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In the present paper I discuss some problems in number theory which I
have thought about in the last few years ; computational techniques can be
applied to some of them .

1. On Prime Factors of Consecutive Integers

Let f (k) be the smallest integer with the property that the product of f (k)
consecutive integers all greater than k is always divisible by a prime greater
than k. A well-known theorem of Sylvester and Schur (see Erdős, 1934)
states that f(k) < k. I proved (1955)

c t log k loge k log o k/(1093 k) Z < f(k) < c,k/log k,t

Recently Ramachandra (1969 and to appear) proved f(k) < (1 + 0(1))
k/log k . It seems to me to be very difficult to prove that for all k > k o we have
f(k) < ir(k), though I have no doubt that the conjecture is true . In fact it
seems likely that f(k) is not substantially larger than

A k = max(p,+ t - p,),

	

k < p, < p, + , < 2k .

In fact I cannot even disprove f(k) = Ak for all sufficiently large k, though
it seems likely that f(k) > Ak for all large k. A well known theorem of Pólya
and Störmer states that if u > uo(k) then u(u + 1) always contains a prime
factor greater than k, thusf(k) can be determined in a finite number of steps,
and an explicit bound has been given by Lehmer (1964) for the number of
necessary steps. It is known (Utz, 1961) that f(2) = 2,f(3) =f(4) = 3,
f(5) _ . . . =f(10) = 4 .

Selfridge and I conjected that if m 3 2k then k has a prime factor

m/2, the only exception being 7
3
)

. This conjecture was recently proved by

Earl Ecklund .

t We write log log k = logs k, etc .
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Selfridge and I proved that there is an absolute constant c > 0 so that if

m > 2k then k) always has a prime factor less than mlk` .

The proof is very simple . Assume first m >, 2k1+ c, put I _ [k`] + 1 . It
follows from the theorem of Hoheisel-lngham (see lngham, 1937) that for
sufficiently small c > D there is a prime p satisfying

Clearly

PI(Mk)

M
>p> n~

k
>k.

Clearly this prime divides k) and this proves our assertion if m > 2k1 * O,

Assume next m < 2k' +` . Let

s-. [2k1 +1 .

It follows from the Hoheisel-lngham theorem that there is a prime p satis-
fying

m

	

m-k
s >p> s-1

since 2 <m-1 <p<kamdm-k<(s-1)p<sp<m)

which completes our proof. The simplicity of our proof is caused by the fact
that we have not determined c explicitly .

Selfridge and I conjectured that if m > kZ then ( k) has a prime fagot

m/k ; (3) is certainly an exception, and this may be the only one . In con-

nection with this problem we asked : Determine or estimate the smallest

integer g(k) so that all prime factors of
(gkk))

are greater than k, (it is easy

to see that such integers exist) .

It is perhaps true that, for k > k o(s) and m > k` +`, ( k) always has a

prime factor greater than k" - k. Ramachandra (1969) has some results
which point in this direction . More generally let h(k) be the largest integer so

that if m > h(k) then ( k) always has a prime factor greater than h(k) - k-
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I am sure that h(k) > V for every c > 0 and k > ko(c) ; h(k) > ck log k is
easy and Ramachandra s result will no doubt give h(k) > (1 + 0(1)) k log k .
Denote by pk the least prime greater than 2k . Faulkner (1966) proved that

for in ~> pk,
( k) always has a prime factor > p k . except for

(9)
and (1301

Thus h(k) >, pk + k for k > 3

.

It is easy to see that h(2) = 4, h(3) = 6, h(4) = 16 (i .e . the product of 4
consecutive integers >, 13 always has a prime factor >, 13). It is difficult to
compute h(k) but by the effectivisation results of Brown this can be done in
a bounded number of steps . Lehmer (1963) showed h(7) >, 43 .

I conjectured that, for every m> 2k, ( k has a divisor d with m - k <

d < m . This is easy to see if k = p = . Schinzel (1958) proved that in general
it is incorrect, e.g ., it is false for k = 15, m = 99125 . He further proved that
it is true for all integers k < 34 except 15, 21, 22, 33 . Schinzel now conjec-
tures that it is false for all k > 34, k 0 pz . This conjecture has been verified
for k < 150. 1 proved (see Schinzel, 1958) that my conjecture is false for
infinitely many k 0 p= .

In view of the failure of my conjecture one can try to investigate the great-

est factor of (
M)

not greater than m. I would now conjecture that the

greatest prime factor < m of ( k ) is greater than cm for some c > 0. Un-

fortunately I can prove no non-trivial result .
This question leads me to the following one : Is it true that for every e > 0

there is a ko so that, for k > ko , k! is the product of k integers all greater
than (k/e) (1 - e) . It easily follows from Stirling's formula that if

k
k ! _ f1 a ;, a,

	

. . . < a,
f=1

then a, < k/e, thus our conjecture if true is best possible .
Recently Selfridge and I proved that the product of consecutive integers

is never a power (that it is never a square is due to Rigge, 1939) ; our proof
is not quite easy and will be published elsewhere for a weaker result see
Erdős, 1955b). In fact we prove a somewhat stronger result . We prove that

k

for every I > l, k > I the product

	

(m + i) contains a prime p > k to an

exponent which is not a multiple of 1. We conjecture that if 13 2 and k

	

3
k

then

	

(tn + i) contains a prime p > k to the exponent one . The only excep-

tion is 48 . 49 . 50. For k = 2 there are infinitely many exceptions. This con-
jecture if true is very deep .
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means p'im, f+ 1 X
m)

A i (-) = np z , p"i~(rn + i),

It is not difficult to prove that for k > k o (e)

min A il-) < (1 + e)k .
<i :k

408

Put (p'II M

Probably very much more is true, in fact perhaps

im - max min A,(m ) = 0 .
k--•s k OSm<1; : .4i_k

p k .

2. Covering Congruences

A system of congruences a i (mod m i ), in, < . . . < in, is called a covering
system if every integer satisfies at least one of the congruences a, (mod m,) .
I was lead to the problem of covering congruences by a letter of Romanoff
who asked if there are infinitely many odd integers not of the form 2't + p
(as is well known Romanoff (1934) proved that the lower density of the in-
tegers of the form 21'

	

p is positive) .
The simplest covering system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6),

11 (mod 12) and the system 0 (mod 2), 0 (mod 3), 1 (mod 4), 7 (mod 8),
11 (mod 12), 19 (mod 24) shows (Erdős 1947-51) that the answer to
Romanoff's question is positive, in fact there is an arithmetic progression
consisting entirely of odd numbers no term of which is of the form 2 k + p.
The following question seems very difficult : Is it true that to every c there

exists a covering system a, (mod mi) c < .m, < . . . < Ink? This is known for
c < 9 (see Churchhouse, 1968) but the general case seems very difficult . A
positive answer would imply that for every r there is an arithmetic progres-
sion no terra of which is the sung of a power of 2 and an integer having at
most r prime factors .

Schinzel recently investigated the question whether, for fixed r, there is
an arithmetic progression no term of which is of the form 2" + 2 k2 + . . . +
2" + p ; already for r = 2 the question seems difficult. Schinzel (1967) recently
applied covering congruences to the study of reducibility of polynomials .

There are many further interesting problems on covering congruences, e.g.,
is there 3 covering congruence all whose moduli are odd, or is there a cover-
ing congruence in which no two moduli divide each other? Schinzel (1967)
and Selfridge observed that the two problems are connected .

Call an integer m covering if one can find a covering set whose moduli are
all divisors of m ; m = 12 is clearly the smallest covering integer . Clearly all
multiples of a covering integer are again covering . An integer is primitive
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covering if it is covering but all its divisors are not covering . Clearly we obtain
the covering integers by taking the set of all multiples of the primitive cover-
ing integers. I can prove using the results in Erdős (1948) that the covering
integers have a density . One could try to estimate the number of primitive
covering integers not exceeding x.

I expect that for every c > 0 there is an m which is not covering and for
which a(m)lm > c, but I could not prove this (perhaps I overlook a simple
idea).

A system of arithmetic progressions a ; (mod m,), mi < . . . < mk is called
disjoint if no integer is in two of them . Denote by f(x) the maximum number
of pair-wise disjoint arithmetic progressions whose difference does not exceed
x. Stein and I conjectured that,f(x) = o(x) ; Szemeredi and I (1968) recently
proved this . The sharpest results forf(x) are

x exp(-c,(log x log z x)l) < f(x) < x(log x) - ` 2 ,

perhaps the lower bound is close to the true order of magnitude .
Stein conjectured that if ai (mod mi ), m, < . . . < m,t are k disjoint congru-

ences there is an integer < 2' which does not satisfy any of these congruences
Selfridge proved this conjecture. I conjectured that if a ; (mod m,), m, < . . .
< m,; are any k congruences which are not covering then there is an integer
5 2k which does not satisfy any of these congruences (Selfridge, Crittenden
and Van der Eyden recently proved this conjecture) .

It is not hard to see that the density of integers not satisfying any of the
disjoint congruences a, (mod m,), m, < . . . < »t k is l!'2' and that this result
is best possible. The same result probably holds for any k congruences which
are not covering (Erdős, 1962) .

I would like to state one more problem on arithmetic progressions : Let
ai (mod m,), m, < m, < . . . be an infinite sequence of arithmetic progres-
sions. Is it true that the set of integers not satisfying any of these congruences
always has a logarithmic density? Special cases of this conjecture were proved
by Davenport and myself (1936 and 1951) .

3. Some Problems and Results on the Addition of Residue Classes

Heilbronn and 1 (1969) proved that if a,, . . ., a k , k 3 3(6p)# are distinct
residues mod p (p prime) then every residue (mod p) can be written in the
form

k

Y e,a i , e i = 0 or 1 .
i=1

We conjectured that the same holds for k > 2,/p and that this is best pos-
sible. Olsen (1968) recently proved this conjecture . We further conjectured
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that the number of distinct residues of the form ai + a,, 1 < i < j < k, is at
least 2k - 3 ; as far as I know this conjecture is still unsettled .

Let now m be composite and a l , . . ., ak be k distinct residues mod m . We
conjectured (Erdős and Heilbronn, 1969) that if k > c,m then

k

eiai - 0 (mod m),

	

Ei = 0 or 1
=1

is always solvable (probably k > J2m + o(„m) will suffice. Ryavec (1968)
proved a slightly weaker result and our conjecture was recently proved by
Szemeredt (his paper will appear in Acta Arithmetica). Szemeredi's proof
works for every abelian group of order m-, perhaps the result holds for non-
abelian groups too .

Eggleston proved the following result : Let G,„ be an abelian group of m
elements, m < n + k - 1, a l , . . ., a„ are n elements of G„, where at least k of
the a's are distinct. Then (e is the unit element of G.)

k

e = H a,'i, E i = 0 or 1
=1

is always solvable.
Eggleston and I conjectured that rn < n + k - 1 can be replaced by m

n + (k) ; this if true is easily seen to be best possible (it suffices to take G .

to be the additive group mod m and the a's 1, . . ., k, l, . . ., 1) .
We proved this conjecture if m > mo(k) (unpublished), also we were led

to the following question which seems to be of some interset . Let f(k) be the
largest integer with the following property ; let a,, . . ., ak be k distinct elements
of Gm and assume that no product

k

r[ ai '` , E = 0 or 1,
i=9

equals the unit of Gm ; then at least }'(k) distinct elements of Gm can be rep-
resented in the form

k

1 L
ai

Ey ,
i= 1

Ei = 0or1 .

We showed f(2) = 2 .f(3) - 5 ,)(4) S. f(k + 1) > f(k) + 2 . Szemeredt
showed f(k) > ck' . It does not seem to be easy to determine f(k) or even to
give an asymptotic formula for it . -these problems can be stated for non-
abelian groups too .
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4. Miscellaneous Problems, Results and Conjectures

Denote by 7r(x) the number of primes not exceeding x. Is it true that
rr(x + y) < 7r(x) + n(y))? This conjecture, if true, is certainly extremely
deep. It is not hard to prove for small values of y. I do not know for how
large values of y it has been proved and I also do not know for how large
values it has been checked .

Following Hardy and Littlewood (1923) put

p(y) = lim sup (lr(x + y) - rr(x))
x-m

Probably lim p(y) = oc . Hardy and Littlewood conjectured that for y > y o
Y=X

then p(y) > y1log y ; this if true is certainly very deep . Using Brun's method
they proved p(y) < cy/logy (as far as I know this is the only time they used
Brun's method) . Denote by hm(k) the number of integers m < x < m + k
which are not divisible by any prime less than or equal to k . Hardy and
Littlewood conjectured that p(k) = max h,n(k) . It seems probable that
lim (rr(y) - P(y)) _ oo •

	

m

Y=~,
All these conjectures seem hopeless at present . Perhaps the following ques-

tions deserve some investigation. A sequence m < a, < . . . < a, < m + k is
called complete if (a,, aj) = 1, 1 < i < j < !, but for every m < n < m + k .
(n, a) > I for some 1 < j L Denote by f(m, k), respectively, F(m, k) the
smallest (largest) value of l. It is easy to see that min f(nl, k) = 2 (m = k! - 1)

M m

	

m

M

but it seems very difficult to determine or give a good estimation for
maxf(m, k), min F(m . k) or max F(m, k) . Clearly all three functions tend to in-

finity with k, perhaps max F(m, k) _ ;r(k) + 1 (clearly max F(m, k) _ a(k) + 1,
m

	

m

to see this observe that the 7r(k) + 1 integers k! + 1, k! + p [p runs
through the primes not exceeding k] are pairwise relatively prime) . F(m, k) <
ck/log k trivially follows from Brun's method . For small values of k it is easy
to compute all these functions .

One could try to estimate f(m, k) and F(m, k) if both in and k tend to in-
finity e .g. is it true that if c is a sufficiently large constant then f (m,(log ni)` )
tends to infinity together with m? This question is connected with the prob-
lem of the difference of consecutive primes and seems very difficult .

The sharpest known inequality for large differences of consecutive primes
is due to Rankin (1938) and states that for infinitely many n we have

Pn+ I - Pit > c log Pn 1092 Pn 1094 N/ (1093 Pn) 2 .

411

Denote now by a, ( ') < a2 (r) <
. . . the sequence of integers which have at
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most r prime factors . I proved (Erdős, 1955c, 1956)

lim sup (a,,, (2)
- a k(z) ),/log k > c ;

k=ao

perhaps this inequality holds for every r and perhaps the lim sup is in fact
infinite, but I cannot prove this even for r = 2 .
Let g(m) be the smallest integer so that at least one of the integers m,

m + l, . .., m + g(m) divides the product of the others . It is easy to see that
g(k!) = k and, for m > k!, g(m) > k . I can prove that for infinitely many m

g(m) > exp«Iogm)f - `) .

I have no good upper bound for g(m) . g(m) < c ~/m is easy but probably
g(m) = O(m`) and in fact perhaps g(m) = 0(exp((lognr)

Denote by u, ( ` ) < . . . < us`" m the integers not exceeding m all whose
prime factors are < m`, g(m) - O(nz`) would follow if we could show
a, + , - a; = O(m`), but this seems hopeless at present .
Put f(m) _

	

p (this function has recently been investigated from a
plm

different point of view by Mohara Lat, 1969). Denote by F(x) the number of
distinct integers of the sequence f(m), 1 < m < x . I can prove (unpublished)

r

	

r

C, x/log x II logk x < F(x) < c2 X;log x f I log k x,

	

(4.1)
k-3

	

k-.'.

where I < log, x < e. Analogous questions have been investigated for the
functions a(m), 0(m) and d(m) . see Erdős (1935, 1945) and Erdős and Mirsky
(1952) .

The same function which appears in (,4 .1e occurs in a completely different
question . Let I < a, < . . . < a k < x be a sequence of integers so that all the
sums

k

L F ;ja;, e; = 0 or 1,
i=1

are all different. Put max k = .f(x). Then

~r

C, X/109 x L 1 logk x < f(x) < e .;' l0 -2

	

,1X l 10Ek .C .
k~3

	

k- =3

The proof of (4?) is not published .
Finally I state a conjecture of the 16-year old Hungarian mathematician

I. Ruzsa .
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Let f(m) be a multiplicative function whose values are elements of a group

G. Let g be an element of this group, Is it true that the density of integers m
for which f(m) = g always exists? This conjecture if true must be very deep
since it would imply the theorem of Wirsing (1967) that every multiplicative
function which only assumes the values < 1 has a mean value .
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