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1 . Introduction

For every ordinal number a, an ordered set S is called an rl,,-set if the following
condition P,, is satisfied : if A and B are subsets of S, each of cardinal number less
than sfi„ and if a < b whenever a e A and b e B, then there exists x e S such that
a < x for all a e A and x < b for all b e B . rl,,-sets were first introduced and studied
by Hausdorff [1] and further properties of such sets can be found in [2] . We denote
by Q, the set of all sequences (e j,, < ,, a such that (i) e„ e {0, 1 } (v < co,,), (ü) E„ # 0
for some v < co,,, (iii) given any S < co,,, there is v such that 6 < v < (o,, and E, = 0 .
Also, we denote by R,, the set of those elements of C,, which have a last 1, i .e . for
which there is S < co Q such that eá = 1 and e, = 0 for 8 < v < coa . We order CQ and
R,, lexicographically and denote the order types of these sets by A a and rl,, respectively .
In [1; p. 179], Hausdorff denotes by tl,, a somewhat different order type. Let us
for the moment denote Hausdorff's type by q,'. Then fl., < n .H < 71a , and for the
purpose we have in mind the two types are not essentially different from each other .
AQ and nx are generalizations of the types of the linear continuum and the set of
rational numbers respectively, ordered by magnitude ; the latter two types are íl 0
and 7 0 . It is well known that R,, is an q, set if N,, is regular .t

The cardinal of a set S is denoted by ISI, and for every cardinal r we put$
[S]' _ {X : X c S ; IXI = r} . The partition relation

0 - (00, 01)'

	

(1)

connecting order types 0, 0, d l and a cardinal r was first introduced in [4] and
means that the following statement is true . If S is an ordered set of order type
tp S = 0 and if [S]' = K0 v K, then there are a set T c S and a number i < 2
such that tp T = 0, and [T]' c K,. The negation of (1) is written 0-H (00i 0 t )'.
The relation (1) 'has obvious analogues where some or all of the order types are
replaced by cardinal numbers (see [5]) .

Erdös [6] and Kurepa [7] independently proved that, under the assumption of
the generalised continuum hypothesis (GCH)

x+2 _+ (,x+2, Nx+1) 2 .

	

(2)

Partition relations of a more general kind are discussed in [5] where a great variety
of such relations are established. Erdös, Hajnal and Rado [8] have subsequently
given an almost complete discussion of partition relations for cardinal numbers .

Received 30 June, 1969 . This work was completed when the authors were together at Reading
in the sping of 1967. P. Erdös was then in receipt of a grant from the Science Research Council,
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t [1, 3] . If -,g, is singular then R, is not an 72 s set . It should be noted that if X, is singular then
the condition P, implies P,+ , so that every 7j . -set is also an r7, + ,- set .

I X - S denotes inclusion in the wide sense.
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However, there remain many unsettled partition problems for order types or ordinal
numbers . Perhaps the most striking problem of this kind is to decide whether

ww -> «9% 3)z
is true or false .*

In this paper we are mainly concerned with partition relations involving the
types ?1a . Assuming GCH we shall prove (Theorem 1) that

fla+2 _* (f1a+2s a+1)
z

	

( 3)

which is a strengthening of (2) . In fact our Theorem 1 gives the more general result
that

z
fla+1

	

(fla+1~ ~cf(x))

which corresponds to the cardinal relation
z

~a+ 1 ~ (~a+ 1~ ~cf(a))

proved in [8] . A very simple argument [5] shows that
no

_+ (flog No) z

and this argument requires only formal generalisation to yield

f1a - (flay o)
2

whenever Na is regular. We do not give this more general argument here since
(7) also follows from Theorem 1 and the known result (6) . The cardinal partition
relation

a

	

( x~ 0)Z
due to Dushnik and Miller [9] holds without restriction on a but we
extend (7) to the case of singular Na. Thus we cannot prove

rlw

	

(no,
o) z •

	

(8)
In fact, we cannot even decide whether the much weaker relation

no -+ (no, 3)z

is true. It can be shown, however, that the relation

no

	

( flwo '0 4) z
holds, where W4 denotes a circuit of length 4 . This last relation means that if the
vertices of a combinatorial graph form an ordered set of type fh then there is either
an independent, i .e. edge-free, set of nodes of type no , or the graph contains a circuit
of length 4. The proof of this result is not given here ; it can be obtained by methods
used in a forthcoming paper by Erdös, Hajnal and Milner [10] . By way of contrast
to the undecided relation (8) we shall prove (Theorem 2) that

bw --) g., o) z ,
where Sw = flo+Il l + rl z + . . . . We remark finally that

fl a - (n ., ""'a) 2

holds for a = 0 and for those hypothetical " measurable " cardinals %a for which

* (Added in proof): This relation has in the meantime been proved by C . C . Chang .

(4)

(5)

(6)

(7)

are unable to
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in the boolean algebra of the subsets of an 'N,,-set every N,,-additive ideal can be
extended to an 'R,,-additive prime ideal .

Erdös and Hajnal [111 observed that if 2 s̀, _ N1 then every graph on the set of
real numbers either contains an independent set of the second category or has an
infinite complete subgraph . An argument similar to theirs gives the following result
(Theorem 4) . If N« is regular and 2 ka = «+ 1 then every graph on C« which does
not contain a complete subgraph of power Ncf(«) contains an independent set which
is not the union of N« nowhere dense sets .

For the partitioning of triplets, i .e. the "exponent" r = 3, we give only negative
results. Let 0 denote any arbitrary order type . We shall show (Theorem 5) that

0++(w+(o *, 4) 3

and

	

í +> (w*+ (o , 4) 3 .

These two relations were first proved, by a method which differs from ours, by
A. H. Kruse [12] who obtained the stronger result : if w, w* < i and r > 3 then

++ (0, r+ 1)' . Also, we shall prove that, for all 0,

0++(w+co* v co* +(o, 5) 3 ,

a relation which means that if tp S = 0 then there is a partition [S] 3 = K 0 v K,
with the property that (i) [T ] 3 d= K0 for all T e S such that either tp T = w+w*
or tp T = w*+w, (ü) [U] 3 d= K, for all Ue [S] 5 . At present we cannot prove
the stronger relation

We can easily give a partition of [R 0 ] 3 into two classes K0 and K l such that K l
contains at most three of the four elements of [X] 3 for every X C- [R 0 ] 4 , and such
that in addition [T ] 3 c= K0 whenever T is a subset of R o which is dense in some
interval . However, we cannot exclude the possibility that [U] 3 c K 0 for some
subset U of R o of type ri o . Thus, in the notation used in [8 ; p. 157], which is ex-
plained at the end of the present note, we cannot decide whether*

no

	

~ q o, [ 3 ] ) 3 .

In fact, we cannot answer the following apparently easier question . If E C [R0 ] 3
and I [X ]3 n EI < 3 whenever X E [R0]4, does it follow that there are an element
x of R0 and subsets L and U of R0 , each of type n0, such that 1 < x < u and
{l, x, u} ~ E whenever l e L and u e V?

2. Additional notation

The obliteration sign A placed above any symbol means that that symbol is to
be removed . Thus {xo ,	} denotes the set {x,, : v < a}. If p is a binary relation
then {x,, . . ., « } p denotes the set {xo , . . ., «} and at the same time expresses the
condition that xµ px, for u < v < p .

The cofinality cardinal of K«, written N, ft«t , is the least cardinal sNQ such that N«
can be expressed as the sum of K # cardinals each less than N« . The cardinal 'fi « is
regular if a = cf (a) and singular if a > cf (a) .

* (Added in proof) : F . Galvin has now proved this relation .
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Suppose that S is totally ordered by < . The order type of S under this order
is denoted by tp, S or simply by tp S if there is no confusion about the intended
ordering. For X c S we write L(X) _ {y : y e S ; y < x for all x e X} . In this
paper we use the term " interval of S " in a special sense . An interval of an ordered
set S is a non-empty set of the form (a, b) _ {x : a < x < b), where {a, b) < e S . t
If ISI > No then there are only JSJ' = ISI intervals of S . A set D is dense in S if
every interval of S contains an element of D . A set N is nowhere dense in S if every
interval I of S contains a subinterval F such that F nN = 0 . A set B = Ca is of the
first category (in Ca) if B is the union of tea nowhere dense subsets of C a ; otherwise
B is of second category . If x = (6J, ,,. e Rx we put 6(x) = vo if e,,,, = 1 and e, = 0
for v o < v < rya .

We shall require a property of systems of intervals in R,, . Let ,, be regular
and n < co,,, and consider a decreasing nest of intervals I o , . . ., ~„ in Rx, so that
Io = . . . i„ . We now show that there is an interval

I = n(v < n) Iv .

	

(9)

Let Iv = (a,, bJ (v < n) . By condition Pa, there is x,, eIv (v < n) . Then, for
y < v < n, we have x, e I,, = I . ; a,, < x,, < bu, ; au < xv < b, . Thus every member
of A = {ao , . . ., d„} precedes every member of B = {b o , . . ., 6„}, and since Inj < N a
two applications of P,, yield elements x, y of R,, such that

ao, . . .,a„<x<y<bo, . . .,$„ .

Then (9) holds for I = (x, y) .
It now follows, just as in the case of the real line, that C,, itself is of second

category provided Na is regular . For, let n = wa and let No , . . ., R„ be sets each
nowhere dense in Ca. Let m < n and ao < . . . < 'I" < b„, < . . . < bo , where all
a, b, a R,, . Let (a,,, b,,) c n N,, _ O for v < m, where (a, b)c = {x e C,, : a < x < b}.
We define a,,,, b„, : since m < n = wa it follows from (9) that there are a, b e R„
such that (a, b)R c n(v < m)(a,, b,,) R , where (u, v)R = { x e R,, : u < x < v) . There
are a', b' e C,, with a < a' < b' < b and (a', b') c n N,,, = 0. There are a,,,, b. e R"
with a' < a< b,„ < b' . This defines ao , . . ., d„, b o, . . ., ~„ e Ra such that

ao < . . . < d„ < 6„ < . . . < b o and (a,, b,,) c n N, = 0 for v < n.

There is x = sup {a o , . . ., d„} e Ca and we have av < x < bv ; x 0 N„ ; x 0 No u . . . U
so that No u . . . u R„ Ca , and C,, is of second category* .

If 0 and 0 are order types then 0 > 0, also written as 0 < 0, means that every
set of type 0 contains a subset of type 0 . The negation of 0 > 0 is written 0 0 .
It is easily seen that if NR is regular and S is dense in some interval of R a then tp S > ri a .
Although not quite so obvious this is also true for singular N,, (see [10]) .

An r-graph is an ordered pair G = (S, E) such that E _ [S]' . S is called the set
of vertices and E the set of edges (r-edges) . A complete a-subgraph of G is a set
S' C [S]° such that [S']' = E, A set S" is an independent subset if [S"]' n E = lő .
A graph is simply a 2-graph ; in this special case we denote, for x e S, by E(x) the

t Usually, an interval is every set I - S such that whenever x, y e I and x < z < y then z e 1 .
With this usual definition there are, for instance, 2Ko intervals in the set of rationale, whereas with our
definition there are only No intervals .

* (Added in proof) : If X. is singular and G .C.H, is assumed then Cs is not of second category .
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set £y : {x, y} e E} of vertices joined to x by an edge . For S' e S we put

E(S') = U (x e S') E(x) .

If an ordinal 7c has no immediate predecessor, i .e . if n 0 u+ 1 for every u, then
we put n- = rr, and we put (u+ 1)- = u for every u.

3 . The main results

THEOREM 1 . Let a = cf (a) > /3 and

l~sa < a

	

(aa < a; k < N p ) .

	

(10)

Then

	

na

	

(q., No)2 .

If the generalised continuum hypothesis is assumed then the theorem gives the
results (3) and (4) .
The condition (10) is satisfied if N. is "strongly inaccessible", and in this case we
have

na - (na, t~ # )2

	

(9 < a) .

The corresponding relation for cardinals was proved in [8] . Our proof of Theorem 1
has certain features in common with the proof of the Ramification Lemma in [8] .

Proof. Let tp S = n,,; G = (S, E) ; E e [S]2 . Suppose that the graph G has
no independent set of type na . We have to show that G has a complete tfip-subgraph .
We shall define ordinals n(v o , . . ., 9P) < wa for p < wQ and v, < n(v o , . . ., 9,) (a < p) .
Put

NP = {(v o , . . ., 9P ) : v, < n(vo , . . ., 9,) for a < p}

	

(p < cod .

We shall also define intervals SP e S (p < co p) ; subsets Y(v) of S (v e Np ; p < wfl ) ;

{x(v o , . . ., v,)} v Y(vo , . . ., 9p) c Y(vo , . . ., 9,) (o < p ; (vo , . . ., 9p ) e IV,), (14)

{x(v),x}eE (vcN, +1 ; xe Y(v) ; a < p) .

	

(15)

If these ordinals, intervals, sets and elements have been defined so that (11)-(15)
hold then we can complete the proof as follows . S,, o is an interval and hence
S,, P O . By (12), there is v = (v o , . . ., 4a, P) c- c N., such that Y(v) 0 O. Let
a < p < cop . By (15), {x(vo , . . ., v,), x} e E for x e Y(v o , . . ., v,) . By (14),

x(v a , . . ., vp) e Y(v o , . . ., 9p) e Y(v o , . . ., v,) .

Hence

	

[{x(vo , . . ., v,) : p < (op} *] 2 a E,

and the theorem is proved .
We now define the ordinals, intervals, sets and elements . Let n < Cop and

suppose we have already defined : ordinals n(v o , . . ., 9,) for a < p < n and
y r < n(v o , . . ., 9J (z < a), elements x(v) for vcN,+ 1 and a < p < n, sets Y(v) for
v e Np and p < n, and intervals S P for p < n, in such a way that (I 1)-(15) hold for

elements x(v) of S (v e NP+ 1 ; p < (op) . These will satisfy the following relations
for p < w~ .

S, = S P (a < A (11)
SP = U (v e NP) Y (v), (12)

Y(v') n Y(v") = fő ({v', v"},, c NJ, (13)
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p < n . If (i) n = n - then N„ is already defined-we note that N o has a single
element viz . the sequence p of length 0-and (15) holds for p = n, and we only have
to define (a) Y(v) for vcNv and (b) S. so that (11)-(14) hold for p = 7r . If (ü)
n = µ+ 1 then NP is defined and we must define (a) n(v) for v eNµ (which then
defines NP+i) and (b) x(v) and Y(v) for vcNu+i, and (c) Sµ+ , i so that (11)-(15)
hold for p = u+l .

Case 1 . n = n- . Since S o , . . ., Sn are intervals in S such that S o

	

. . . D
and we have n 5 cop < co., there is an interval S„ e S n So n . . . n 9,, . Put

Y(vo, . . ., 9 a) = Srz n n(P < n) Y(vo, . . ., 9P )

for va < n(vo , . . ., 9a) (a < n) . Thus, if n = 0 we choose an interval S o e S and
put Y(EI) = S o . From the definitions and the induction hypothesis we deduce
that

S,, U (v e N„) Y (v) = U((vo, . . ., 9j e N„) S„ n n (p < n) Y (v'o, . . ., v')

= Sn n (U((vo, . . ., Srz ) ENo n (p < n) Y(vo , . . ., 9P)) .

Now, by the distributive law,

n (P < n) U ((v	9P) e NP ) Y (vo , . . ., 9P)

= U((vao, . . ., vao)eN, for a < n) n (p < n) Y(v,o, . . ., VPP) = A,
say. But Y(v,O, . . ., 9PP)" Y(vto, . . ., 9,) = 0 if p

	

i and (vPO, . . .) 9PP) 0 (VTO ) . . ., 9 =P) .
Hence A = U((vo, . . ., Srz) c- N,) n(p < n) Y(vo , . . ., 9 P), and
S,, U (v e Nj Y (v) = S„ n A

= S,, n n(p < n) U((vo, . . ., 9P) eN,,) Y(vo, . . ., 9P)

= S,, n n (p < n) S P = S n .

Hence Sn = U(vcN.) Y(v), and (12) holds for p = n . Clearly, (11), (13), (14)
hold for p = n .

Case 2 . n = Et+1 . We begin by showing that if a < it then IN, I < `t a , and
there is y(a) < x such that

In(vo , . . ., 9a)I < ~ Y(Q)

	

for (vo, . . ., 9a)eN, .

	

(16)

Let co < u and suppose that for every a < ao there is y(a) < a such that (16) holds .
We shall use the fact that 'R,, is regular . We have IN,j < li(a < a o) tfiy(a) and there
is 6 < a such that

hI(a < a0) A-) '- t' °6

	

< a,

by (10) . Hence IN,j < tia . Since each In(vo , . . ., 9ao)I < ti,, and there are only
IN,,I < Na sequences (v o , . . ., Sao) eNao , there exists y(a o ) < a such that

In(vo, . . ., 9ao)I < NY(Qa)

for all (v o , . . ., Sao ) e Nao . We have proved that INPI < X. .
Let (NP, -<) be a well-order. Let v eNP . We now define intervals I„ e SP ,

ordinals n(v) < ws and elements x(v, v) (v < n(v)) . Here we put (v, v) _ (vo , . . ., 9P, v)
if v = (v o , . . ., 9u) . Suppose we have already defined intervals I, . c SP for all v' -< v



in such a way that I,,, . =) I . , whenever v" -< v' -< v . Since I {v' : v' -< v} I < IN"I < tit,

we can find an interval
J„ c s, n n (v, -< v) ,. , .

Let J, p , . . ., J,

	

be all subintervals of J,,. We construct x(v, v) as follows . Let
vo < wa , and let x(v, v) be already defined for v < v, Put

Qvo = J,,, v,, n Y (v) - E({x(v, v) : v < vol) .

Here E(S') is the set defined at the end of §2 . If Qvo # fő then we select x(v, v o) e Q,,,,,
and if Q vo = 0 then we do not define x(v, v o) . Then, for every v c- Nµ , there is v < ca„
such that x(v, v) is defined for v < v and not defined for v = v . If we assume that
v = wa then Qv 0 for v < co,,, and the set X = {x(v, v) : v < co.} is independent
and satisfies X n J U , v 0 fő for v < co, Then X is dense in J, and therefore tp X >, %
which is a contradiction against our initial assumption about the graph . Hence
v < to. . We now put n(v) = v and X (v) _ {x(v, v) : v < n(v)} . Then

J„ n(v) n Y (v) = E(X(v))

and

	

x(v, v) e J,,, v n Y(v)

	

(v < n(v)) .

If x c- J,, ,, (v) n Y (v) -X (v) then x E E(X (v)) -X(v) and hence E(x) n X (v) 0.

Thus
E(x) n X(v) 0 0 if x e J,,, n(v) n Y(v)-X(v) .

	

(17)
We also note that X(v) is independent and jX (v)j < Jn(v)j < NN. . Hence there is an
interval

Iv c J0, n(v)- X(v) .

Then I„ c J„ c Iv , for v' -< v, so that the I„ form a decreasing nest as v increases
in the well-order (NF„ -<) . Since INµ < Na it follows that there is an interval .

Su+i = Ss n n(vEN„)Iv.

Then S„+ 1 = Sµ and (11) holds for p = 11+ 1 . For v e Nu and v < n(v) we put

Y(v, v) = S„+1 n E(x(v, v)) n Y(v)-U((v', v') < (v, v)) Y(v', v') .

	

(18)

Here the relation (v', v') < (v, v) is meant to express that either v' -< v, or v' = v
and v' < v. We have now defined all the entities we set out to define, viz . n(v) for
v e N r„ Nji+ , = {(v, v) : v c NF „ v < n(v)j; x(v, v) and Y(v, v) for (v, v) eN„ + 1 ; and
S f ,+1 . We now have to prove that (12)-(15) hold for p = µ+1 .

Proof of (13) : This follows from (18) .

Proof of (14) : We have to show that {x(v, v)} v Y(v, v) c Y(v) for (v, v) cN,,+1 •
This follows from the choice of x(v, v) and Y(v, v) .

Proof of (15) : We have to show that {x(v, v), x} e E if (v, v) c-N,,+ , and x e Y(v, v) .
This follows from (18) .

Proof of (12) : We have to show that

Su +1 = U((v , v)eNt,+1) Y(v, v) .

	

(19)

Let xeS~,+1 . Then, by (11), r.eS,,+1 c 5,, . By (12) and (13) there is a unique
v' e N,, such that x e Y(v') . Then, by definition of S„ + , and I,,.,

x E SA+ 1 = Iv c J,,, n(o,)-X(v') .
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By (17), E(x) n X (v') O and hence, by definition of X (v'), there is a least v' < n(v')
such that {x(v', v'), x} e E . Put v l ' _ (v', v') . We now show that x e Y(v,'). We
have xe S,,+I n E(x(v,')) n Y(v') . Also, by definition of v' and by (13) and (18),

X 0 Y(v', v")

	

(v" < v')

Finally, again by (13), x 0 Y (v") (v" e N,, ; v" -< v') . Thus x 0 Y (v", v") whenever
(v", v") < (v', v'), But now (18) shows that xe Y(v,') . Since x was any element
of S„ + ,, we have proved that S,,+, c U((v, v) eN,, + ,) Y(v, v) . On the other hand
we have, by (18), U((v, v)eN,,+1) Y(v, v) c Su+ , . Hence (19) follows, and the
proof of Theorem 1 is completed .

It follows from (6) and the fact that (10) holds for a > fl = 0 that

n. --> (rh, No)' if a = cf (a) .

	

(20)

As we remarked in §1, this relation can, in fact, be proved by an easy extension of
an argument given in [5] which deals with the case a = 0 . The relation (20) may be
considered as an analogue of the formula

Na

	

{ a~ 0) 2
due to Dushnik and Miller [9] which, however, was proved by these authors not
only for regular Na but for all 'N,,. We are unable to decide whether (20) holds for
singular Nx , not even in the first case when the problem is to decide if

nw -' (nw, N0) 2

	

(21)

is true or false . In fact, we cannot even answer the seemingly easier question con-
cerning the truth of the relation

nw --+ (nw, 3)2 .
In contrast to the unsolved problem relating to (21) it is, however, comparatively
easy to prove (Theorem 2), assuming a weak form of G.C.H ., that

Sw

	

{bw~ 0) 2

where ~w = n o +n,+ . . . +~w . We first prove a simple lemma . Although (i) is
well known [14] we give the short proof.

LEMMA. (i) If cf (a) > fl then na (na) 1 K A

(ü) If the order type 0 satisfies rl„ < 0 < Cw for all n < co then 0 > ~w .

Proof of (i) . Let R,, = U (v < co f) Sv and tp S,, rl,, (v < co,) . Then S,, is no-
where dense in Ra , and by an obvious recursive definition we can find intervals
1, of Ra such that t o I,

	

. . . I., and I, n S,, = fő (v < c),) . Then

n (v < coy ) I~ = J ; fő,

and we have the contradiction fő 51- R,, n J = U (v < co y) S,, n J = fő .

Proof of (ü) . Let S = So u . . . u S'w , where S is ordered, S v c L(S„+ ,) and
tp S, = nv for v < u9 . Then tp S = fw , and there is X c S such that tpX = 0 .
Then tp X > n, and, by (i), there is no < m such that tp X n S„ o > n, . Then no > 0 .
Let A < co ; no < . . . < n z < co ; tp X n S„ a > nz+1 . Then tp X > rl„~+ ,, and there
is n x+ , < co such that tpX n S„,+1 > n„~+1 . Then nx+1 > nk . We have thus
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defined n, for A < w such that 0 < no < . . . < A . < w and tpX n S„z > q,,z+i > q x
(A < (o) . Then 0 = tp X > E(A < w) tp X n Sn" > Eq t = C,, .

THEOREM 2. Suppose that 2k^ < N,, for n < (o . Then

bw _ (Sw''N0)Z'

)i,here

	

Cw = rlo+ . . . +C .

Proof. The hypothesis implies that, for n < w,

Irl„I < Y. (v < wn) 2111 < „2Rn _ t~ p(n) < w

Let tp S = S . and let G = (S, E) be a graph on S . We will assume that G does not
contain an infinite complete subgraph and deduce that there is an independent
set X with tp X > (u, .

Suppose that whenever S' c S and tp S' > S W then there is x e S' such that
tp E(x) n S' > fu, . Then there are sets Sv and elements x, of Sv such that So = S
and, for v < w, E(x„) n S,, = Sv+i and tp Sv > s,, . Then {xo, . . ., 9w}# is an infinite
complete subgraph of G contrary to our assumption . It follows that there is a set
S' c S such that tp S' > (a, and tp E(x) n S' Cw (x e S') . Therefore, by part (ü)
of our lemma, for each x e S' there is n(x) < w such that tp E(x) n S' q,,(x) .

Let 1 < A < w . There is TA' c S' such that tp T,,' = rl, . By part (i) of the
lemma there are a set T, ." c T,,' and a number n,, < w such that tp T,," = rlx and
n(x) = n,, for all x e Ta" . Moreover, since G contains no infinite complete sub-
graph, it follows from (20) that there is an independent set T, c T," such that
tp T,i = 17 A. Put m(A) = sup fn,, . . ., nz) (1 < A < w).

We now define integers A(p) and sets I(p) for 1 < p < w . Put A(1) = 1 and
I(1) = Ti . For some k, where 1 < k < w, suppose that A(K) and I(K) have been
defined for 1 < K < k, and that A(1) < . . . < A(k) < w; I(K) c T,(„) ; tpI(K) = nA(,,)
for 1 < K < k. We then define A(k+1) and I(k+1) as follows . Put

a = I+ sup (p(A(k)), m(A(k)), A(k)j .

If we assume that the set A = E(I(l) u . . . u I(k)) is dense in TQ then tp A > q,
and since JI(1) u . . . uI(k)j < 1qa(i)l+ . . . +lgd(k)I < Np(A(k)) < t-~cf(Q), it follows from
the lemma that there is a number K in 1 < K < k and an element x of I(K) such that
tp E(x) n TQ > rl, . Then tp E(x) n S' > rja > nm(a(k)) > gnA(K) = qn(s) which contra-
dicts the definition of n(x) . Hence A is not dense in T., and there is an interval
1(k+ l) of TQ such that A n I(k+ 1) = fő . Put A(k+ l) = u. This completes the
definition of A(p) and I(p) for 1 < p < w . We have I = A(1) < A(2) < . . . and, for
I < p < co, I(p) c Tj(p) ; tpI(p) > na(n) > qp ; [E(I(1) u . . . uI(p))] nl(p+1) = 0.
Then I(1) u . . . u Í((o) is an independent set of vertices of G of type and
Theorem 2 follows .

4. A remark on A,,-sets
Lusin [13] proved with the aid of the continuum hypothesis that there is a set of

real numbers of power '8i which meets every set of the first category in at most
Ka points. Erdös and Hajnal [11] observed that this immediately implies that
every graph on the set of real numbers either contains an infinite complete subgraph
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or an independent set of the second category . Both, Lusin's theorem and the theorem
of Erdös and Hajnal, can be generalised .

THEOREM 3 . If a >, 0 and 2x° _ X,,i, and if Na is regular, then there is a set
C' e C,, such that I C'I = sfi«+, and IC n XI < Ka for every set X of the first category
in Ca .

Proof. Every open set in C ., is, by definition, the union of intervals in C, If

(a, b) is one such interval and x e (a, b) then, by definition of C,, and R,,, there are
a', b' E R,, such that a < a' < x < b' < b . Thus every open set is the union of
intervals whose endpoints lie in R. . Hence there are only 2~ R x~ = t1a+I open sets
and therefore only IN,,, , closed sets in Ca . Let No, . . ., ÍV wx ~, be all closed nowhere
dense subsets of C, For v < a)a+ , the set M„ = N o u . . . u N v is of the first category,
and we can choose elements x v such that x„ E C,,- (M Y u {xo , . . ., ' vJ) (v < a)" + i) .

Then the set C _ {xo , . . ., wa+ ,} has the required properties . For we have
IC'I = Na+, .

	

Let x,, eN, Then v < p, and hence C' n N,, c {xo , . . ., xµ } ;
IC' nNJ 5 lu+lI < N,, (y < (ox+I ) . Let X be a set of the first category . Then X
is the union of te a nowhere dense sets A z and therefore contained in the union of the
closures Bz of the Az . But the Ba, are nowhere dense and therefore occur among
the N,, . Hence I C' n X I <, Nt .

An immediate deduction from Theorem 3 is the following.

THEOREM 4 . If a >, 0 and 2 á̀ a = t,, + ,, and if t~,, is regular, then every graph on
Cx either contains a complete subgraph of power N c f~ ar or an independent set of vertices
of the second category .

Proof. Let G be a graph on C,, without a complete subgraph of power and
let C' be the set of Theorem 3 . Let G' be the subgraph of G spanned by C, con-
sisting of those vertices which belong to C' and of those edges which join points of
C. Since G' has no complete subgraph of power 1..ftat there is by (5) an independent
set X in G' of power N,, + , . Then X is independent in G and IX n Cl = IXI > N. .
Therefore X is of second category .

5. Some negative relations
The proofs of the negative relations for triplets mentioned in §1 are similar to

each other. We state these results as a single theorem .

THEOREM 5. Let 0 be any order type. Then

0-+ (o)+co*, 4) 3 , ( 22)

0 +a (o) * + u), 4) 3 , (23)

(w+a)* v (0 +o), 5) 3 .

	

(24)

Here (24) has the following meaning . If tp S = 0 then every 3-graph on S either
contains an independent set of type (o+co* or an independent set of type w*+a)
or a complete subgraph of 5 elements . (22) and (23) were first proved, by a different
method, by A. H. Kruse [12] .

Remark. We cannot decide if the relation

(P -+(co+(o * v a)* + H), 4) 3



* See footnote at the end of §I .
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holds for every 0 . It would imply (22)-(24) .
Proof. Let tp, S - 0 and let -< be a well-ordering of S . We define 3-graphs

G; _ (S, E i) (i = 1, 2, 3) as follows . A set {x, y, z}, c S belongs to E, if and only
if x -< y } z and to EZ if and only if x >- y -< z . We put E 3 = E, u E2 .

(i) Let {a, b, c, d}, c S . If {a, b, c} e E, then b } c and hence {b, c, d} 0 E,,
and if {a, b, c} eE2 then, similarly, {b, c, d} 0 E2 . Hence neither G I nor GZ has a
complete subgraph of 4 elements .

(ü) Let {ao , a,, a 2 , a 3i a4} < c S . Then there are indices r, s, t such that
0<r < s < t < 4 and either a r -< as -< at or a r } as } a, . In either case
{a r , as , at} 0 E3 , and hence G 3 has no complete subgraph of 5 elements .

(iii) Let X c S and tp < S = w+o.)* . Then there are elements a,,, b, of X such
that, for y < v < a), we have a,< < a v < b, < b„ ; a,, -< a,, ; b, -< b, . Then, if ao -< bo ,
we have {ao , b,, bo } e E, n E3 , and if ao } bo we have {a o , a,, b o } e E, n E3 . Hence
neither G, nor G 3 has an independent set of type (o+w* .

(iv) Let X c S and tp, X = oa*+ct) . Then there are elements a,,, b,, of X such
that, for u < v < w, we have av < a. < b,L < b, ; au -< a,, ; b,, -< b,, . If ao -< bo then
{a,, ao , b o } aE2 n E3 , and if ao >- bo then {a o , bo , b,} e E 2 n E 3 . Hence neither
G2 nor G 3 has an independent set of type w*+oo . This proves the theorem .

6. A special result
It is easy to show that

no - + (qo' [
2

1 / 3 .

	

(25)

This relation means that if G = (R, E) is any 3-graph on the set R of rationale then
either there is an independent set of type qo or there is a set of four vertices such
that at least two of its three-element subsets are edges of G.

To prove (25), consider a 3-graph G = (R, E) such that every set of power 4
contains at most one 3-edge of G . Let R = {ro , . . ., P.}$. We define rational num-
bers so , . . ., Sw . Put s o = ro . Let 1 < n < co and suppose that {s o , . . ., S„}# c R
and that, for i < j < n, we have s i < sj if and only if r i < rj . Also, let {s o , . . ., 3„}
be independent . Then we can write {so , . . ., S„} _ {to , . . ., i,}, and

R=So u{to}uS,u{t,}u . . .u{tn _,}u S„

where, for v < n, x < t„ if x e S v , and y > t„ if y e S v+ , . Then each S„ is infinite .
There is a number p < n such that {i : i < n ; r i < r„} _ {i : i < n; s i < x} for all
x e Sp . Given i < j < n, there is at most one x in SP such that {s,, sp x} e E .
Therefore we can choose s„ e Sp - U(i < j < n){x : {s i , sj , x} e E} . This defines
s o , . . ., 9. a R, and the set {so , . . ., S.} is independent and of type no .

We cannot prove*
4

% + (Ilo, [
]

133 (26)

As a step towards proving (26) we can define a 3-graph G = (R, E) which is such
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that every set {a, b, c, d}, c R contains at most two edges, and at the same time G
contains no, independent set which is dense in an interval of R . To do this we choose
a well-order -< of R such that tp~ R = to . We define G by taking as E the set of
all sets {x, y, z}< c R for which (i) x } y -< z, (ü) there is no y' -< y with x < y' < z .
Let {a, b, c, d}, e R. If {a, b, c} e E then, by (i), {b, c, d} 0 E, and if {a, b, d} eE
then, by (ü), {a, c, d} 0E. Hence {a, b, c, d} contains at most two edges of G. Now
let A e R, and suppose that A is dense in the interval I of R. Let yo = min-< I n A .
Since {y' : y' -< y o } is finite and A is dense in I we can choose numbers xo , z o in
I n A so close to yo by magnitude that {xo, yo, z o} e E . Thus the set A is not inde-
pendent. However, we cannot exclude the possibility that our graph contains an
independent set of type no as would be required in a proof of (2b) .
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