ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 1, Number 4, Fall 1971

SOME PROBABILISTIC REMARKS ON FERMAT'S LAST THEOREM

P. ERDÖS AND S. ULAM

Let $a_1 < a_2 < \cdots$ be an infinite sequence of integers satisfying $a_n = (c + o(1))n^{\alpha}$ for some $\alpha > 1$. One can ask: Is it likely that $a_i + a_j = a_r$ or, more generally, $a_{i_1} + \cdots + a_{i_n} = a_i$, has infinitely many solutions. We will formulate this problem precisely and show that if $\alpha > 3$ then with probability 1, $a_i + a_j = a_r$ has only finitely many solutions, but for $\alpha \leq 3$, $a_i + a_j = a_r$ has with probability 1 infinitely many solutions. Several related questions will also be discussed.

Following [1] we define a measure in the space of sequences of integers. Let $\alpha > 1$ be any real number. The measure of the set of sequences containing n has measure $c_1 n^{1/\alpha-1}$ and the measure of the set of sequences not containing n has measure $1 - c_1 n^{1/\alpha-1}$. It easily follows from the law of large numbers (see [1]) that for almost all sequences $A = \{a_1 < a_2 < \cdots\}$ ("almost all" of course, means that we neglect a set of sequences which has measure 0 in our measure) we have

(1)
$$A(x) = (1 + o(1))c_1 \sum_{n=1}^{x} \frac{1}{n^{1/\alpha - 1}} = (1 + o(1))c_1 \alpha x^{1/\alpha}$$

where $A(x) = \sum_{a, < x} 1$. (1) implies that for almost all sequences A

(2)
$$a_n = (1 + o(1))(n/c_i\alpha)^{o}$$
.

Now we prove the following

THEOREM. Let $\alpha > 3$. Then for almost all A

$$(3) a_i + a_i = a_i$$

has only a finite number of solutions. If $\alpha \leq 3$, then for almost all A, (3) has infinitely many solutions.

It is well known that $x^3 + y^3 = z^3$ has no solutions, thus the sequence $\{n^3\}$ belongs to the exceptional set of measure 0.

Assume $\alpha > 3$. Denote by E_{α} the expected number of solutions of $a_i + a_j = a_r$. We show that E_{α} is finite and this will immediately

Received by the editors April 28, 1970.

AMS 1970 subject classifications. Primary 10K99, 10L10.

Copyright © Bocky Mountain Mathematics Consortium

imply that for almost all sequences A, $a_i + a_j = a_r$ has only a finite number of solutions. Denote by P(u) the probability (or measure) that u is in A. We evidently have

$$E_{\alpha} = \sum_{n=1}^{\infty} P(n) \sum_{u+v=n} P(u)P(v)$$

= $c_1^{-3} \sum_{n=1}^{\infty} \frac{1}{n^{1-1/\alpha}} \sum_{u+v=n} \frac{1}{u^{1-1/\alpha}v^{1-1/\alpha}}$
< $c_2 \sum_{n=1}^{\infty} \frac{1}{n^{1-1/\alpha}} \frac{1}{n^{1-2/\alpha}} = c_2 \sum_{n=1}^{\infty} \frac{1}{n^{2-3/\alpha}} < c_3$

which proves our theorem for $\alpha > 3$. One could calculate the probability that (3) has exactly *r* solutions ($r = 0, 1, \dots$).

Let now $\alpha \leq 3$. The case $\alpha = 3$ is the most interesting; the case $\alpha < 3$ can be dealt with similarly. Denote by $E_{\alpha}(x)$ the expected number of solutions of (3) if a_i, a_j and a_r are $\leq x$. We have

$$\begin{aligned} E_3(x) &= \sum_{n=1}^x P(n) \sum_{u+v=n} P(u)P(v) = c_1^{-3} \sum_{n=1}^x \frac{1}{n^{2/3}} \sum_{u+v=n} \frac{1}{(uv)^{2/3}} \\ &= (1+o(1))c_1^{-3} \sum_{u=1}^x \frac{1}{n^{2/3}} \frac{c_2}{n^{1/3}} = (1+o(1))c_1^{-3}c_2 \log x. \end{aligned}$$

By a little calculation, it would be easy to determine c_2 explicitly. Now we prove by a simple second moment argument that for almost all A the number of solutions $f_3(A, x)$ of $a_i + a_j = a_r$, $a_r \leq x$ satisfies

(5)
$$f_3(A, x) = (1 + o(1))c_1{}^3c_2 \log x$$
, that is $f_3(A, x)/E_3(x) \to 1$.

To prove (5) we first compute the expected value of $f_3(A, x)^2$.

The expected value of $f_3(A, x)$ was $E_3(x)$ which we computed in (4). Denote by $E_3^2(x)$ the expected value of $f_3(A, x)^2$. We evidently have

(6)
$$E_3^2(x) = \sum_{1 \le n_1 \le x; \ 1 \le n_2 \le x} P(n_1)P(n_2) \sum_{u_1+v_1=n_1; \ u_2+v_2=n_2} P(u_1, u_2, v_1, v_2)$$

where $P(u_1, v_1, u_2, v_2)$ is the probability that u_1, v_1, u_2, v_2 occurs in our sequence. If these four numbers are distinct, then clearly $P(u_1, u_2, v_1, v_2) = P(u_1)P(u_2)P(v_1)P(v_2)$, but if say $u_1 = u_2$, the probability is larger. Hence $E_3^2(x) > (E_3(x))^2$ and to get the opposite inequality we have to add a term which takes into account that the four terms do not have to be distinct, or $n_1 < n_2, u_1 = u_2$.

$$E_{3}^{2}(x) < (E_{3}(x))^{2}$$

$$+ c \sum_{n_{1}=1}^{x} P(n_{1})P(n_{1} + v_{2} - v_{1}) \sum_{u_{1}+v_{1}=n_{1}, v_{2} < x} P(u_{1})P(v_{1})P(v_{2})$$

$$< (E_{3}(x))^{2} + \sum_{n_{1}=1}^{x} \frac{c_{1}}{n_{1}} \sum_{v_{2}=1}^{x} P(v_{2})P(n_{1} + v_{2} - v_{1})$$

$$<(E_3(x))^2 + \sum_{n_1=1}^x \frac{c_1}{n_1} \sum_{v_2=1}^x P(v_2)^2 < (E_3(x))^2 + \sum_{n=1}^x \frac{c_2}{n_1}$$

$$< (E_3(x)^2) + c_3 \log x.$$

Thus

(7)

(8)
$$(E_3(x^2)) < E_3^2(x) < (E_3(x))^2 + c_3 \log x.$$

(8) implies by the Tchebycheff inequality that the measure of the set A for which

$$(9) \qquad |f_3(A, x) - E_3(x)| > \epsilon \log x$$

is less than $c/\epsilon^2 \log x$. This easily implies that for almost all A

(10)
$$\lim_{x \to \infty} f_3(A, x)/E_3(x) = 1.$$

To show (10) let $x_k = 2^{k(\log k)^2}$. From (9) and the Borel-Cantelli Lemma it follows that

(11)
$$\lim_{k \to \infty} f_3(A, x)/E_3(x_k) = 1.$$

(11) now easily implies (10), $f_3(A, x)$ is a nondecreasing function of x, thus if $x_k < x < x_{k+1}$, $f_3(A, x_k) \leq f_3(A, x) \leq f_3(A, x_{k+1})$. Thus (11) follows from $E_3(x_n)/E_3(x_{k+1}) \rightarrow 1$.

By the same method we can prove that for $\alpha < 3$

$$\lim_{x \to \infty} \frac{f_a(A, x)}{E_a(x)} \to 1.$$

Similarly we can investigate the equation

(12)
$$a_{c_1} = a_{c_2} + a_{c_3} + \cdots + a_{c_n}$$

Here by the same method we can prove that for $\alpha > k + 1$ with probability 1, (12) has only a finite number of solutions and for $\alpha \leq k + 1$ it has infinitely many solutions.

Euler conjectured that the sum of k - 1 (*kth*) powers is never a *kth* power. This is true for k = 3, unknown for k = 4 and has been recently disproved for k = 5 [2]. As far as we know it is possible that

615

for every $k \ge 3$ there are only a finite number of kth powers which are the sum of k - 1 or fewer kth powers.

Let $\beta > 1$ be a rational number. One can ask whether $[n^{\beta}] + [m^{\beta}] = [l^{\beta}]$, has solutions in integers n, m, l. One would guess that for $\beta < 3$ the equation always has infinitely many solutions but that the measure of the set in $\beta, \beta > 3$, for which it has infinitely many solutions has measure 0, but it is not hard to prove that the β 's for which it has infinitely many solutions is everywhere dense.

REFERENCES

 P. Erdös and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. MR 22 #10970; See also: H. Halberstam and K. F. Roth, Sequences, Vol. 1, Clarendon Press, Oxford, 1966. MR 35 #1565.

 L. J. Lander and T. Parkin, A counterexample to Euler's sum of powers conjecture, Math. Comp. 21 (1967), 101–103. MR 36 #3721.

UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302