Some Extremal Problems in Geometry

Paul Erdös and George Purdy
Department of Mathematics, The University of Calgary, Alberto, Canada
Communicated by the Editor-in-Chief

Received January 7, 1969

1. Introduction

Let there be given n points X_{1}, \ldots, X_{n} in k-dimensional Euclidean space E_{k}. Denote by $d\left(X_{i}, X_{j}\right)$ the distance between X_{i} and X_{j}. Let $A\left(X_{1}, \ldots, X_{n}\right)$ be the number of distinct values of $d\left(X_{i}, X_{j}\right), \quad 1 \leqslant i \leqslant j \leqslant n$. Put $f_{k}(n)=\min A\left(X_{1}, \ldots, X_{n}\right)$, where the minimum is assumed over all possible choices of X_{1}, \ldots, X_{n}. Denote by $g_{k}(n)$ the maximum number of solutions of $d\left(X_{i}, X_{j}\right)=a, 1 \leqslant i<j \leqslant n$, where the maximum is to be taken over all possible choices of a and n distinct points X_{1}, \ldots, X_{n}. The estimation of $f_{k}(n)$ and $g_{k}(n)$ are difficult problems even for $k=2$. It is known that [1, 2]:

$$
\begin{equation*}
c_{1} n^{2 ; 3}<f_{2}(n)<c_{2} n / \sqrt{\log n}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{1+\left[c_{3} /(\log \log n)\right]}<g_{2}(n)<c_{4} n^{3 / 2} \tag{2}
\end{equation*}
$$

where the c 's denote positive absolute constants.
It seems that in (1) the upper bound and in (2) the lower bound is close to the right order of magnitude, but we cannot even show $f_{2}(n)>n^{1-\epsilon}$ or $g_{2}(n)<n^{1+\epsilon}$.
If $k \geqslant 4$ the study of $g_{k}(n)$ becomes somewhat simpler [3].
A. Oppenheim asked us the question of investigating the number of triangles chosen from n points in the plane which have the same non-zero area. In this note we investigate this question and its generalizations.

2. Notations

Let $X_{0}, X_{1}, \ldots, X_{n}$ be n distinct points in k-dimensional space E_{k}, $\Delta>0, r \geqslant 2$.

We define $g_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right)(n \geqslant r+1, k \geqslant r)$ to be the number of r-dimensional simplices of the form $X_{i_{0}} \cdots X_{i_{r}}$, having volume Δ. We let

$$
g_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n}\right)=\max _{\Delta} g_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right)
$$

and

$$
g_{k}^{(r)}(n)=\max _{X_{1}, \ldots, X_{n}} g_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n}\right) .
$$

Let X_{0} be a fixed point and define

$$
G_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right)(n \geqslant r ; k \geqslant r)
$$

to be the number of r-dimensional simplices of the form $X_{0} X_{i_{1}} \cdots X_{i_{r}}$ having volume Δ. We let

$$
G_{k}^{(r)}\left(n ; X_{0}, \ldots, X_{n}\right)=\max G_{k}^{(r)}\left(n ; X_{0}, \ldots, X_{n} ; \Delta\right)
$$

and

$$
G_{k}^{(r)}(n)=\max _{X_{0}, \ldots, X_{n}} G_{k}^{(r)}\left(n ; X_{0}, \ldots, X_{n}\right) .
$$

Clearly $g_{k}^{(r)}(n) \leqslant n G_{k}^{(r)}(n-1) \leqslant n G_{k}^{(r)}(n)$.
We see that $g_{k}^{(1)}(n)=g_{k}(n)$ in the notation of the introduction.
We extend $f_{k}(n)$ to $f_{k}^{(r)}(n)$ and $F_{k}^{(r)}(n)$ in a similar way:
Let $f_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n}\right)$ be the number of distinct volumes occurring among all the r-dimensional simplices $X_{i_{0}} \cdots X_{i_{r}}$, and let $f_{k}^{(r)}(n)=$ $\min f_{k}^{(r)}\left(n ; X_{1}, \ldots, X_{n}\right)$ where the minimum is taken over all possible choices of X_{1}, \ldots, X_{n}, except where X_{1}, \ldots, X_{n} all lie in an $(r-1)$-dimensional subspace (not necessarily through the origin).

Similarly, if X_{0} is a fixed point, let $F_{k}^{(r)}\left(n ; X_{0}, \ldots, X_{n}\right)$ be the number of distinct volumes occurring among the r-dimensional simplices $X_{0} X_{i_{1}} \cdots X_{i_{r}}$, and let $F_{k}^{(r)}(n)=\min F_{k}^{(r)}\left(n ; X_{0}, \ldots, X_{n}\right)$ where the minimum is taken over X_{0}, \ldots, X_{n} not lying is an $(r-1)$-dimensional subspace.

Clearly we have the following: $f_{k}^{(r)}(n) \leqslant n F_{k}^{(r)}(n-1) \leqslant n F_{k}^{(r)}(n)$, $f_{k}^{(1)}(n)=f_{k}(n)$ in the notation of Section 1. $g_{k-1}^{(r)}(n) \leqslant g_{k}^{(r)}(n)$,

$$
G_{k-1}^{(r)}(n) \leqslant G_{k}^{(r)}(n), f_{k-1}^{(r)}(n) \geqslant f_{k}^{(r)}(n), \text { and } F_{k-1}^{(r)}(n) \geqslant F_{k}^{(r)}(n) \quad(k>r) .
$$

Oppenheim pointed out that the generalized construction of Lenz (see, e.g., [3]) gives us lower bounds for g and G. To illustrate, we show that $G_{4}^{(2)}(2 n) \geqslant n^{2}$.

Let $\left(x_{i}, y_{i}\right)(1 \leqslant i \leqslant n)$ be distinct pair of real numbers such that $x_{i}{ }^{2}+y_{i}{ }^{2}=1$. Let $X_{i}=\left(0,0, x_{i}, y_{i},\right), Y_{i}=\left(x_{i}, y_{i}, 0,0\right),(1 \leqslant i \leqslant n)$, $X_{0}=(0,0,0,0)$. Then the n^{2} triangles $X_{0} X_{i} Y_{j}$ are congruent and therefore have the same area.

The same method shows that $G_{2 k}^{(k)}(k n) \geqslant n^{k}$ and $g_{2 k+2}^{(k)}(k n+1) \geqslant n^{k+1}$.
It seems to us that

$$
g_{2 k+2}^{(k)}(n)=\frac{n^{k+1}}{(k+1)^{k+1}}(1+o(1))
$$

i.e., that Oppenheim's example is asymptotically best possible.

It also seems that

$$
g_{2 k+1}^{(k)}(n)=c_{n}^{k+1-\epsilon_{k}},
$$

and we have proved this for $k=2$, but we do not include the proof here.

ThEOREM 1. $\quad G_{2}^{(2)}(n) \leqslant 4 n^{3 / 2}$ and therefore $g_{2}^{(2)}(n) \leqslant 4 n^{5 / 2}$.
Proof. Suppose that, for some least $n, G_{2}^{(2)}(n)>4 n^{3 / 2}$. Then $n \geqslant 4$. Let

$$
G_{2}^{(2)}\left(n ; X_{0}, \ldots, X_{n} ; \Delta\right)=m>4 n^{3 / 2}, \Delta>0
$$

Let G be the graph whose vertices are X_{1}, \ldots, X_{n} and whose edges are all the $X_{i} X_{j}$ such that the triangle $X_{0} X_{i} X_{j}$ has area Δ. Then every vertex X_{i} of G is adjacent to at least $[4 \sqrt{n}]$ other vertices, since, otherwise, removing X_{i} would reduce the number of triangles by at most $4 \sqrt{n}$, and we would have

$$
G_{2}^{(2)}(n-1) \geqslant 4 n^{3 / 2}-4 \sqrt{n}>4(n-1)^{3 / 2}
$$

contradicting the minimal choice of n. If $1 \leqslant i \leqslant n$, therefore, there are at least $[4 \sqrt{n}]$ points X_{j} such that the triangle $X_{0} X_{i} X_{j}$ has area Δ. These points lie on two lines parallel to $X_{0} X_{i}$. One of these linear sets of points,
say S_{i}, contains at least $\frac{1}{2}[4 \sqrt{n}]$ points. Consider the points X_{i} on the first $[\sqrt{n}]$ lines $S_{j}(1 \leqslant j \leqslant[\sqrt{n}])$. Then

$$
\begin{aligned}
n \geqslant\left|\bigcup_{1}^{[\sqrt{n}]} S_{i}\right| & \geqslant \sum_{1}^{[\sqrt{n}]}\left|S_{i}\right|-\sum_{1 \leqslant i \leqslant i \leqslant[\sqrt{n}]}\left|S_{i} \cap S_{j}\right| \\
& \geqslant \frac{1}{2}[\sqrt{n}][4 \sqrt{n}]-\binom{[\sqrt{n}]}{2},
\end{aligned}
$$

which is false for $n \geqslant 4$.

Theorem 2.

$$
g_{2}^{(2)}(n) \geqslant c n^{2} \log \log n \quad\left(n \geqslant n_{0}\right) .
$$

Proof. Let $n \geqslant n_{0}$, where n_{0} will be chosen later. Let $a=[\sqrt{\log n}]$ and let $X_{1}, \ldots, X_{m}(m<n)$ be the integral points (x, y) where $1 \leqslant x<n / a$ and $1<y \leqslant a$. It is enough to show that $g_{2}^{(2)}\left(m ; X_{1}, \ldots, X_{m} ; \frac{1}{2} a!\right) \geqslant$ $c n^{2} \log \log n$ for $n \geqslant n_{0}$. Let (x_{1}, y_{1}) and (x_{2}, y_{2}) be integral points satisfying

$$
\begin{aligned}
& 1 \leqslant x_{1} \leqslant \frac{1}{2}\left(\frac{n}{a}-a!\right), \\
& x_{1}<x_{2}<\frac{n}{a}-a! \\
& 1 \leqslant y_{1} \leqslant \frac{a}{2} \\
& y_{1}<y_{2}<a .
\end{aligned}
$$

We may choose n_{0} large enough so that ($\left.n / a\right)-a!>(n / 2 a)$ for $n \geqslant n_{0}$. Let $d=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$. The $d+1$ points $\left(x_{3}, y_{3}\right)$ given by

$$
\begin{align*}
& x_{3}=x_{1}+\frac{k}{d}\left(x_{2}-x_{1}\right)+a!\left(y_{2}-y_{1}\right)^{-1}, \\
& y_{3}=y_{1}+\frac{k}{d}\left(y_{2}-y_{1}\right) \quad(0 \leqslant k \leqslant d), \tag{3}
\end{align*}
$$

are clearly among the points X_{1}, \ldots, X_{m}. Also

$$
\begin{align*}
& 1 \leqslant y_{1} \leqslant y_{3} \leqslant y_{2}<a, \tag{4}\\
& 1 \leqslant x_{1} \leqslant x_{3} \leqslant x_{2}+a!<n / a .
\end{align*}
$$

The area of the triangle $\left(x_{i}, y_{i}\right)(1 \leqslant i \leqslant 3)$ is easily seen to be $\frac{1}{2} a!$, and condition (4) ensures that no unordered triple $X_{i} X_{j} X_{k}$ is represented more than once in the form $\left(x_{i}, y_{i}\right)(1 \leqslant i \leqslant 3)$.

Let $0<d<\sqrt{\bar{a}}$. We choose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ so that
$\left(x_{2}-x_{1}, y_{2}-y_{1}\right)=d$, i.e., $x_{2}-x_{1}=\mu d$ and $y_{2}-y_{1}=\nu d,(\mu, \nu)=1$,
i.e.,

$$
1 \leqslant \mu<\frac{1}{d}\left(\frac{n}{a}-a!\right) 1 \leqslant \nu<\frac{a}{d}
$$

For each $(\mu, v),\left(x_{1}, y_{1}\right), d$, this determines $\left(x_{2}, y_{2}\right)$. It is well known and easy to prove by elementary number theory that in a rectangle of sides t_{1} and t_{2} the number of points with coprime coordinates is

$$
(1+o(1)) \frac{6}{\pi^{2}} t_{1} t_{2} \quad \text { as } \quad t_{1} \rightarrow \infty \quad \text { and } \quad t_{2} \rightarrow \infty
$$

The point $\left(x_{1}, y_{1}\right)$ can be chosen in

$$
\left[\frac{a}{2}\right]\left[\frac{1}{2}\left(\frac{n}{a}-a!\right)\right]>c n \text { ways }
$$

and thus the number of choices of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is greater than $\mathrm{cn}^{2} / \mathrm{d}^{2}$. Now on the line $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ there are $d+1$ lattice points given by (3). Thus there are $d+1$ choices for $\left(x_{3}, y_{3}\right)$. Thus the number of triangles $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right),\left(x_{2}-x_{1}, y_{2}-y_{1}\right)=d$ having area $\frac{1}{2} a!$ is more than $c\left(n^{2} / d\right)$. Summing for d we get the result.

Theorem 3. $\quad G_{3}^{(2)}(n) \leqslant c n^{2-1 / 3}$ and therefore $g_{3}^{(2)}(n) \leqslant c n^{3-1 / 3}$.
Proof. Suppose that $G_{3}^{(2)}(n)>\mathrm{cn}^{2-1 / 3}$, for some n. Then for some $\Delta>0$ and X_{0}, \ldots, X_{n} in $E_{3}, G_{3}^{(2)}\left(n ; X_{0}, \ldots, X_{n}, \Delta\right)>c n^{2-1 / 3}$. Let G be the graph whose vertices are X_{1}, \ldots, X_{n} and whose edges are $X_{i} X_{j}$ such that the triangle $X_{0} X_{i} X_{j}$ has area Δ. By a theorem of Sós, Turán, and Kövári [4], there exist Y_{1}, Y_{2}, Y_{3} and Z_{1}, \ldots, Z_{k} such that Y_{i} and Z_{j} are joined for $1 \leqslant i \leqslant 3,1 \leqslant j \leqslant k$, provided that c is sufficiently large, depending only on k. Hence three cylinders with axes $X_{0} Y_{1}, X_{0} X_{2}, X_{0} Y_{3}$ all contain Z_{1}, \ldots, Z_{k} on their surfaces. But by elementary geometry this is impossible when k is greater than some absolute constant.

Somewhat similar methods work in higher dimensions. Using a theorem on generalized graphs proved in [5, Theorem 1] it can be shown that, e.g., $g_{5}^{(2)}(n) \leqslant c n^{3-\epsilon}$ for some $\epsilon, 0<\epsilon<1$, and also that $G_{k}^{(k)}(n) \leqslant c_{k} n^{k-\epsilon k}$.

We may obtain a trivial upper bound for $f_{k}^{(r)}(n)$. Consider the points (x, y, z) with integer coordinates $0 \leqslant x, y, z \leqslant n^{1 / 3}$. There are at least n, and if $X Y Z$ are three such points, the area A of triangle $X Y Z$ is not at most

$$
\frac{1}{2}\binom{3}{2} n^{2 / 3}
$$

Since $4 A^{2}$ is an integer, we see that

$$
f_{3}^{(2)}(n) \leqslant\binom{ 3}{2}^{2} n^{4 i}
$$

The same method yields

$$
f_{k}^{(r)}(n) \leqslant\binom{ k}{r}^{2} n^{2 r / k}
$$

(the result for $f_{5}^{(2)}(n)$ implies $g_{5}^{(2)} \geqslant c n^{11 / 5}$).

4.

Finally we would like to mention a few related combinatorial problems: Let there be given n points in the plane. How many quadruplats can one form so that not all the six distances should be different? It is not difficult to show that one can give n points so that there should be $c n^{3} \log n$ quadruplets with not all the distances distinct, but that one cannot have $\mathrm{cn}^{7 / 2}$ such quadruplets. It seems that the maximum is less than $n^{3+\epsilon}$ but we could not prove this.

A well known theorem of E Pannwitz states that in a plane set of n points of diameter 1 the maximum distance can occur at most n times and n is best possible. Similarly we can ask: Let there be given n points in the plane. How many triangles can one have which have the maximal (or minimal [non-zero]) area ? Unfortunately we have only trivial results. The maximum area can occur at most $c n^{2}$ times and it can occur cn times.

Many more questions could be asked, here we state only a few of them. Let there be given n points in k-dimensional space. What is the largest set of pairwise congruent (similar) triangles ${ }^{2}$? What is the largest set of equilateral, (isosceles) triangles ${ }^{2}$?

References

1. P. Erdös, On Sets of Distances of n Points, Amer. Math. Monthly 53 (1946), 248-250.
2. L. Moser, On the Different Distances Determined by n points, Amer. Math. Monthly 59 (1952), 85-91.
3. P. Erdös, On Some Applications of Graph Theory to Geometry, Canad. J. Math. 19 (1967), 968-971. See also P. Erdös, On Sets of Distances of n Points in Euclidean Space, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 165-169.
4. T. Kövári, V. T. Sós, and P. Turán, On a Probiem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
5. P. Erdös, On Extremal Problems of Graphs and Generalized Graphs, Israel J. Math. 2 (1964), 183-190.
