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SOME PROBABILISTIC REMARKS ON FERMAT'S
LAST THEOREM
P. ERDOS AND S. ULAM

Let a 1 < a2 < • , • be an infinite sequence of integers satisfying
an = (c + o(l))na for some a > 1 . One can ask: Is it likely that
ati + aj = ar or, more generally, ai, + • • • + ai ,, = ai , has infinitely
many solutions. We will formulate this problem precisely and show
that if a > 3 then with probability 1, ai + aj = a r has only finitely
many solutions, but for a :-!5 3, ai + aj = ar has with probability 1
infinitely many solutions. Several related questions will also be
discussed .
Following [1] we define a measure in the space of sequences of

integers. Let a > 1 be any real number. The measure of the set of
sequences containing n has measure clnlia- l and the measure of the
set of sequences not containingontaining n has measure 1 - c 1 nll-- l . It easily
follows from the law of large numbers (see [ 1]) that for almost all
sequences A = {al < a2 < . . . } ("almost all" of course, means that
we neglect a set of sequences which has measure 0 in our measure)
we have

	 1x

	

= (1+0(1 ))c1ax 1/«(1)

	

A(x) = (1 + 0 ( 1 ))c'1 ~, n U«-1n=1

where A(x) _

	

x 1 . (1) implies that for almost all sequences A

(2)

	

an = ( 1 + o(1))(n1cia)-.

Now we prove the following

THEOREM . Let a > 3 . Then for almost all A

(3) ai + aj = ar

has only a finite number of solutions. If a < 3, then for almost all A,
(3) has infinitely many solutions.

It is well known that x 3 + y 3 = z 3 has no solutions, thus the se-
quence {n3 } belongs to the exceptional set of measure 0 .
Assume a > 3. Denote by Ea the expected number of solutions of

a i + aj = a r . We show that E« is finite and this will immediately

Received by the editors April 28, 1970 .
AMS 1970 subject classifications . Primary 10K99, IOL10 .

Copyright © Rocky Mountain Mathematics Consortium

613



614

imply that for almost all sequences A, ai + a; = a, has only a finite
number of solutions . Denote by P(u) the probability (or measure)

that u is in A. We evidently,have

(4)

E« _
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Y. P(n) Y. P(u)P(v)
n=1

	

u+v=n

1

	

n l l l/«

	

.u
n=1

	

u+v=n

	 1	1 _

	

~	 1
< e2 y

	

n 1-2/a - C2 Y n2-3/«
n=1

	

n=1

which proves our theorem for a > 3. One could calculate the prob-
ability that (3) has exactly r solutions (r = 0, 1, • • •) .
Let now a < 3. The case a = 3 is the most interesting ; the case

a < 3 can be dealt with similarly. Denote by E«(x) the expected
number of solutions of (3) if aj, a; and a, are x. We have

x
E3(x) -

	

P(n)

	

P(u)P(v) - C13

	

n2/3

	

(u )2/3
n=1

	

u+v=n

	

n=1

	

u+v=n

1+ 0(1))c,3 x

	

1
	 c2

(

	

= (1 + 0(1))C13c2 log x .
n=1 n 2/3 n 1/3

By a little calculation, it would be easy to determine c 2 explicitly .
Now we prove by a simple second moment argument that for almost
all A the number of solutions f3(A, x) of a i + a; = a,., a, < x satisfies

(5)

	

f3 (A, x) _ (1 + o(1))c 1 3c 2 log x, that is f3(A, x)/E3(X)

	

1.

To prove (5) we first compute the expected value off3(A, x) 2 .
The expected value of f3(A, x) was E,3 (x) which we computed in

(4) . Denote by E3 2(x) the expected value off3(A, x) 2. We evidently
have

(6) E3 2 (x) _

	

P(n i )P(n2)

	

Y~

	

P(u1, u2, VI, v2)
15n 1 -x ; l :~nz ~x

	

u,+o,=n i ;u2 +v z =nz

where P(U 1 , v1i u2 , v2) is the probability that ul, VI, u2 , v2 occurs in
our sequence . If these four numbers are distinct, then clearly
P(u 1 , u 2, v 1 , v 2) = P(u l )P(u2 )P(v l )P(v2 ), but if say u1 = u2 , the prob-
ability is larger . Hence E32(X) > (E3 (X)) 2 and to get the opposite
inequality we have to add a term which takes into account that the
four terms do not have to be distinct, or n 1 < n2 , u 1 = u2.



(7 )

< (E3(x))2 + E CI E P(v2)2 < (E3(x))2 +

	

C2

n,=1 nl v 2=1

	

n=1 n

< (E 3 (x) 2 ) + c 3 log x.

Thus

(8 )

	

(E 3(X 2)) < E32(x) < (E3(x))2 + c 3 log x.

(8) implies by the Tchebycheff inequality that the measure of the set
A for which

(9 )
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E3'2(x) < (E3(x)) 2
x

+ c Y. P(n l ) P(n l + v2 - VI)

	

Y~

	

P(UI)P(vl)P(v2)
1

	

n, =1

	

u, +v, =n, ; u2 < x
x

	

x
< (E3(x)) 2 + y C1 y_ P(v2)P(n1 + v2 - VI)

n, =1 nI v2 =1

f3(A, x) - E3(x) 1 > E log x

is less than CIE 2 log x . This easily implies that for almost all A

(10)

	

lim f3(A, x)/E3 (x) = 1 .
X = W

To show (10) let xk = 2k(1og k )2 From (9) and the Borel-Cantelli
Lemma it follows that

(11)

	

limf3 (A, x)/E 3 (xk ) = 1 .
k=-

(11) now easily implies (10), f3(A, x) is a nondecreasing function of
x, thus If xk < x < xk+1, f3 (A, xk) < f3 (A, x)C f3(A, xk+I) • Thus (11)
follows from E3(xn)/E3(xk+1)

	

L
By the same method we can prove that for a < 3

Í«(A,x)lim-	E,(x)

	

1.
x= ~

Similarly we can investigate the equation

(12)

	

a , = a,+ a'2 + • • • + a, .

Here by the same method we can prove that for a > k + 1 with
probability 1, (12) has only a finite number of solutions and for
a < k + 1 it has infinitely many solutions .

Euler conjectured that the sum of k - 1 (kth) powers is never a
kth power. This is true for k = 3, unknown for k = 4 and has been
recently disproved for k = 5 [2] . As far as we know it is possible that
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for every k ? 3 there are only a finite number of kth powers which
are the sum of k - 1 or fewer kth powers .

Let f3 > 1 be a rational number. One can ask whether [rag] + [m"]
_ [10], has solutions in integers n, m, l . One would guess that for
/3 < 3 the equation always has infinitely many solutions but that the
measure of the set in 9, 8 > 3, for which it has infinitely many solu-
tions has measure 0, but it is not hard to prove that the ffs for
which it has infinitely many solutions is everywhere dense .
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