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1. INTRODUCTION 

Let there be given n points X1 ,..., X, in k-dimensional Euclidean space 
El, . Denote by d(X, , X,) the distance between Xi and X, . Let A(X, ,..., X,) 
be the number of distinct values of d(X$, X,), 1 < i < j 9 n. Put 
f%(n) = min A(X, ,..., X,), where the minimum is assumed over all 
possible choices of X1 ,..., X, . Denote by g,(n) the maximum number of 
solutions of d(Xi , Xi) = a, 1 < i <j < n, where the maximum is to be 
taken over all possible choices of a and N distinct points X, ,..., X, . The 
estimation off,(n) and gk(n) are difficult problems even for k = 2. It is 
known that [l, 21: 

cln2~3 <f,(n) < cp/z/log n, (1) 

and 

nl+[c,/Uog log %)I < g,(n) < C*P, (2) 

where the C’S denote positive absolute constants. 
It seems that in (1) the upper bound and in (2) the lower bound is close 

to the right order of magnitude, but we cannot even show &(I?) > nl-~ 
or g*(n) < R1+E . 

If k > 4 the study of gB(yI) becomes somewhat simpler [3]. 
A. Oppenheim asked us the question of investigating the number of 

triangles chosen from n points in the plane which have the same non-zero 
area. In this note we investigate this question and its generalizations. 

246 
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2. NOTATIONS 

Let X, ) X, ,...) X, be n distinct points in k-dimensional space Eh’ , 
d > 0, Y > 2. 

We define gr’(n; X, ,..., X, ; A) (n 2 r + 1, k 2 r) to be the number of 
r-dimensional simplices of the form Xi0 *I* Xi, having volume d. We let 

gJc”(n; Xl ,...) X,) = mfx gjc”(rt; XI ,..., X, ; d) 

and 

gp(n) = xrn~xx gp(n; Xl ,..*, X,). 
1, rn 

Let X0 be a fixed point and define 

Gf’(72; x1 )...) X, ; d)(n > r; k 3 r) 

to be the number of r-dimensional simplices of the form X,,Xi a-. Xi 
having volume A. We let 

1 v 

Gt’(n; X0 ,..., X,) = max Gf)(n; X,, ,..., X, ; d) 

and 

Clearly gr’(n) f nGF’(n - 1) < nGc’(n). 
We see that g;“(n) = gk(n) in the notation of the introduction. 
We extend f&r) to am’ and F:‘(n) in a similar way: 
Let fF)(n; X, ,..., X,) be the number of distinct volumes occurring 

among all the r-dimensional simplices Xi, *** X2, , and let f:‘(~) = 
min fr’(n; X, ,..., X,) where the minimum is taken over all possible 
choices of X, ,..., X, , except where XI ,..., X, all he in an (v - l)-dimen- 
sional subspace (not necessarily through the origin). 

Similarly, if X0 is a fixed point, let F’p’(n; X,, ,..., X,) be the number of 
distinct volumes occurring among the r-dimensional simplicesXOX,I a*. Xi, , 
and let F’,“(n) = min Fl’)(n* X X,) where the minimum is taken over 
x0 ,...) X, not lying is in (i -‘;)%mensional subspace. 

Clearly we have the following: f:)(n) < rzFr’(n - 1) < nF737?), 

fi$(n) = fe(n) in th e notation of Section 1. gglI(n) < g:‘(n), 
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3. 

Oppenheim pointed out that the generalized construction of Lenz (see, 
e.g., [3]) gives us lower bounds for g and C. To illustrate, we show that 
G:2’(2n) 3 n2. 

Let (xi , yi) (1 ,< i < n) be distinct pair of real numbers such that 
x2+-y>= 1. LetXi=(O,O,xi,yi,),Yz=(x,,y,,O,O), (I <iinn), 
X,, = (0, 0, 0,O). Then the n” triangles X,Xi Yi are congruent and therefore 
have the same area. 

The same method shows that @‘(kn) Z II” and g$,(kn + 1) > nk+l. 
It seems to us that 

i.e., that Oppenheim’s example is asymptotically best possible. 
It also seems that 

and we have proved this for k = 2, but we do not include the proof here. 

THEOREM 1. Gr’(n) < 4n3i2 and therefore gL2’(n) < 4n512. 

ProoJ: Suppose that, for some least n, G?)(n) > 4n3iz. Then rrt Z 4. 
Let 

GF’(n; X0 ,..., X, ; d) = m > 4n3”, A > 0. 

Let G be the graph whose vertices are X1 ,..., X, and whose edges are all 
the X,Xj such that the triangle X,X& has area A. Then every vertex 
Xi of G is adjacent to at least [4v%] other vertices, since, otherwise, 
removing Xi would reduce the number of triangles by at most 46, and 
we would have 

@‘(n - 1) >, 4n3’2 - 4y/;; > 4(n - 1)3’2 

contradicting the minimal choice of pt. If 1 < i ,< n, therefore, there are 
at least [4y/N] points Xj such that the triangle X,X,X, has area d. These 
points lie on two lines parallel to X,,Xi . One of these linear sets of points, 
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say SC, contains at least &[4&] points. Consider the points Xi on the 
first [\\/;I] lines Sj( 1 < j < [v/G]). Then 

which is false for II Z 4, 

THEOREM 2. 

g?‘(n) > cn2 log log n (n 2 no). 

Proof. Let n >, n, , where n, will be chosen later. Let a = [t/log n] 
and let X, ,..., X, (m < n) be the integral points (x, y) where 1 < x < n/a 
and 1 < y < a. It is enough to show that g:“‘(m; X, ,,.., X,,, ; +a!) > 
cn2 log log n for n 2 n, . Let (x1 , ~3 and (x2 , y2) be integral points 
satisfying 

1 < x, < ;(a - a!), 

We may choose 1~ large enough so that (n/a) - a! > (n/2a) for n 3 %, . 
Let d = (x2 - xl, y3 - yr). The d + 1 points (x2, y3) given by 

x3 = x1 + $ (x, - Xl) + a!(y, - yp, 

Ya=Y1+$(Y2-Y1) (0 < k G 4, 

are clearly among the points X1 ,..., X, . Also 

1 -G y1 < Y, < y2 < a, 

1 <xl <x3 <xI?+a! <n/a. 

(3) 

(4) 
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The area of the triangle (xt , yi) (1 < i < 3) is easily seen to be &a !, 
and condition (4) ensures that no unordered triple X,X,X, is represented 
more than once in the form (xi , yd) (1 < i < 3). 

Let 0 -C d < d/a. We choose (x1 , yl) and (x;, , yz> so that 

(~2 - xl 3 Y, - ~1) = 4 i.e., x2 - x1 = pd and y, - y1 = vd, (p, v) = 1, 

i.e., 

For each (CL, v), (x1 , yi), d, this determines (x, , yz>. It is well known 
and easy to prove by elementary number theory that in a rectangle of 
sides tl and t2 the number of points with coprime coordinates is 

(1 + 41)) f t14? as 1, + co and t, -+ co. 

The point (xi , yJ can be chosen in 

[4] [i (z - a!)] > en ways 

and thus the number of choices of (x1 , yl), (x, , yz) is greater than cn2/d2. 
Now on the line (x1 , y,)(x2 , yz) there are d + 1 lattice points given by (3). 
Thus there are d + 1 choices for (x3, y3). Thus the number of triangles 
(Xl 3 YlXX2 9 YdX3 9 Y3)> (x2 - xi , y, - yl) = d having area $a ! is more 
than c(n2/d). Summing for d we get the result. 

THEOREM 3. Gi2’(n) < 012-l/~ and therefore g:“‘(n) < c$-l~‘~. 

Proof. Suppose that GA”(n) > cn2-li3, for some n. Then for some 
A > 0 and X0 ,..., X, in E,, GA2’(n; X,, ,..., X, , A) > CI?-‘/~. Let G be the 
graph whose vertices are X1 ,... , X, and whose edges are XaXj such that 
the triangle X,X,X, has area d. By a theorem of Sbs, Turan, and Kovari [4], 
there exist Y, , Y, , Y, and 2, ,..,, Z, such that Yi and Zi are joined for 
1 < i < 3, 1 <j < k, provided that c is sufficiently large, depending 
only on k. Hence three cylinders with axes X,Y, , X,X, , X,Y, all contain 
Z 1 ,.,., ZI, on their surfaces. But by elementary geometry this is impossible 
when k is greater than some absolute constant. 

Somewhat similar methods work in higher dimensions. Using a theorem 
on generalized graphs proved in [5, Theorem I] it can be shown that, e.g., 
g?‘(n) < cn3-6 f or some E, 0 < E < 1, and also that G?)(M) < c&-~*. 
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We may obtain a trivial upper bound forfF’(n). Consider the points 
(x, y, z) with integer coordinates 0 < X, y, z < n113. There are at least n, 
and if XYZ are three such points, the area A of triangle XYZ is not at most 

Since 4A2 is an integer, we see that 

The same method yields 

(the result forfk”(fr) implies gi2’ 2 c#‘~). 

4. 

Finally we would like to mention a few related combinatorial problems: 
Let there be given n points in the plane. How many quadruplats can one 
form so that not all the six distances should be different ? It is not difficult 
to show that one can give n points so that there should be cn3 log n qua- 
druplets with not all the distances distinct, but that one cannot have cn7i2 
such quadruplets. It seems that the maximum is less than n3+ but we 
could not prove this. 

A well known theorem of EPannwitz states that in a plane set of n points 
of diameter 1 the maximum distance can occur at most n times and n is 
best possible. Similarly we can ask: Let there be given n points in the plane. 
How many triangles can one have which have the maximal (or minimal 
[non-zero]) area ? Unfortunately we have only trivial results. The maximum 
area can occur at most en2 times and it can occur en times. 

Many more questions could be asked, here we state only a few of 
them. Let there be given n points in k-dimensional space. What is the 
largest set of pairwise congruent (similar) triangles2 ? What is the largest 
set of equilateral, (isosceles) triangle9 ? 
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