SOME PROBLEMS ON THE PRIME FACTORS OF CONSECUTIVE INTEGERS II
by
P. Erdois and J. L. Selfridge
G. A. Grimm [3] stated the following interesting conjecture: Let $\mathrm{n}+1, \ldots, \mathrm{n}+\mathrm{k}$ be consecutive composite numbers. Then for each 1 , $1 \leq i \leq k \quad$ there is a $p_{1}, p_{1} \mid n+1 p_{i_{1}} \neq p_{i_{2}}$ for $i_{1} \neq i_{2}$. He also expressed the conjecture in a weaker form stating that any set of k consecutive composite numbers need to have at least k prime factors. We first show that even in this weaker form the conjecture goes far beyond what is known about primes at present.

First we define a few number theoretic functions. Denote by $\nu(n, k)$ the number of distinct prime factors of $(n+1) \ldots(n+k) . f_{1}(n)$ is the smallest integer k so that for every $l \leq \ell \leq k$

$$
v(n, \ell) \geq \ell \operatorname{but} v(n, k+1)=k .
$$

$f_{0}(n)$ is the largest integer k for which

$$
\nu(n, k) \geq k
$$

Clearly $f_{0}(n) \geqslant f_{1}(n)$ and we shall show that infinitely of ten $f_{0}(n)>f_{1}(n)$.

Following Grimm let $f_{2}(n)$ be the largest integer k so that for each $1 \leq i \leqslant k$ there is a $p_{1} \mid n+1, p_{i_{1}} \neq p_{i_{2}}$ if $i_{1} \neq i_{2}$. Denote by $P(m)$ the greatest prime factor of $m . f_{3}(n)$ is the greatest integer so that all the primes $P(n+1), l \leq 1 \leq k$ are distinct. $f_{4}(n)$ is the largest integer k so that $P(n+1) \geq 1, L \leq i \leq k$ and $f_{5}(n)$ is the largest integer k so that $P(n+i) \geq k$ for every $1 \leq i \leq k$. Clearly

$$
f_{0}(n) \geq f_{1}(n) \geqslant f_{2}(n) \geqslant f_{3}(n) \geqslant f_{4}(n) \geq f_{5}(n)
$$

CONJECIURE: It seems certain to us that for infinitely many n the inequalities are all strict. For example, for $n=9701$

$$
f_{0}(n)=96>94>90>45>18>11=f_{5}(n) .
$$

It seems very difficult to get exact information on these functions which probably behave very irregularly. By a well known theorem of pólya, $f_{3}(n)$ tends to infinity. First we prove

THEOREM 1.

$$
\begin{equation*}
f_{0}(n)<c_{1}\left[\frac{n}{\log n}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

To prove (1) assume that $v(n, k) \geq k$. We then would have

$$
\begin{equation*}
\binom{n+k}{k} \geq \Pi p_{r}, \pi(k)<r \leq k \tag{2}
\end{equation*}
$$

where $p_{1}=2<p_{2}<\ldots$ is the sequence of consecutive primes. On the other hand

$$
\left[\begin{array}{c}
n+k \tag{3}\\
k
\end{array}\right]<\frac{(n+k)^{k}}{k!}<\left[\frac{e(n+k)}{k}\right]^{k}
$$

A well known theorem of Rosier and Schoenfeld [4] states that for
large t

$$
\begin{equation*}
p_{t}>t \log t+t \log \log t-c_{2} t \tag{4}
\end{equation*}
$$

where $c_{1}, c_{2} \ldots$ are positive absolute constants.
From (4) we obtain by a simple computation that (exp $z=e^{z}$).

$$
\begin{equation*}
\prod_{\mathrm{M}=\pi(k)+1}^{k} p_{r}>\exp \left(k \log k+k \log \log k-c_{3} k\right) . \tag{5}
\end{equation*}
$$

From (2), (3), (4) and (5) we have

$$
\begin{equation*}
\frac{e(n+k)}{k}>k \log k / e^{c_{3}} \tag{6}
\end{equation*}
$$

(6) immediately implies (1) and the proof of Theorem 1 is complete.

We conjecture

$$
f_{0}(n)<n^{1 / 2-c_{4}}
$$

for all $n>n_{0}\left(c_{4}\right)$, perhaps $f_{1}(n)>n^{c_{5}}$ for all n. $f_{0}(n)<n^{1 / 2-c_{4}}$ seems to follow from a recent result of Ramachandra (A note on numbers with a large prime factor, Journal London Math. Soc. 1 (1969), pp. 303-306) but we do not give the details here.

Theorem 1 shows that there is not much hope to prove Grimm's conjecture in the "near future" since even its weaker form implies that

$$
p_{1+1}-p_{i}<c\left(p_{i} / \log p_{i}\right)^{1 / 2}
$$

in particular it would imply that there are primes between n^{2} and $(n+1)^{2}$ for all sufficiently large n.

Next we show

THEOREM 2. For infinitely many n

$$
f_{0}(n)<c_{6} n^{1 / e} \text { and } f_{1}(n)<c_{7} n^{1 / e}
$$

Denote by $u(m, x)$ the number of prime factors of m in $\left(c x^{x^{1 / e}}, x\right)$. We evidently have

$$
\begin{equation*}
\sum_{m=1}^{X} u(m, x)=\sum_{c_{8} X^{1 / e}<p<x}\left[\frac{X}{p}\right]>x \sum_{c_{8} X^{1 / e}<p<x} \frac{1}{p}-\pi(x)>x \tag{7}
\end{equation*}
$$

for sufficiently small c_{8}.

From (7) it is easy to see that there is an $c_{8} X^{1 / e} \leq m<x-c_{8} X^{1 / e}$ so that for every $t \leq X-m$

$$
\sum_{i=1}^{t} u(m+i, x) \geq t
$$

Choose $t=c_{6} x^{1 / e}$ and we obtain Theorem 2. In fact for every $t<c_{6} X^{1 / e}$ $\prod_{i=1}^{t}(m+i)$ has at least t prime factors $>c_{6} x^{l / e}$. The same method gives that $f_{1}(n)<c_{7} n^{I / e}$ holds for infinitely many n.

We can improve a result of Grimm by
THEOREM 3.* For every $n>n$ o

$$
f_{2}(n)>(1+o(1)) \log n .
$$

Suppose $f_{2}(n)<t$. This implies by Hall's theorem that for some $r \leq \pi(t)$ there are r primes p_{1}, \ldots, p_{r} so that $r+1$ integers $n+i_{1}, \ldots, n+i_{r+1}$, $1 \leqslant 1_{1}<\ldots<1_{r+1} \leqslant t$ are entirely composed of p_{1}, \ldots, p_{r}. For each p there is at most one of the integers $n+j, l<j \leq t$ which divide p^{α} with $p^{\alpha}>t$. Thus for at least one index $i_{s}, l \leq s \leq r+l$

$$
n+i_{s}=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}, p_{i}^{\alpha}<t \text {, or } n<t^{\pi(r)}<t^{\pi(t)}<e^{(1+o(1)) t}
$$

which proves Theorem 3. Probably this proof can be improved to give $f_{2}(n) / \log n \rightarrow \infty \quad$ but at the moment we can not see how to get $f_{2}(n)>(\log n)^{I+\epsilon}$. Probably

$$
\begin{equation*}
f_{2}(n) /(\log n)^{k} \rightarrow \infty \tag{8}
\end{equation*}
$$

for every k which would make Grimm's conjecture likely in view of the fact that "probably"

[^0]\[

$$
\begin{equation*}
\lim \left(p_{r+1}-p_{r}\right) /\left(\log p_{r}\right)^{k} \rightarrow 0 \tag{9}
\end{equation*}
$$

\]

for sufficiently large k. We certainly do not see how to prove (8) but this may be due to the fact that we overlook a simple idea. On the other hand the proof of (9) seems beyond human ingenuity at present.

In view of [2]

$$
\underline{\lim } \frac{p_{r+1}-p_{r}}{\log p_{r}}<1
$$

Theorem 3 shows that Grirm's conjecture holds for infinitely many sets of composite numbers between consecutive primes.

THEOREM 4. For infinitely many n

$$
f_{5}(n)>\exp \left(c_{9}(\log n \log \log n)^{1 / 2}\right)
$$

A well known theorem of de Bruifn [1] implies that for an absolute constant c_{9} the number of integers $m<n$ for which

$$
\begin{equation*}
P(m)<\exp \left(c_{9}(\log n \log \log n)^{1 / 2}\right) \tag{10}
\end{equation*}
$$

is less than

$$
\begin{equation*}
n \exp -\left(c_{9}(\log n \log \log n)^{1 / 2}\right) . \tag{II}
\end{equation*}
$$

(10) and (11) imply that there are $\exp \left(c_{9}(\log n \log \log n)^{1 / 2}\right)$ consecutive integers not exceeding n all of whose greatest prime factors are greater than $\exp \left(c_{9}(\log n \log \log n)^{1 / 2}\right)$, which proves Theorem 4.

It seems likely that for infinitely many $n \quad f_{3}(n)<(\log n)^{c} 10$, but it is quite possible that for all $n f_{3}(n)>(\log n)^{c} 11$. We have no non-trivial upper bounds for $f_{3}(n), f_{4}(n)$ or $f_{5}(n)$. It seems certain that $f_{3}(n)=0(n G$ for every $\epsilon>0$. It is difficult to guess good upper or lower bounds for $f_{2}(n)$.

Grinm observed that there are integers u and $v, u<v, P(u)=$ $P(v)$ so that there is no prime between u and v e.g. $u=24$, $v=27$. It is easy to find many other such examples, but we cannot prove that there are infinitely many such pairs u_{i}, v_{i} and we cannot get good upper or lower bounds for $v_{i}-u_{i}$. Polya's theorem of course implies $v_{1}-u_{i} \rightarrow \infty$.

It has been conjectured (at the present we cannot trace the conjecture) that if n_{i} and m_{i} have the same prime factors, then there is always a prime between n_{i} and m_{i}. We cannot get good upper or lower bounds on $m_{i}-n_{i}$.

Next we prove
THEOREM 5. Each of the inequalities

$$
f_{i}(n)>f_{i+1}(n), 0 \leq i \leq 4
$$

have infinitely many solutions.
First we prove $f_{0}(n)>f_{1}(n)$ infiniteiy often. Put $n=p q$ where p and q are distinct primes, $\mathrm{q}=(\mathrm{l}+\mathrm{o}(\mathrm{l})) \mathrm{p}$, i.e. p and q are both of the form $(1+o(1)) n^{1 / 2}$. There is a largest k for which

$$
\begin{equation*}
f_{0}(p q-k) \geq k . \tag{12}
\end{equation*}
$$

By theorem 1 none of the integers $p q-1, \ldots, p q-k+1$ can be multiples of p or q since $k=0\left(n^{1 / 2}\right)$. Since k is maximal, by (12) the number of distinct prime factors of the product ($\mathrm{pq}-\mathrm{k}+1$). .. (pq) equals k. Thus the number of distinct prime factors of ($\mathrm{pq}-\mathrm{k}+1$)$\ldots(\mathrm{pq}-1)$ is $\mathrm{k}-2$ hence $f_{1}(p q-k)<k-1$ while $f_{o}(p q-k) \geq k$.

To prove $f_{1}(n)>f_{2}(n)$ infinitely often, observe that $f_{1}(p q-1)>f_{2}(p q-1)$ with p and q as above. Since $f_{1}(p q-1)>\min (p, q)$, the primes p and q cannot both be used for f_{2} but can be used for f_{1}.

Assume now $f_{2}(n)=k$ and assume that the set $n+1, \ldots, n+k$ contains no power of a prime. Then $f_{2}(n)>f_{3}(n)$. Since $f_{2}(n)=k$ there must be r numbers $n+i_{1}, \ldots, n+i_{r}$ in the set which together with $n+k+1$ are composed entirely of exactly r primes $q_{1}<\ldots<q_{r}$ (we use Hall's theorem). Now none of these r numbers is a power of q_{1} so their largest prime factors cannot all be distinct and thus $f_{3}(n)<k$.

Now clearly n^{2} and $(n+1)^{2}$ infinitely often have no power between them. This and the fact that $f_{2}\left(n^{2}\right)=o(n)$ gives infinitely often $f_{2}\left(n^{2}\right)>f_{3}\left(n^{2}\right)$. It might be interesting to try to determine the largest n such that $f_{2}(n)=f_{3}(n)$. We cannot even prove there is such an n.

Since $f_{3}(n)$ goes to infinity with n and $f_{4}\left(2^{i k}-3\right)=$ $f_{5}\left(2^{k}-3\right)=2$, it is clear that $f_{3}(n)>f_{4}(n)$ infinitely often. Also $f_{4}\left(2^{k}-1\right)>2$ if $k>1$ while $f_{5}\left(2^{k}-1\right)=2$. In fact it is easy to see that $f_{4}\left(2^{k}-1\right)$ goes to infinity with k. THEOREM 6. For all $n>n_{0}, f_{1}(n)>f_{3}(n)$. Proof: Put $f_{1}(n)=k$. Then $(n+1) \ldots(n+k)$ has exactly k distinct prime factors. If $f_{3}(n)=k$ then all these k primes must be the greatest prime factor of some $n+i, l \leq i \leq k$. In particular 2 must be the greatest prime factor of $n+i,\left(n+i=2^{W}\right)$ and similarly for 3 so that $n+i_{2}=2^{v} 3^{w}$.

Thus by theorem 1

$$
\begin{equation*}
\left|2^{u}-2^{v_{3}} 3^{w}\right|<k<2^{i / 2} \tag{13}
\end{equation*}
$$

A well known theorem states that if p_{1}, \ldots, p_{r} are r given primes and $a_{1}<a_{2}<\ldots$ is the set of integers composed of the p 's then $a_{i+1}-a_{i}>a_{i}^{1-\epsilon}$ for every $\epsilon>0$ and $i>i(\epsilon)$. This clearly contradicts (13), proving theorem 6.

It is not impossible that for every $n>n_{0}$

$$
f_{0}(n)>f_{1}(n)>f_{2}(n)>f_{3}(n)>f_{4}(n)
$$

but we are far from being able to prove this. It seems certain to us that $f_{1}(n)>f_{2}(n)>f_{3}(n)$ for all $n>n_{0}$ but we might hazard the guess that $f_{0}(n)=f_{1}(n)$ infinitely often, and periaps $f_{3}(n)=f_{4}(n)=f_{5}(n)$ infinitely often. $f_{4}\left(2^{k}-3\right)=f_{5}\left(2^{k}-3\right)=2$, thus $f_{4}(n)=f_{5}(n)$ has infinitely many solutions.

We can prove by using the methods of Theorem 4 that

$$
f_{3}(n)<\exp \left((2+o(1))(\log n \log \log n)^{1 / 2}\right.
$$

for infinitely many n and that

$$
f_{2}(n)<\exp (c \log n \log \log \log n / \log \log n)
$$

for infinitely many n.
Perinaps our metiods give that $f_{0}(n)<\mathrm{cn}^{1 / e}$ nolds infinitely often and perhaps $f_{0}(n)<n^{\frac{1}{f}+\epsilon}$ holds for every $n>n_{0}$. All these and relaced questions we hope to investigate.

References

1. N.G. de Bruijn, On the number of positive integers $s X$ and free of prime factors $>y$. Indig. Math. 13 (1951) 50-60.
2. P. Erdös, The difference of consecutive prime numbers. Duke Math. J. 6 (1940), 438-441.
3. C. A. Grimm, A conjecture on consecutive composite numbers. Amer. Maich. Montinly 76 (1969), 1126-1128.
4. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94.
5. C. Siegel, Uber Nanerungswerte Algebraischer Zahien, Math. Annalen 84 (1921), 80-99, see also K. Mahler, Math. Annalen, 107 (1933), 691-730.

[^0]: * K. Ramachandra just informed us that he can prove $f_{2}(n)>c \log n(\log$
 $\log n)^{1 / 4}$

