X c -4, 1 X 1 = 3 imply [Xl2 Q 2, 

b) X c A, 1 X n A, 1 = co1 for some n < 0 

und Y c X far some Y E X, imply [Xl? n I + 0. 

B) Let 6 = 1, ‘q = 0, 1, k < w and let I c [aI2 satisfy the conditiolt a) 
of pwt a). Then there is X c A satisfying the following con.ditions. There are 
Y, 2 c S witlr Y E &‘(l, 0, f), Z E S(1, 0, g) where 

I o(f) I = L f(n) = a9 for n E o(f) 

I Jag) I = 00, g (n) = k for n ED(g) and 

[xy n I = 0. 
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We formulated Theorem 3 because parts A) and B) together give a 

surprisingly sharp result. 
Part A) can be proved quite similarly to Theorem l/A. In $ 4 we are 

going to establish a weaker resuIt than part B). We will not prove the existence 
of 2 c X but we will do it generally for t = q + 1, q arbitrary. 

The proof of B) is quite tricky but we omit it because it is very special. 
We mention that we can generalize neither Part A) nor Part B) of Theorem 2 
for the case 6 = 2, q = 1. The proofs already break down in the most 

special cases. 

$ 3. Consequences of the negative result (1.5) 

First we state (1.5) in a slightly stronger form and using the notation 
of the previous 8. For this stronger form see also [5]. 

THEOREM 4 (HAJNAL). Assume G.C.H. Let 6 = q = r + 1 ax& cmsume 
NC is regular. Put 8, = 6’(5 i- 1, 5 + 1, [ + I, 5 + 1). Then there is I c [A]” 
&isJying the following conditions: 

4 X c A, 1 X j = 3 imply [X]i! CJZ I, 

b) X c A, X Ei3, imply [X12nl +O, 

c) for every v < v’ < 03 c+1 and for every x ( A, th.ere is at most one y E A,. 
2i.a (x, y} E I, 

d) [A,]? n I = 0 for v < c++~. 

COROLLARY 3. Assume G.C.H. and let #Q be regular, k, t < w). 
Then 

COROLLARY 4. Under the conditions of Corollary 3 

d:$:)(k+l)*l -I+ (mj~“l+ 1, t + 2)2. 

PROOF of Corollary 3. We prove the statement by induction on t. 
For t = 0 the statement 

is trivially true. Jhulne that t ) 0 and the statement is true for t - 1: 

Put briefly 
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we have 1 0 1 = ] e 1 = &-1 . Moreover there are sets 

(1) 

B,<. . . < & such that3 

z = B, u . . . IJ & and tp& (<) = 0 for ti < e. 

Let now C, , . . . , cWcqI be a reordering of type c++r of the sequence 
B O,‘“, Be. By Theorem 4, there is I c [z]” satisfying conditione a), b), 

c), d). A replaced by z and A, replaced by C, respectively. 
By (1) and by the induction hypothesis, for every tz < e there is a 

S-partition of length 2 of B, , 

(2) [BJ = 3 U 3; establishing o ++ (LO:::, t + 1)“. 

Define the 2-partition of length 2 of z, [t12 = 3, U aI as follows 

(3) 

By (2), this is really a S-partition of z. 

Let now X c z, [Xl2 c aI . Put N = {V < w: +1: C,, fl X # O}. By (2), 
(3)andd)wehaveIC,llX]<t+lforv~N.By(3)anda) we have 
1 N 1 < 2. Thus we may assume N = {Y, v’}, v < v’. Then, by c), we have 

1 C,, fi X 1 < 1 and thus 1 X 1 < t + 2. 
Next, let X c it, [Xl2 c 3,. Put 

By (3) and b) we have 1 H ] < &. 

On the other hand, by (3), [Xl2 c 3, implies [X 17 CJ c 3; for the 
tc satisfying B, = C, . Hence, by (2), tpX n C, (<) < OF,‘; for every 

v -c we+1 * 
Put 

x,=ub~wc,nx, X,=u(vc~p+l-M)C,nx. 
We have X = X, lJ XI . By the definition of .M, tpX, (<) < m:,‘y because 
of u$z=,” -+ (w:,‘,“): and 

tpX, (<) < ~2:: < u:,‘B because of ,o = o$:. 

0::: being indecomposable we have tpX (<) < u$zf . Thus the p&,ition 
defined by (3) establishes z ++ (wt$F, t + 2)2. 

PROOF of Corollary 4. Put t = ~fq?~)@+l)+l, (r = ~r;t)(k+l). Then 

there are B, < . . . < &,,L+Isuch that a = B, u . . . u BoL+* 

tp& (4 = c for u < o~-~ . 

3 X < Y means that x -e A for x f  X, A E Y. 

2 Periodic8 Mat. 1 (3) 
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Thus, by Corollary 3, there are partitions [B,,12 = 86 IJ 8; est’ablishing 
(T * (oX?f, t + 2)” for IJ < WC,, 

Put 3, = u (v < “:+1 ) 3; , 3, = [fry - z1 

Then [z]’ = 3, IJ GJr , obviously establishes 

REMARK. Though Corollary 4 is a trivial consequence of Corollary 3 it 
gives a best possible result in the first, nontrivial case t = 1 for every k < o. 
We will discuss this after having established some positive results. 

5 4. Some positive relations 

Let now S be a set and I c [Xl?. As usual we may consider the pair 
i%$ = (8, I) as a graph where R and I are the set of vertices and edges, 
respectively. We will put’ 

I(x) = {y: (2, y} E I} for 5 E S. 

I(x) / is the valency of the vertex x in Gj. 
\2’e will now state a lemma which in spite of its triviality has some 

sharp consequences. 

(4.1) [Xl2 fl I = 0; 1 X fl X, , 2 w, for every 0 < p 

and as a corollary tpX ( -< ) 2 w, . Q . 

(4.1) can be proved by an obvious zig-zaguing so we omit’ the details. 
As a corollary we have 

COROLLARY. For every ; and for every t, k < OJ 

(4.2) 
,y$)(r;q+l - (WktZ ‘+I, t + a’* 

(This should be compared with CoroUa,ry 4 of Theorem 4.) 



PROOF. Ry inducCon on t. For t = 0 t,he st,at,ement 

-4ssun1e t > o and the statement is true for i ~ I. Put 7, = ,!t’-;)(k &J)--l 
and let I c [y]” be such that 

(1) x c y. [X]’ C I imply I X 1 < t + 2. 

Then, by (I), for every x E y we have 

(2) Y C I(X), [Y]” C 1 imply 1 Y / < 1 + 1. 

‘I\‘e hare to prove, that there is 2 c y such that 

(3) [2]2 n I = 0 and tpZ (<) = u$+ff . 

By (2) a’nd by the induction hypot’hesis we may a~ssume that tpl(x) (<) 
< W;~y)t-l f. r erery x E */ otheswise (3) holds. 

Considering that, 
t(l<~;l)+l 

y = w;,1 
hfl 

- co:+1 

and that &k--l)+1 t(h’tl)+l 1 
C-1 - b;+1 )HE 

(3) follows trivially from (4.1). 
Corollary 4 and (4.2) toget,her determine the smallest ordinal z for whirh 

oJ:“,1 ++ (;2, t + 2)” 

holds in case nz $ 1 (mod t + 1). 
In case nz g 0 (mod t + 1) corollary 3 and the following result give a 

complete discussion. 

THEOREM 5. Let ( be arbitrary, k < o., 1 _< t <- CO. The?% 

It-)l(k+l) 
o&+1 - (p, t + 2j2 for every ,U < CO:+-,‘. 

For the proof of Theorem 6 we need some preliminaries. 

LEivm~~. Let c be arbitrary- m < LO, r + s = m; 

% = urn 3- ,‘I,, - o;+l > y = 0.$+1 > v < w:,1 ; 

z = B, u ‘ . . u a.., B, < f . . < .i$, @B, (<j = p for @ < y. 

Let F be a function s~c7l that D(F) = (r und, for every x E X, F(r) c y, 

tpF(x) (<) < v moreover if x E B, then 9 6 F(x) for every Q < y, x E X. 
Then there exists X c z witA the follozcing properties 

tpx (<) = a. 

For eatery x, y E X, y E B, implies p 4 F(x). 

2* 
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In [S] we proved the following result. 

THEOREM. (ERDBs, HAJMAL, MILNER). Let i" be arbitrary, m <o, 

a = @+“+l 9 v < q+1 . Let f be a set mapping defined on cc with tpj(x) (<) < v 
for x E a. Then there exists a free subset X c E of type a. (X is free if for every 

Ipair 2, Y f  x, 2 My)). 

This Theorem is obviously equivalent to the special case r = 0, s = m 

of the Lemma. Its proof is quite lengthy. Considering that the Lemma can 
be obtained with a routine modification of the proof of our Theorem, we 
omit it. 

Using the Lemma we prove the following 

THEOREM. Let c, m, r, s, a, ,9, y, B, , . . , &, have the same meaning 
as in t?&e Lemma. Assume moreover that r > 0 and let I c [S]2 be given in 
such a. way th.at 

(4 tpl(x)(<) < p for every x E X $or a fixed p < I$Z 

(ii) W(x) tl B,) i<) < B for every x E B,, x E 8 Q < Y. 

Thelz there is Y c a, tp Y (<) 2 OS:: such ifiat 

(4.3) pynk0. 

PROOF. Put P(x) = (Q < y: tp (I(x) n B,)(c) = p} for x ES. By (ii), 
x E B, implies Q 4 p(x) for x E TV, e < y. There is v < w<+~ such that p < b . Y. 

Then, by (9, tpF(x) (4 < Y f or every x c a. By the Lemma there is 2 c a, 
tp a(<) = a such that Q tf 6(x) for y f B,, 5, y I$ 2. 

Hence, for every x E 2 and for every e < y 2 fl B, # 0 implies 

tP(l(x) n B,) (<) c B. 
using B - (la<’ (4.1) implies the existence of Y c 2 satisfying the 

requirements of (4.3). 

PROOF of Theorem 5. By induction on t. 

CASE 1. t = 1. Put a = w‘$:l) we have to prove a ---f (p, 3)s where 
y < a$+*:. Assume this is false. 

Let I c [aI2 be then such that 

(1) X r CL, [Xl” c I imply 1 X 1 < 3 and 

(2) X c a, tpX (<) = p imply [Xl2 n 1 +O. 

(1) and (2) imply 

(3) W(x) (<I < p for x E: a. 
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Let B = ozI$t . We can set 

a = B, U . . . U I&, B, < . . . < &, tpB, (<) = 8 for g < 8. 

By (I), there is Bi c Be, tpBi = b such that tp (I(x) n I?:) (<) < 6 
for 2 E BL. Hence we may as well assume that 

(4) tp W-3 f-l B,) I<) < 6 holds for e < ,& 2 E B,. 

(3) and (4) imply by (4.3) the existence of a Y c a, tp Y (<) = w:$ > y 

with [Y]2 fI I = 0. This contradicts (2). 

CASE 2. t > 1. Put a = ~fy~)(‘~r) and assume the result is true fort - 1. 

Let 1 c [ay be such that X c a, [Xl2 c 1 imply 1 X 1. < t + 2. By 
t.he induction hypothesis we may assume tp I&) (<) < “fytr) for every 
x Ea. 

Considering a = @tl) * otz,l and w$!!r) -+ (wi$“)):,, by (4.1), we 
then even have a 

Y c CS, [Ylt Il I = 0 with tpY(<) > wi+*F >fi. 

Note that in cases m 9 0,l (mod t + 1) we do not know a best possible result 
for 6~y+r ---f (n, t + 2)?. 

The following seem to be the most interesting unsolved problems. 

PROBLEM 3. 

Note that, by (4.2), co: + (q, 4)2 and this easily implies ~3 + (0:. Z, 4)z for 

z < o. On the other hand w: -H (w f , 4)2 follows from Corollary 3 which even 

implies 

co: +a (CBf ,4)2. 

We establish one more positive result relevant to Corollary 1 and 
Problem 2. 

THEOREM 6. Let -q < 5 -/- 1. Then 

This should be compared with Theorem 2/B. 

PROOF. It is obviously sufficient to prove the theorem for regular wq. 
The special case t = 0, k = 0 of Theorem 5 yields this for 11 = [ + 1. We 
assume q < 5. We use the notation introduced in $ 2 with t = c + 1. Let 



I c [A]’ be given, let, < be the usual ant,ilesicogrsphicr1 ordering of A and 

assume 

0) X C A, [Xl2 C I impl+j* 1 X 1 ( 3. 

We prove the following statement: there is 

Gv Y c A, t’pY (<) = ru;-l , x. [Y]’ n I = 0. 

We assume (2) is false, Then by (1), we have 

(3) tp I(r) ( i ) < co: 1 . x for x E ,4. 

By wiwl --r (q-c,. 3)’ and by ( 1) we may assume 

(4) [a,,]2 n I = 0 for 1' < Q~. 

Put 

F(r) = {v < 04: I I(x) n A,. I = q4.1) 4 

By (3), we have 

(5) tpE’(.r) (<I) < x for Lr E 3. 

By I A,, I = w;+l , by the regularity of w,, and bp (5) for every >l ~1 w,? 
there are AI c A, and r(v) < CL)? such that 

6) 1 A: 1 = coy_1 and F(r) c t(r) for x E Ai. 

Then, by transfinite induction, one can choose a subset S c c~? such that 
for every 1: < v’: 7, v’ E N, x E -4,: we have 

(7) v’ a F(r), and lilil = wV. 

We prove: 
There is N’ c il-, I&“1 < w,, such that for every M c S ~ S’, /,I1 < o,, 

there a,re .&’ < {v} , v < w,! and B c Ai such that’ 

(8) ;BI =o;+~ alId 31 n F(x) = 0 for T E B. 

If (8) is false define by transfinite induction a sequence M, , . . . ) r$j, 

of subset,s of X so that for every @ < ix, N, = u (a < @) H,; MQ = N 

is a counterexamplc for (s) when N’ is replaced by X,. 
Then 211, < . . < i$$, and t’here is v with U (e < a) X, < {v} and 

there is x E Ai with F(x) n ~$1~ + 0 for every e < a. This contradicts (5). 
Using (8) one can define by transfinite induction a subset H c N, 

IM = tori and A,‘: for v E N such that 

(9) IA:’ i = ro:,, , A ,:’ C A,< for v E M 

and for every v, v’ E ill, Y,< v’, 5 < AZ,, we have Y 4 F(z). 
By (4), (7) and (9), it follows from (4.1) that. there is YcA tp Y (<) = 

==W 5+1 * %’ [Y]? n 1 = 0. This contradicts (2) and proves t’he t’heorem. 
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