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SOME NUMBER THEORETIC RESULTS

(In memory of our good friend Leo Moser)

P. ERDOS AND E. G . STRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod p) so that the sums of
different numbers of elements are distinct .

In the second part irrationalities of Lambert Series of
the form Y f(n)/a 1 . . . a,, are obtained where f(n) = d(n), u(n)
or m(n) and the ai are integers, ai >_ 2, which satisfy suitable
growth conditions .

This note consists of two rather separate topics . In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a maximal set of residues
(mod p) such that sums of different numbers of elements from this
set are distinct. We show that the correct order is ep'" 3 although we
are unable to establish the correct value for the constant c .

Section 2 consists of irrationality results on series of the form
f (n)/a 1a 2 • • • a , where f(n) is one of the number theoretic functions

d(n), u(n) or p(n) and a n are integers >_ 2 . For f(n) = d(n) it suffices
that the a n are monotonic while for u(n) and p(n) we needed additional
conditions on their rates of growth .

1 . Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums . In an earlier paper
[ 4 ] one of us has given a partial answer to the question:

What is the maximal number n = f (x) of integers a 1 ,

	

a,n so
that 0 < a, < a2 < . . . < a, < x and so that

ail + --- + ai , = aj, + • • • +a;, for some 1<i,< . . . < is < n
1<j 1 < • • • < j, < n

implies s' = t? it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 21/ x integers of the interval (1, x) .
We were indeed able to prove that f(x) < c1/ x for suitable c (for
example 4/V 3 ) by using the fact that a set of n positive integers
has a minimal set of distinct sums of t-tuples (1 < t < n) if it is in
arithmetic progression .

It is natural to pose the analogous question for elements of cyclic
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5 ] . Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p2í3 .
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Conjecture 1,1, Let f(p) be the maximal cardinality of a set
of residues mod p so that sums of different numbers of residues in
this set are different, then f(p) _ (4p)"' + o(p"') where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)"' + o(p"') containing the residue [(p/2)"']

It is easy to see that we can indeed get a set of about (4p)"'
residues by taking the residues in the interval ([(p/2)"' - (4p)"'] ,
[(p/2)1"]) . Here sums of distinct numbers of elements are distinct
integers, and since all sums are < p it follows that they are distinct
residues .

The observation which let to the upper bound in [ 4 ] is much less
obvious (mod p) :

Conjecture 1,2, A set A = {a,, a2 , • • •, a,] of residues (mod p)
has a minimal number of distinct sums of subsets of t elements if A
is in arithmetic progression .

Conjecture 1.2 would give us a simple upper bound for f(p) :

COROLLARY 1 .3 . If Conjecture 1.2 holds then

.f(p) < ( 6p)"' + o(p"') .

Proof. The sums of t elements from the set of residues

1 1, 2, • • • , k-1,k]

fill the interval (( t 2 ), tk - (2)) that is to say there are tk - t2 + 0(t)
such sums. Since for different t we get different sums we must have=

P
> E (tk - t2 + 0(t)) = 6 + 0(k2 )

and hence k < (6p)"' + o(p"') .

Using methods employed by Erdös and Heilbronn [2] we can show
that f(p) = 0(p"') . We use the following lemma from [2] .

LEMMA 1.4. Let 1 < m < l < p/2 and let B = {b,, • • • , b,], A =
{a l , • • •, am} be sets of residues (mod p) . Then there exists an a ; E A
such that the number of solutions of a ; = b; - b,; b ;, b k e B is less
than l - m/6 .

We now can get a lower bound for the number of distinct sums
of t elements from a set of residues .

LEMMA 1.5 . Let A = {a,, • • •, aJ be a set of residues (mod p)



(1.6)

where

This completes the proof .

THEOREM 1.7 . The maximal number f(p) of a set A of residues
(mod p) so that sums of different numbers of distinct elements of A
are distinct satisfies
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and let A t = Jai, + . . . + ait I 1 < i t < . . . < i t < k} then for 1 < t < k/4
we have

1 A I > l +	 (t- 1)m _	 t(t - 1)
6

	

6

l - [k
2 1 ]' -

[k
2

]

Proof. We divide the set A into two disjoint sets

A = {a,, a2, . . ., a,1, B = {b,, b2, . . ., bm 1

and prove the inequality (1 .6) for the subset of At consisting of the
sums

At * _ Ja i + b2-E1+ b,_,, + . . . + b2t _ 2 _ Et _ 1 I s; = 0 or 11 ,

where the b i are a suitable ordering of the elements of B.
The inequality holds for t = 1 since

At * = fail = A and I A =1 .

Now assume that (1.6) holds for At* with t < (m/2) - 1. Then the
set At * + b et C A*t+, and according to Lemma 1.3 there exists a
b i e {bet+1, bet+,, • • •, b.1, say b; = bet+, so that the equation

bet+1 - bet = a* - aj*, a*, a e At

has no more than I At I - (m - 2t) solutions . Hence the set

((b2t+1 - bet) + (At + b2t)) (At + bet)

contains no more than At - Iff(m - 2t) elements and

A+, I = I (At + bt+,) U (At + b t ) I
>_ At I + T(m - 2t)

>l+(t-1)m	t(t-1) + 1 m- t
6

	

6

	

6

	

3

=l+ tm _ (t+1)t
6

	

6

(1 .8)

	

(4p) 1/3 + o(p l/3 ) < .f(p) < (288p) 1 / 3 + o(p l / 3 ) .
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Proof. According to Lemma 1.5 there are at least

k/2 + k(t - 1)/12 - t 2/6 + 0(t)
distinct sums of t elements (and hence, by symmetry, sums of k - t
elements) for t < [k/4] out of a set A with k elements. Thus if A
has the desired property we must have

Thus
f(p) < (288 p) 4/3 + o(p`/ a) .

The lower bound for f(p) was established above .

2. On some irrational series . One of us [1] proved that the
series E,n- 1 d(n)t -n is irrational for every integer t, I t l > 1 . In this
section we generalize this result to series of the form

k/4

p > 2 (k/2 + k(t - 1)/12 - t2/6) + 0(k 2)
t=1

=
2k" 384

	

3 384 / + 0(k 2) = k3/288 + 0(k2 ) .

(2.1)

where the an are positive integers with 2 <_ al < a2 <_ • • • . It is clear
that we need some restriction, such as monotonicity, on the an since
the choice an = d(n) + 1 would lead to s = 1 .

We divide the proof into two cases depending on the rate of
increase of an . The first case is very similar to [1] .

LEMMA 2 .2 . The series (2 .1) is irrational if there exists a 6 > 0
so that the inequality a n < (log n) 1_s holds for infinitely many values
of n .

Proof. Let n be a large integer so that an < (log n)" . Then
by the monotonicity of ai there exists an interval I of length n/log n
in (1, n) so that for all integers i e I we have ai = t where t is a
fixed integer, t < ( log n) 1-s _

Now put k = [(log n)""] and let p1f p27 • • - be the consecutive
primes greater than (log n) 2 . Let

then

(2.3)

~
_

	

d(n)
- a1a2 . . . an

A = ( H

	

pi),1<i<k(k+l)12

A < (2(log n)')"('+"I' < e(logn) 1- s (log -n)0/4

< e(logn)1-ö/2 .



SOME NUMBER THEORETIC RESULTS

	

639

By the Chinese remainder theorem the congruences

x-plt-'(mod pl t)
x + 1 = (pp,)'-'(mod (p,p3)`)

x + k - 1 -- (pu.pu+l . . .pu+k-1)t-l (mod (pupa+l
. . .p +k- 1) t )

where u = 1 + k(k - 1)/2, have solutions determined (mod A) . The
interval I contains at least [n/(A log n)] solutions of (2 .4) .

Now assume that s = a/b and choose x e I to be a solution of
(2.4) so that (x, x + k) c L Then

k- ' d(x + l)b al • • • ax_, ~ = integer + b Y-	
1 0

	

t 1+1

+b~,d(x+k+s)
s-0 tk ax+k* - - ax+k+s

But (2.4) implies that d(x + l) _- 0 (mod t1 +') for l = 0, 1,

	

k - 1 .
Thus (2 .5) implies that

(2.6)

	

b al • • • ax-, = integer + b

	

d(x + k + s)
tk y=~ ax+k . . . a .,+k+,

We now wish to show that for suitable choice of x the sum on
the right side of (2.6) is less than 1 and hence b~ cannot be an integer.
We first consider the sum

(2.7)

b	 d(x+k+s)
tk 3>101ogn a ,+k . . ax+k+s

< b

	

x + k+s <b(x+k)

	

s
tk s>101ogn

	

t 5}1

	

s>10 log n t s

< 2nn < 2 for large n .

Next we wish to show that it is possible to choose x so that

(2 .8)

	

d(x + k + s) < 2 k / 4 for 0 < s < 101og n .

We first observe that

(2.9)

	

(x+ k + s, A) = 1 for all 0 <- s < 101og n

since otherwise

(2.10)

	

x + k + s =- 0 (mod p;) for some 1 :<jj < k(k + 1)/2

and
(2.11)

	

x + i -- 0 (mod p;) for some 0 <- i < k .
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But
0<k+s-i<11 log n<(logn)'<p;

so that (2.10) and (2.11) are incompatible .
Let x = xo, x a + A, • • •, x o + zA be the solutions of (2.4) for which

(x, x + k) C L From (2.9) we get

(2 .12)

P. ERDŐS AND E. G. STRAUS

~d(x.+k+s+yA)<2 Y-1 -( n +1)
Y

	

- Al
< e nlogn

A

Thus the number of y's for which d(xo + k + s + yA) > 2"' is less
than c n log n/(A .2k/4), and the number of y's so that for some
0 < s < 10 log n we have d(xo + k + s + yA) > 2'/4 is less than

10c n log' n/(A.2k/ 4) < 1/2 n/(A log n) < z .

It is therefore possible to choose x = x o + yA e I so that (2 .8) holds .
For such a choice we get

b " n d(x	 + k + s) < b 2k, 4

	

1
tk s= ~

	

ax+k . . . ax+k+s

	

F

	

s = ~ is

(2.13)
< b.2-3k/4 <

2

Combining (2.7) and (2.13) we see that ~ is irrational .

LEMMA 2.14. If there exists a positive constant c so that Ian I >
c(log n)"' for all n then the series (2 .1) is irrational .

Note that in this lemma we need not assume the monotonicity
of an (or even that they are positive, however for simplicity we give
the proof for positive an only) .

Proof. We use two results . The Dirichlet divisor theorem
N

(2.15)

	

1, d(n) -v N log N
n-i

and the average order of d(n), [3]

(2 .16)

	

d(n) < (log n)'°g'+' for almost all n .

From (2 .15) we get the following .

LEMMA 2.17. Given constants b, c > 0, then for almost all in-
tegers x



(2 .18)

	

d(x + y) < b-'(2c) -y(log x) 3y" ; y = 3, 4, . . .

Proof. If we choose x large enough so that log x > ( 2bce)"'
then the right side of (2.18) is greater than ey which exceeds x + y,
and hence d(x + y), whenever y > 2 log x. Thus, if (2.18) fails to
hold for sufficiently large x then it must fail to hold for some y with
3<_y<_2logx.

Now if there are c 1N integers x below N so that (2.18) fails to hold
then we have more than c 2N integers x with 1/N _< x < N - 2 log N
and

(2.19)

Thus

SOME NUMBER THEORETIC RESULTS

	

641

d(x + y) > b-'(2c)-y(log x) 3 y" >_ b-'(2c)-y(2 log N)3yJ4
>_ b-'(4c)-3(log N)91" = c3(log N)114

n=t d(n)
> c2

N • 2 log N c3 (log
N)9,"

= c" N(log N)"'

which contradicts (2.15) for large N.
Combining Lemma 2 .17 with (2.16) we find that there exists an

infinite set S of integers x so that

(2 .21)

	

d(x + 1) < b2c (log x) 31" , d(x + 2) < b	
4G.2

	 (log x) 31"

and (2.18) both hold .
Now assume that = a/b is a rational value of (2.1) and choose

n e S . Then

(2.22)

	

al • • • an b, = integer + b

	

d(n+y)
y-1 a, . . . an+y

where

0 <	 d(n+y) <

	

(2c)-y(log n)3 y 14 - 1 ,
11=1 antl . .an Fy

	

11°1

	

(c(log n) 3") y

in contradiction to the fact that the left side of (2 .22) is an integer .
Summing up we have

THEOREM 2.23 . The series (2.1) is irrational whenever

2<_al<a2< . . .<an< . . .,

With considerable additional effort one can weaken the monotonicity
condition on the an to a ../an > c > 0 for all m > n.

We have not been able to prove the following
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Conjecture 2 .24- . The series (2 .1) is irrational whenever a.n - > ~ .

If we consider series of the form

(2 .25)	 Q(n) 	or	 6(n)
-1

	

, . . . an

	

n=1 a, . . . a,

then we cannot make conjectures analogous to 2.24 since the choice
an = p(n) + 1 or 6(n) + 1 would make these series converge to 1 . It
is reasonable to conjecture that the series (2.25) must be irrational if
the an increase monotonica.lly, however we can prove this only under
more restrictive conditions .

THEOREM 2.26 . If fan) is a monotonic sequence of integers with
an > n11112for all large n then the series in (2 .25) are irrational .

For the proof we need the following simple lemmas .

LEMMA 2.27 . Let fan ) be a sequence of positive integers with
an > 2 and Jbn) a sequence of positive integers so that bn+1 = o(ay,a,,,) •
If

(2.28)

is rational then a,, = 0(b,z ) .

Proof. Assume 5 = a/b and choose N so that for all n > N we
have bb, < a.n- tan/4 . If there existed an n > N so that a.,, > 2bb,z then
we would have

but

bal • • • an_ 1 ~ = aa, • • • an-, = integer + bb,,
=o an . . . an+k

0 <	 bbn+k 	= bb,,, + 2	bbn+k	1
k=o a,,, . . . an+k

	

an

	

k-1 an+k-1 . . . an+k

	

an . . . a .,,+k-2

< + ~ Y-1 \2Y = 1 ,
1=o

a contradiction. Thus an 2bb .n for all large n.

LEMMA 2.29 . If the series (2.28) is rational, say ~ = a/b, and
b,2+1 = o(anan+l), then there exists a sequence of positive integers fc n ) so
that for all large n we have

(2.30)

	

bbn = c.a. - cn,+1 , 0 < en+1 < an, and cn+1 = o(an) .

Conversely, if these conditions hold then the series (2.28) is rational .



Proof.
Now for n

(2 .31)

Thus
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Choose N so that for all 9z > N we have bb, < an a,, +il4 .
> N choose cn, cn+i so that

bb, =

bai . . . an_ i

	

aai . . . an-i

integer + bb,,
+

bb,-,-,	bbn+k
an

	

anan+i

	

k=2 a . . . anlk
l

integer - cn+i + cn+l - Cn+2
an

	

an

	

anan+i
+ 1

	

bbn.+k	
an A-2 an+i • • • an+k

= integer - c+i + c+i -
an

	

an

1

	

'

	

l1
~- Cn+i + C,.+ i -

Cn+2 +
0

= integer
an

	

an+i

and since 0 < cn+i < an, 0 < cn+i < [an/4] + 1 0 < c',+,/a,+, < 1,

0 < 0 < 2, this is possible only if c, = c'..
Now choose N so large that bb,,, i < can an,, ., for all n > N, then

from (2.31) we have

C` + i
	 bbn+k	 < - Cn+i + s	 1	integer = -	

a,,,

	

, -= t anan+i . . . an+k

	

an

	

k7t an . . . a,,-,

	

2

_<

	

cn+i + 2s .
an

Thus c,,- 1 < 2san for all n > N.
If condition (2.30) holds for all n >- N then

bb,

	

Cozan- Cn+i
n=ti ai . . . a n

	

ai . . . an

c,

	

-

	

1
C

	

a,
n+iai . . . a,

	

n-,ti,

	

ai . . . an

	

ai . . . an+i

a i . . . a,

bbn = ca, -

-, an+i

Cn+i ,

643

cn >0

0 < cn+i < an

G i-2 ,

	

e,.+i > 0

0 < cn+2 < an+i -

,
Cn+2 + B '

anan+i

	

an
0 < o<2-
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is clearly rational .
Finally we need a fact from sieve theory . We are grateful to

R. Miech for supplying the correct constants .

LEMMA 2.32 . Given an integer a and s > 0 then for large y the
number of integers m satisfying

m - 0, m a (mod p)

for all primes p, with 2 < p < y'/ 5 exceeds y'

Proof of Theorem 2.26 . Let f (n) stand for either 6(n) or (p(n)
and assume that

f(n) _ a
a, . . . a,,

	

b

Since a .. > n" I 12 for large n the hypothesis of Lemma 2.29 is satisfied
and we get

{2.33)

	

bf(n) = c.a. - en+1 for large n .

Since f (n) = o(n'+ , ) for all s > 0 we get

(2.34)

	

c n < n""+' for large n .

From Lemma 2 .28 we get

(2.35)

	

an = 0(f(n)) = 0(n'+`)

and hence the number of integers n _<_ x for which

(2.36)

an+1 > 1 + x -112

an

is O(x 314) ), since otherwise we would have

314

ax =

	

a., > (1 + x -1 1 2 ) x > ,X.2

n<x an

for large x, in contradiction to (2.35) . From now on we restrict our
attention to integers n for which

an+1 < 1 + n- ' 12 .an

For such integers we get from (2 .33) and (2.35) that



(2.37)

where
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f(n+1)

	

C,,n+Ia,n-FI
C1

-	Cn+2	Cn+1
f (n)

	

C n a n

	

Cn+Ia,

	

Cn an
=	 Cn+I ( 1 + 0(n-112 )) (1 + 0(n-314+c»

Cn

c" I + 0(n-' /2+z)

Cn

Now consider a prime q, 2 x1111 < q < x1 / 11 , then according to Lemma
2 .32 there exist more than y1 integers m < y = x1o1I1 so that

(2.38)

	

m 0, m - 2q (mod p)

for all primes p with 2 < p < y1/5 . We may even assume that m is
odd. The number of integers n = 2qm where m satisfies (2 .38) exceeds
X10/11-e > x3 /4 and hence we can pick such an n that satisfies (2.37)
with x/2 < n < x .

Now
f (n) = f (2q)f(m)

1n either case

(2.39)

	

f (2q) = A/q, A an integer not divisible by q.

Since m has at most 5 prime factors all exceeding y
1/5

,(2.40)

(2.41)

(2.43)

(1 _ y-I/5)5 < f(m) < (1 + y-115) 5

By the same reasoning we get

	 1 <
qen

M

f(m) = m(1 + 0(y-" 5 )) = m (1 + 0(x` 111)) .

f (n + 1) = n(1 + 0(x-'1"» .

Substituting (2 .39), (2.40) and (2.41) in (2 .37) we get

(2 .42)

	

f( n	1) = A (1 + 0(x-2111)) = Cent + O(x-112+s ) .

But since q > xl / 12 a

Y

nd C, < x1112 we get

A

	

Cn+I

q

	

Cn

< x -2/11+e .

we have

3(q + 1) if f = a
f (2q) _

	

2q
2q q - 1 if f=q)

2q
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Since qc, z < X1111+1112 < X2111-e this leads to a contradiction .
We could get similar irrationality results if the functions 6(n) or

T(n) are replaced by 6k(n)(k >_ 1) or products of powers of 6k(n) and
(p(n) . In each case we would need the assumption that the an are
monotonic, increasing faster than a certain fractional power of the
numerators .

From Lemma 2.29 it is clear that there is a set of power 2K° of

series (2.25) which are rational even if we restrict the integers c, z to
the values 1 or 2 since for cn = 1 we can choose an = 6(n) - 1 or

6(n) - 2 to get c,z+1 = 1 or 2 respectively and for c n = 2 we choose
a n = [(a(n)-1)/2] to get c,_F1 = 1 if 6(n) is odd and c,+ , = 2 if 6(n) is

even. For the series with numerators (p(n) we would have to use
c,, = 1, 2 or 3 since all p(n) are even for n > 2.
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